ISSN 2414-3146

Received 26 December 2018
Accepted 24 January 2019

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; zinc coordination compound.

CCDC reference: 1893123
Structural data: full structural data are available from iucrdata.iucr.org

Dichlorido(2,2'-methylenedipyridine)zinc(II)

Adam Siegfried, ${ }^{\text {a* }}$ Brett McAbee, ${ }^{\text {b }}$ Vladimir Zotov, ${ }^{\text {b }}$ Colin McMillen ${ }^{\text {c }}$ and Timothy Hanks ${ }^{\text {b }}$

${ }^{\text {a }}$ Division of Science, Math, Health, and Computer Science, Spartanburg Methodist College, 1000 Powell Mill Rd., Spartanburg, SC 29301, 864-587-4214, USA, ${ }^{\mathbf{b}}$ Department of Chemistry, Furman University, 3300 Poinsett Highway, Greenville, SC 29613, USA, and ${ }^{\text {c }}$ Department of Chemistry, Hunter Laboratories, Clemson University, Clemson, SC 29634, USA. ${ }^{*}$ Correspondence e-mail: siegfrieda@smcsc.edu

The title complex, $\left[\mathrm{ZnCl}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\right]$, crystallizes in the $P 2_{1} / c$ space group with di-2-pyridylmethane acting as a bidentate ligand coordinating the zinc atom in a distorted tetrahedral geometry. The asymmetric unit consists of a single molecule of the title complex. The title complex folds with an angle of 53.82 (5) ${ }^{\circ}$ between the planes of the two pyridine rings. The crystal packing is stabilized by hydrogen bonds and $\pi-\pi$ interactions involving both pyridine rings.

Chemical scheme

Structure description

Polynuclear d^{10} metal complexes are known to possess luminescence properties and have been studied extensively (Yam \& Lo, 1999). Mononuclear d^{10} metal complexes such as the title compound were first synthesized by Friedrich et al. (1962) in a search for new methods of producing known dyes. A few years later, Black et al. (1967) produced a series of bidentate chelate complexes including the title complex. Di-2-pyridylmethane can be coupled to form tetra-2-pyridylethane, which in turn can be oxidized further to form tetra-2-pyridylethylene. Both tetra-2-pyridylethane and the ethylene derivative have been used as a ligands in metal coordination chemistry (D'Alessandro et al., 2003). Herein we report the crystal structure of the title compound, Fig. 1, which we produced serendipitously in an attempt to prepare a tetra-2-pyridyl derivative, Fig. 2.
The asymmetric unit of the title compound consists of one molecule on a general position. The two pyridine rings are planar to within $0.0076(13) \AA$ and 0.0071 (11) \AA and are inclined to one another at a dihedral angle of $53.82(5)^{\circ}$, Fig. 3. The $\mathrm{Zn}^{\mathrm{II}}$ atom coordinates in a distorted tetrahedral geometry with the $2,2^{\prime}$-methylenedipyridine unit acting as a bidentate chelating ligand through the N atoms of the two pyridine rings.

Figure 1
The structure of the title complex with displacement ellipsoids drawn at the 50% probability level.
$\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions are observed between molecules of the title compound. Two $\pi-\pi$ interactions involve both pyridine rings, Fig. 4, with distances of 3.8843 (5) and 3.5828 (11) \AA, respectively, between the centroids of the $\mathrm{N} 2 /$ C7-C11 pyridine rings running along the b-axis direction and between the centroids of the $\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 5$ pyridine rings running along the $[\overline{13}, 7,0]$ direction. The $\mathrm{H} 10 \cdots \pi$ ($\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 5$) interaction distance is $2.99 \AA$, which is just outside the $\mathrm{H} \cdots \mathrm{Cp}$ distance of $2.9 \AA$ suggested for such contacts (Takahashi et al., 2001). $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions are also observed (Table 1).

A search of the CSD (Groom et al., 2016) found five complexes that utilize bis(2-pyridyl)methane as a ligand and nine complexes with related di-2-pyridylketone ligands. Metals reported in these structures are $\mathrm{Zn}^{\mathrm{II}}, \mathrm{Pt}^{\mathrm{II}}$, and $\mathrm{Pt}^{\mathrm{IV}}$ for the di-2-pyridylketone structures [refcodes ERAPUI (Crowder et al., 2004), LUCBOA (Katsoulakou et al., 2002), SIQZEX (Lo et al., 2015), XARDOK, XARDUQ, XARFAY, XARFAC, XARFIG, XAVRIW (Zhang et al., 2005)] with the majority being Pt complexes. Bis(2-pyridyl)methane

Figure 2
Expected and actual reaction schemes leading to the synthesis of the title complex.

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).
Cg 1 is the centroid of the $\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 5$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.95	2.89	$3.7719(19)$	154
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.95	2.86	$3.591(2)$	134
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{C} 1^{\mathrm{iii}}$	0.95	2.99	$3.718(2)$	135

Symmetry codes:
$-x+1, y+\frac{1}{2},-z+\frac{3}{2}$.$\quad$ (i) $\quad-y+\frac{3}{2}, z-\frac{1}{2} ; \quad$ (ii) $\quad-x+1,-y+1,-z+2 ; \quad$ (iii)
complexes are found for $\mathrm{Pt}^{\mathrm{II}}, \mathrm{Cu}^{\mathrm{I}}, \mathrm{Re}^{\mathrm{I}}, \mathrm{Hg}^{\mathrm{I}}$, and Li cations. [refcodes CASXUQ (Elie et al., 2017), HEWPIL (Gornitzka \& Stalke, 1994), MPYHGA (Marti et al., 2005), SAXVOD (Zhang et al., 2005), YIFJEC (Canty et al., 1980)]. Of the previously mentioned organometallic complexes, only the $\mathrm{Zn}^{\text {II }}$ chloride complexed with di-2-pyridylketone structure (LUCBOA; Katsoulakou et al., 2002) has a tetrahedral coor-

Figure 3
A plot showing the dihedral angle between the two pyridine rings in the title complex.

Figure 4
$\pi-\pi$ interactions between adjacent molecules of the title complex.

Table 2
Experimental details.
Crystal data

Chemical formula	$\left[\mathrm{ZnCl}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\right]$
M_{r}	306.48
Crystal system, space group	Monoclinic, $P 2_{1} / c$
Temperature (K)	100
$a, b, c(\AA)$	$12.1865(8), 7.6666(5), 14.1087(9)$
$\beta\left({ }^{\circ}\right)$	$111.467(2)$
$V\left(\AA^{3}\right)$	$1226.72(14)$
Z	4
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{~mm}^{-1}\right)$	2.41
Crystal size (mm)	$0.30 \times 0.28 \times 0.18$
Data collection	Bruker D8 Venture Photon 100
Diffractometer	Multi-scan $(S A D A B S ;$ Bruker et
Absorption correction	$a l ., 2015)$
	$0.935,1.000$
$T_{\text {min }}, T_{\text {max }}$	$36532,2535,2403$
No. of measured, independent and	
\quad observed $[I>2 \sigma(I)]$ reflections	0.037
$R_{\text {int }}$	0.628
$(\sin \theta / \lambda)_{\text {max }}\left(\AA \AA^{-1}\right)$	
Refinement	$0.021,0.058,1.06$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	2535
No. of reflections	145
No. of parameters	H -atom parameters constrained
H-atom treatment	$0.61,-0.39$
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	

Computer programs: APEX3 and SAINT (Bruker, 2015), SHELXT (Sheldrick 2015a), SHELXL2016/6 (Sheldrick 2015b), Mercury (Macrae et al., 2006) and SHELXTL (Sheldrick 2008).
dination about the metal. The tetrahedron has close to ideal bond angles due to the conformation of the di-2-pyridylketone ligand.

Synthesis and crystallization

The synthesis of the title compound was performed using previously reported methods for McMurry coupling (McMurry et al., 1974; McMurry, 1989) but the reaction resulted in the formation of the title compound rather than a coupled product similar to that previously published•(Qi et al., 2016), Fig. 2. The synthesis of the title complex was carried out under a nitrogen atmosphere with a 250 mL three-necked round-bottomed flask charged with Zn metal $(0.17 \mathrm{~g}$, $1.74 \mathrm{mmol})$ and cooled to $-78^{\circ} \mathrm{C}$. Then $\mathrm{TiCl}_{4}(0.11 \mathrm{~mL}$, $1.74 \mathrm{mmol})$ and pyridine $(0.14 \mathrm{~mL}, 1.7 \mathrm{mmol})$ were added slowly, resulting in a green solution. The catalyst mixture was allowed to warm to room temperature then refluxed for an hour then cooled to $-78^{\circ} \mathrm{C}$, at which point di-2-pyridylketone ($0.32 \mathrm{~g}, 1.74 \mathrm{mmol}$) in 50 mL of THF was added, producing a dark-blue solution. The reaction mixture was allowed to return to room temperature then refluxed for four h. The reaction mixture was then allowed to return to room temperature and the THF was removed under vacuum. The mixture left in the reaction flask was extracted three times with dichloromethane (DCM). The solvent was removed
under vacuum to produce the title compound as an off-white powder. The title compound was recrystallized from DCM.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

We would like to thank Furman University for hosting the NSF-REU program which allowed us to perform this work.

Funding information

Funding for this research was provided by: National Science Foundation, Division of Chemistry (grant No. CHE-1460806 to Department of Chemistry at Furman University).

References

Black, D. (1967). Aust. J. Chem. 20, 2101-.
Bruker (2015). APEX3, SAINT and $S A D A B S$. Bruker AXS Inc., Madison, Wisconsin, USA.
Canty, A., Hayhurst, G., Chaichit, N. \& Gatehouse, B. (1980). J. Chem. Soc. Chem. Commun. pp. 316-318.
Crowder, K. N., Garcia, S. J., Burr, R. L., North, J. M., Wilson, M. H., Conley, B. L., Fanwick, P. E., White, P. S., Sienerth, K. D. \& Granger, R. M. (2004). Inorg. Chem. 43, 72-78.
D'Alessandro, D. M., Keene, F. R., Steel, P. J. \& Sumby, C. J. (2003). Aust. J. Chem. 56, 657-664.
Elie, M., Weber, M. D., Di Meo, F., Sguerra, F., Lohier, J. F., Pansu, R. B., Renaud, J. L., Hamel, M., Linares, M., Costa, R. D. \& Gaillard, S. (2017). Chem. Eur. J. 23, 16328-16337.
Friedrich, H., Gückel, W. \& Scheibe, G. (1962). Chem. Ber. 95, 13781387.

Gornitzka, H. \& Stalke, D. (1994). Organometallics, 13, 4398-4405.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Katsoulakou, E., Lalioti, N., Raptopoulou, C. P., Terzis, A., ManessiZoupa, E. \& Perlepes, S. P. (2002). Inorg. Chem. Commun. 5, 719723.

Lo, W. K. C., Huff, G. S., Preston, D., McMorran, D. A., Giles, G. I., Gordon, K. C. \& Crowley, J. D. (2015). Inorg. Chem. 54, 6671-6673.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
Marti, N., Spingler, B., Breher, F. \& Schibli, R. (2005). Inorg. Chem. 44, 6082-6091.
McMurry, J. E. (1989). Chem. Rev. 89, 1513-1524.
McMurry, J. E., Melton, J. \& Padgett, H. (1974). J. Org. Chem. 39, 259-260.
Qi, Y. P., Wang, Y. T., Yu, Y. J., Liu, Z. Y., Zhang, Y., Qi, Y. \& Zhou, C. T. (2016). J. Mater. Chem. C. 4, 11291-11297.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomoda, S., Umezawa, Y., Tsuboyama, S. \& Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421-2430.
Yam, V. W. W. \& Lo, K. K. W. (1999). Chem. Soc. Rev. 28, 323-334.
Zhang, F., Kirby, C., Hairsine, D., Jennings, M. \& Puddephatt, R. (2005). J. Am. Chem. Soc. 127, 14196-14197.

full crystallographic data

IUCrData (2019). 4, x190131 [https://doi.org/10.1107/S2414314619001317]

Dichlorido(2,2'-methylenedipyridine)zinc(II)

Adam Siegfried, Brett McAbee, Vladimir Zotov, Colin McMillen and Timothy Hanks

Dichlorido(2,2'-methylenedipyridine)zinc(II)

Crystal data

$\left[\mathrm{ZnCl}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\right]$
$M_{r}=306.48$
Monoclinic, $P 2_{1} / c$
$a=12.1865$ (8) \AA
$b=7.6666$ (5) \AA
$c=14.1087(9) \AA$
$\beta=111.467$ (2) ${ }^{\circ}$
$V=1226.72(14) \AA^{3}$
$Z=4$

Data collection

Bruker D8 Venture Photon 100
diffractometer
Radiation source: Incoatec $\mathrm{I} \mu \mathrm{S}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker et al., 2015)
$T_{\text {min }}=0.935, T_{\text {max }}=1.000$
36532 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.058$
$S=1.06$
2535 reflections
145 parameters
0 restraints
Primary atom site location: dual

$$
\begin{aligned}
& F(000)=616 \\
& D_{\mathrm{x}}=1.659 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 9749 \text { reflections } \\
& \theta=3.1-30.5^{\circ} \\
& \mu=2.41 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& \text { Block, colourless } \\
& 0.30 \times 0.28 \times 0.18 \mathrm{~mm}
\end{aligned}
$$

2535 independent reflections
2403 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=26.5^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-15 \rightarrow 15$
$k=-9 \rightarrow 9$
$l=-17 \rightarrow 17$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.033 P)^{2}+0.6222 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.61 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.39 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Zn1	$0.25054(2)$	$0.61335(2)$	$0.78613(2)$	$0.02155(8)$
C11	$0.15845(4)$	$0.86959(5)$	$0.76835(3)$	$0.02930(11)$
C12	$0.28554(4)$	$0.47187(6)$	$0.93074(3)$	$0.03149(11)$
N1	$0.16497(11)$	$0.45954(17)$	$0.66353(10)$	$0.0204(3)$
N2	$0.39694(12)$	$0.62986(17)$	$0.74807(11)$	$0.0232(3)$
C1	$0.09591(14)$	$0.3254(2)$	$0.66831(13)$	$0.0244(3)$
H1	0.085816	0.302370	0.730777	0.029^{*}
C2	$0.03931(15)$	$0.2204(2)$	$0.58533(14)$	$0.0296(4)$
H2	-0.010838	0.128510	0.589795	0.036^{*}
C3	$0.05713(16)$	$0.2519(2)$	$0.49547(14)$	$0.0315(4)$
H3	0.019904	0.180510	0.437488	0.038^{*}
C4	$0.12949(16)$	$0.3878(2)$	$0.49059(13)$	$0.0274(4)$
H4	0.143354	0.409786	0.429657	0.033^{*}
C5	$0.18135(14)$	$0.4911(2)$	$0.57555(12)$	$0.0221(3)$
C6	$0.25566(16)$	$0.6490(2)$	$0.57328(13)$	$0.0274(4)$
H6A	0.256931	0.661095	0.503825	0.033^{*}
H6B	0.217720	0.754678	0.587617	0.033^{*}
C7	$0.38120(15)$	$0.6402(2)$	$0.64853(14)$	$0.0254(4)$
C8	$0.47631(18)$	$0.6456(3)$	$0.61739(16)$	$0.0339(4)$
H8	0.464084	0.654296	0.547079	0.041^{*}
C9	$0.58986(18)$	$0.6380(3)$	$0.68982(18)$	$0.0390(5)$
H9	0.656123	0.643384	0.669675	0.047^{*}
C10	$0.60542(17)$	$0.6227(2)$	$0.79139(17)$	$0.0359(4)$
H10	0.682304	0.614734	0.842075	0.043^{*}
C11	$0.50713(16)$	$0.6192(2)$	$0.81785(15)$	$0.0295(4)$
H11	0.517557	0.609015	0.887723	0.035^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	$0.02095(11)$	$0.02503(12)$	$0.02011(11)$	$-0.00055(7)$	$0.00920(8)$	$-0.00067(7)$
C11	$0.0301(2)$	$0.0269(2)$	$0.0332(2)$	$0.00416(16)$	$0.01431(18)$	$0.00072(16)$
C12	$0.0407(2)$	$0.0332(2)$	$0.0219(2)$	$0.00119(18)$	$0.01292(18)$	$0.00326(16)$
N1	$0.0189(6)$	$0.0213(7)$	$0.0206(6)$	$0.0017(5)$	$0.0068(5)$	$0.0028(5)$
N2	$0.0215(7)$	$0.0233(7)$	$0.0261(7)$	$-0.0007(5)$	$0.0101(6)$	$0.0005(5)$
C1	$0.0201(8)$	$0.0236(8)$	$0.0283(9)$	$0.0024(6)$	$0.0076(6)$	$0.0067(7)$
C2	$0.0250(8)$	$0.0191(8)$	$0.0387(10)$	$-0.0006(6)$	$0.0046(7)$	$0.0028(7)$
C3	$0.0309(9)$	$0.0245(9)$	$0.0313(9)$	$0.0050(7)$	$0.0021(7)$	$-0.0064(7)$
C4	$0.0305(9)$	$0.0299(9)$	$0.0209(8)$	$0.0076(7)$	$0.0083(7)$	$0.0008(7)$
C5	$0.0214(7)$	$0.0238(8)$	$0.0207(8)$	$0.0037(6)$	$0.0072(6)$	$0.0037(6)$
C6	$0.0299(9)$	$0.0299(9)$	$0.0231(8)$	$-0.0026(7)$	$0.0106(7)$	$0.0061(7)$
C7	$0.0280(9)$	$0.0216(8)$	$0.0299(9)$	$-0.0013(6)$	$0.0143(7)$	$0.0029(7)$
C8	$0.0369(10)$	$0.0336(10)$	$0.0402(11)$	$-0.0010(8)$	$0.0249(9)$	$0.0048(8)$
C9	$0.0311(10)$	$0.0353(10)$	$0.0608(14)$	$0.0021(8)$	$0.0287(10)$	$0.0098(9)$
C10	$0.0211(9)$	$0.0334(10)$	$0.0509(12)$	$-0.0002(7)$	$0.0105(8)$	$0.0069(8)$

C 11	$0.0238(9)$	$0.0300(9)$	$0.0324(9)$	$-0.0018(7)$	$0.0075(7)$	$0.0012(7)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Zn} 1-\mathrm{N} 1$	2.0372 (14)	C4-C5	1.382 (2)
Zn1-N2	2.0466 (14)	C4-H4	0.9500
$\mathrm{Zn} 1-\mathrm{Cl} 2$	2.2101 (5)	C5-C6	1.519 (2)
$\mathrm{Zn} 1-\mathrm{Cl1}$	2.2306 (5)	C6-C7	1.511 (2)
N1-C1	1.346 (2)	C6-H6A	0.9900
N1-C5	1.349 (2)	C6-H6B	0.9900
N2-C11	1.346 (2)	C7-C8	1.382 (2)
N2-C7	1.348 (2)	C8-C9	1.388 (3)
$\mathrm{C} 1-\mathrm{C} 2$	1.380 (3)	C8-H8	0.9500
C1-H1	0.9500	C9-C10	1.380 (3)
C2-C3	1.383 (3)	C9-H9	0.9500
C2-H2	0.9500	C10-C11	1.379 (3)
C3-C4	1.383 (3)	C10-H10	0.9500
C3-H3	0.9500	C11-H11	0.9500
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 2$	92.15 (6)	N1-C5-C4	121.35 (16)
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{Cl} 2$	111.45 (4)	N1-C5-C6	116.91 (14)
N2-Zn1-Cl2	112.35 (4)	C4-C5-C6	121.70 (15)
N1-Zn1-Cl1	109.52 (4)	C7-C6-C5	114.08 (14)
N2-Zn1-Cl1	111.53 (4)	C7-C6-H6A	108.7
$\mathrm{Cl2}-\mathrm{Zn} 1-\mathrm{Cl} 1$	117.084 (18)	C5-C6-H6A	108.7
C1-N1-C5	119.28 (14)	C7-C6-H6B	108.7
C1-N1-Zn1	122.33 (11)	C5-C6-H6B	108.7
C5-N1-Zn1	118.37 (11)	H6A-C6-H6B	107.6
C11-N2-C7	119.28 (15)	N2-C7-C8	121.10 (17)
C11-N2-Zn1	122.44 (12)	N2-C7-C6	117.13 (15)
C7-N2-Zn1	118.13 (11)	C8-C7-C6	121.76 (17)
N1-C1-C2	122.05 (16)	C7-C8-C9	119.38 (19)
N1-C1-H1	119.0	C7-C8-H8	120.3
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	119.0	C9-C8-H8	120.3
C1-C2-C3	118.60 (16)	C10-C9-C8	119.28 (18)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.7	C10-C9-H9	120.4
C3-C2-H2	120.7	C8-C9-H9	120.4
C4-C3-C2	119.57 (16)	C11-C10-C9	118.67 (18)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.2	C11-C10-H10	120.7
C2-C3-H3	120.2	C9-C10-H10	120.7
C5-C4-C3	119.11 (17)	N2-C11-C10	122.26 (19)
C5-C4-H4	120.4	N2-C11-H11	118.9
C3-C4-H4	120.4	C10-C11-H11	118.9

Hydrogen-bond geometry (A, ${ }^{\circ}$)
Cg 1 is the centroid of the $\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 5$ ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4 — \mathrm{H} 4 \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.95	2.89	$3.7719(19)$	154
$\mathrm{C} 11 — \mathrm{H} 11 \cdots \mathrm{Cl} 2^{\mathrm{ii}}$	0.95	2.86	$3.591(2)$	134
$\mathrm{C} 10 — \mathrm{H} 10 \cdots \mathrm{Cg} 1^{\mathrm{iii}}$	0.95	2.99	$3.718(2)$	135

Symmetry codes: (i) $x,-y+3 / 2, z-1 / 2$; (ii) $-x+1,-y+1,-z+2$; (iii) $-x+1, y+1 / 2,-z+3 / 2$.

