ISSN 2414-3146

Received 14 December 2018 Accepted 20 December 2018

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; hydrazine; palladium.

CCDC reference: 1886493

Structural data: full structural data are available from iucrdata.iucr.org

Dichlorido[1,1-(diphenylphosphino)hydrazide]palladium(II) dichloromethane monosolvate

Martha Höhne, Bhaskar R. Aluri, Anke Spannenberg, Bernd H. Müller, Normen Peulecke and Uwe Rosenthal*

Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany. *Correspondence e-mail: uwe.rosenthal@catalysis.de

In the title compound, $[PdCl_2(C_{24}H_{22}N_2P_2)]\cdot CH_2Cl_2$, the palladium(II) atom is surrounded by a chelating P-N-P ligand $Ph_2P-N(NH_2)-PPh_2$ containing a hydrazine entity and two chlorido ligands in a distorted square-planar coordination geometry. Beside the complex molecule, the asymmetric unit contains a co-crystallized dichloromethane molecule. The contributions of further disordered solvent molecules were removed from the diffraction data using the SQUEEZE [Spek (2015). Acta Cryst. C71, 9–18] procedure.

Structure description

The distorted square-planar coordinated palladium(II) atom in the [PdCl₂(C₂₄H₂₂N₂P₂)] complex molecule (Fig. 1) is ligated by two chlorido and a chelating P-N-P ligand, which contains a hydrazine entity. The bite angle $[P2-Pd1-P1 = 72.689 (15)^{\circ}]$ is rather acute as found in other Pd^{II} complexes with the Ph₂P-N(NR₂)-PPh₂ ligand {72.93 (4) $^{\circ}$ for $[PdCl_2\{(Ph_2P)_2NNC_4H_8O\}]$ and 72.82 (5)° for $[PdCl_2\{(Ph_2P)_2NNC_4H_8NHCH_3\}]Cl;$ Gholivand et al., 2016]. The P-N-P angle is 102.38 (7)°. Both, the Pd-Cl bond lengths [Pd1-Cl1 = 2.3531 (4) Å, Pd1-Cl2 = 2.3599 (4) Å] and Pd-P distances [Pd1-P1 = 2.3531 (4) Å, Pd1-Cl2 = 2.3599 (4) Å]2.2319 (4) Å, Pd1-P2 = 2.2063 (4) Å] are very similar to those in the related complexes detailed above. The N-N distance within the hydrazine unit is 1.4108 (18) Å. The P-N bond lengths [P1-N1 = 1.6968 (13) Å, P2-N1 = 1.6787 (14) Å] are significantly shortened when compared to the sum of the covalent radii $[\Sigma r_{cov}(P-N) = 1.82 \text{ Å}; Pyykkö,$ 2015] but again are similar to the values found in the two complexes mentioned previously, where the P–N distances range from 1.701 (4) to 1.714 (3) Å. A co-crystallized dichloromethane molecule appears in the asymmetric unit along with the complex molecule. The contributions of further disordered solvent molecules were removed from the diffraction data with SQUEEZE in PLATON (Spek, 2015). In the crystal, molecules

Figure 1

Molecular structure of the title compound with atom labelling and displacement ellipsoids drawn at the 30% probability level. C-bound hydrogen atoms are omitted for clarity.

of the palladium complex and the solvent dichloromethane are linked by weak $N-H \cdots Cl$ hydrogen bonds (Table 1).

Synthesis and crystallization

A solution of Pd(PhCN)₂Cl₂ (0.107 g, 0.28 mmol) and (Ph₂P)₂N-NH₂ (0.112 g, 0.28 mmol) (Höhne et al., 2018) in CH₂Cl₂ was stirred overnight at room temperature. CH₂Cl₂ was removed under vacuum and the yellow residue washed with *n*-hexane. Recrystallization from CH₂Cl₂/Et₂O gave paleyellow crystals. Yield 0.129 g (80%). ³¹P NMR (121 MHz, $CDCl_3$, 298 K): $\delta = 65.0$ p.p.m.. Elemental analysis calculated (%) for C₂₄H₂₂Cl₂N₂P₂Pd (577.72): C 49.90, H 3.84, N 4.85. Found: C 49.44, H 3.91, N 4.95.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. AFIX 66 instructions were used to improve the geometry of the phenyl rings. The contributions of other disordered solvent molecules in addition to the dichloromethane monosolvate were removed from the diffraction data with SQUEEZE in PLATON (Spek, 2015). SQUEEZE estimated the electron counts in two voids of 146 Å^3 volume to be 42.

Та	ble	1					
Hy	drog	gen-bo	ond geometr	y (Å	, °).		
ת	тт	4	מ	п	п	4	מ

$N2-H2A\cdots Cl1^{i} \qquad 0.91$ $N2-H2B\cdots Cl2^{i} \qquad 0.82$	$\begin{array}{ccc} (2) & 2.63 \\ (2) & 2.58 \end{array}$	(2) 3.3066 ((2) 3.3495 (16) 132.0 (17) 17) 157 (2)

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

Table 2 Experimental details.

C

Crystal data	
Chemical formula	$[PdCl_2(C_{24}H_{22}N_2P_2)]\cdot CH_2Cl_2$
M _r	662.60
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	200
<i>a</i> , <i>b</i> , <i>c</i> (Å)	11.7085 (3), 16.9319 (3),
	15.2399 (4)
β (°)	105.3240 (19)
$V(Å^3)$	2913.85 (12)
Ζ	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	1.13
Crystal size (mm)	$0.45 \times 0.35 \times 0.11$
Data collection	
Diffractometer	Stoe IPDS II
Absorption correction	Numerical (X-SHAPE; Stoe & Cie, 2005)
T_{\min}, T_{\max}	0.621, 0.897
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	50295, 7032, 6060
R _{int}	0.027
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.661

R $(\sin \theta / \lambda)_{max} (\dot{A}^{-1})$

Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.022, 0.057, 1.00
No. of reflections	7032
No. of parameters	265
H-atom treatment	H atoms treated by a mixture of
	independent and constrained
	refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.45, -0.47

Computer programs: X-SHAPE (Stoe & Cie, 2005) and X-AREA (Stoe & Cie, 2012), XP in SHELXTL and SHELXS97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015) and publCIF (Westrip, 2010).

Funding information

The publication of this article was funded by the Open Access Fund of the Leibniz Association.

References

Gholivand, K., Kahnouji, M., Latifi, R., Fadaei, F. T., Gholami, A. & Schenk, K. J. (2016). Inorg. Chim. Acta, 448, 61-69.

Höhne, M., Aluri, B. R., Spannenberg, A., Müller, B. H., Peulecke, N. & Rosenthal, U. (2018). IUCrData, 3, x181784.

Pyykkö, P. (2015). J. Phys. Chem. A, 119, 2326-2337.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Spek, A. L. (2015). Acta Cryst. C71, 9-18.

Stoe & Cie (2005). X-SHAPE. Stoe & Cie, Darmstadt, Germany.

Stoe & Cie (2012). X-AREA. Stoe & Cie, Darmstadt, Germany.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2019). 4, x181803 [https://doi.org/10.1107/S2414314618018035]

Dichlorido[1,1-(diphenylphosphino)hydrazide]palladium(II) dichloromethane monosolvate

Martha Höhne, Bhaskar R. Aluri, Anke Spannenberg, Bernd H. Müller, Normen Peulecke and Uwe Rosenthal

Dichlorido[1,1-(diphenylphosphino)hydrazide]palladium(II) dichloromethane monosolvate

Crystal data

PdCl ₂ [C ₂₄ H ₂₂ N ₂ P ₂]·CH ₂ Cl ₂
$M_r = 662.60$
Monoclinic, $P2_1/n$
a = 11.7085 (3) Å
b = 16.9319 (3) Å
c = 15.2399 (4) Å
$\beta = 105.3240 \ (19)^{\circ}$
$V = 2913.85 (12) Å^3$
Z = 4

Data collection

STOE IPDS II diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2005) $T_{\min} = 0.621, T_{\max} = 0.897$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.057$ S = 1.007032 reflections 265 parameters 0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 1328 $D_x = 1.510 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 16993 reflections $\theta = 1.8-29.7^{\circ}$ $\mu = 1.13 \text{ mm}^{-1}$ T = 200 KPrism, yellow $0.45 \times 0.35 \times 0.11 \text{ mm}$

50295 measured reflections 7032 independent reflections 6060 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 28.0^{\circ}, \theta_{min} = 1.8^{\circ}$ $h = -15 \rightarrow 15$ $k = -22 \rightarrow 22$ $l = -20 \rightarrow 20$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0388P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.45$ e Å⁻³ $\Delta\rho_{min} = -0.47$ e Å⁻³

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	1.16203 (9)	0.24562 (6)	0.24613 (9)	0.0297 (3)	
C2	1.19152 (12)	0.16638 (6)	0.24250 (10)	0.0450 (5)	
H2	1.1390	0.1266	0.2523	0.054*	
C3	1.29786 (13)	0.14534 (6)	0.22455 (12)	0.0593 (6)	
H3	1.3180	0.0912	0.2221	0.071*	
C4	1.37472 (11)	0.20353 (9)	0.21024 (13)	0.0602 (6)	
H4	1.4474	0.1892	0.1980	0.072*	
C5	1.34524 (11)	0.28277 (8)	0.21387 (13)	0.0615 (6)	
H5	1.3978	0.3225	0.2041	0.074*	
C6	1.23890 (11)	0.30381 (5)	0.23181 (11)	0.0451 (5)	
H6	1.2187	0.3580	0.2343	0.054*	
C7	1.03729 (10)	0.36784 (5)	0.31523 (7)	0.0273 (3)	
C8	1.12961 (9)	0.38617 (6)	0.39076 (8)	0.0384 (4)	
H8	1.1909	0.3489	0.4134	0.046*	
C9	1.13219 (11)	0.45907 (7)	0.43318 (8)	0.0477 (5)	
H9	1.1953	0.4716	0.4848	0.057*	
C10	1.04245 (12)	0.51364 (5)	0.40006 (9)	0.0443 (5)	
H10	1.0442	0.5635	0.4291	0.053*	
C11	0.95013 (10)	0.49531 (6)	0.32453 (9)	0.0442 (5)	
H11	0.8888	0.5326	0.3019	0.053*	
C12	0.94755 (9)	0.42241 (6)	0.28211 (7)	0.0358 (4)	
H12	0.8845	0.4099	0.2305	0.043*	
C13	0.77590 (10)	0.20421 (7)	0.37647 (8)	0.0303 (3)	
C14	0.80666 (10)	0.27162 (7)	0.42952 (9)	0.0432 (4)	
H14	0.8776	0.2991	0.4301	0.052*	
C15	0.73365 (13)	0.29878 (7)	0.48163 (10)	0.0548 (6)	
H15	0.7547	0.3449	0.5179	0.066*	
C16	0.62987 (13)	0.25853 (9)	0.48071 (10)	0.0575 (6)	
H16	0.5800	0.2771	0.5163	0.069*	
C17	0.59911 (10)	0.19112 (9)	0.42767 (11)	0.0546 (6)	
H17	0.5282	0.1636	0.4270	0.065*	
C18	0.67212 (11)	0.16396 (7)	0.37555 (9)	0.0437 (5)	
H18	0.6511	0.1179	0.3393	0.052*	
C19	0.86740 (11)	0.06762 (5)	0.30367 (8)	0.0292 (3)	
C20	0.87356 (12)	0.02481 (7)	0.38262 (7)	0.0428 (4)	
H20	0.8742	0.0516	0.4375	0.051*	
C21	0.87878 (14)	-0.05718 (7)	0.38123 (9)	0.0565 (6)	
H21	0.8830	-0.0864	0.4352	0.068*	
C22	0.87785 (14)	-0.09636 (5)	0.30090 (12)	0.0593 (7)	
H22	0.8814	-0.1524	0.2999	0.071*	
C23	0.87169 (14)	-0.05356 (7)	0.22195 (9)	0.0582 (6)	
H23	0.8710	-0.0803	0.1670	0.070*	
C24	0.86646 (13)	0.02843 (7)	0.22334 (7)	0.0417 (4)	
H24	0.8623	0.0577	0.1694	0.050*	
C25	0.3215 (2)	1.00146 (18)	0.44188 (18)	0.0617 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H25A	0.3387	0.9647	0.4943	0.074*
H25B	0.3328	1.0559	0.4663	0.074*
N1	1.00533 (12)	0.20686 (8)	0.34971 (9)	0.0261 (3)
N2	1.07577 (14)	0.18939 (9)	0.43796 (10)	0.0320 (3)
H2A	1.149 (2)	0.1760 (13)	0.4333 (15)	0.038*
H2B	1.082 (2)	0.2285 (14)	0.4706 (16)	0.038*
P1	1.02368 (4)	0.27021 (2)	0.26825 (3)	0.02381 (8)
P2	0.86725 (4)	0.17321 (2)	0.30531 (3)	0.02387 (8)
C11	0.86063 (4)	0.30782 (3)	0.04595 (3)	0.04087 (11)
C12	0.65519 (4)	0.18738 (2)	0.11563 (3)	0.03397 (9)
C13	0.42219 (6)	0.98440 (5)	0.37823 (5)	0.06769 (18)
Cl4	0.17481 (5)	0.98982 (4)	0.38098 (5)	0.05934 (15)
Pd1	0.84858 (2)	0.23671 (2)	0.17587 (2)	0.02260 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
C1	0.0232 (8)	0.0348 (8)	0.0307 (8)	0.0029 (6)	0.0063 (6)	0.0013 (6)
C2	0.0492 (12)	0.0383 (10)	0.0525 (12)	0.0087 (9)	0.0224 (10)	0.0052 (9)
C3	0.0608 (15)	0.0577 (14)	0.0662 (15)	0.0288 (12)	0.0289 (13)	0.0071 (12)
C4	0.0356 (12)	0.0852 (18)	0.0626 (15)	0.0183 (12)	0.0181 (11)	-0.0026 (13)
C5	0.0354 (12)	0.0726 (16)	0.0837 (18)	-0.0063 (11)	0.0284 (12)	-0.0042 (14)
C6	0.0316 (10)	0.0434 (11)	0.0644 (14)	-0.0029 (8)	0.0198 (9)	-0.0007 (9)
C7	0.0269 (8)	0.0264 (7)	0.0297 (8)	-0.0012 (6)	0.0096 (6)	0.0032 (6)
C8	0.0397 (10)	0.0319 (9)	0.0380 (10)	0.0008 (7)	0.0003 (8)	0.0004 (7)
C9	0.0589 (14)	0.0376 (10)	0.0408 (11)	-0.0066 (9)	0.0030 (10)	-0.0066 (8)
C10	0.0595 (14)	0.0299 (9)	0.0502 (12)	-0.0036 (9)	0.0262 (11)	-0.0057 (8)
C11	0.0431 (12)	0.0321 (9)	0.0623 (13)	0.0081 (8)	0.0226 (10)	0.0041 (9)
C12	0.0296 (9)	0.0345 (9)	0.0440 (10)	0.0024 (7)	0.0108 (8)	0.0028 (7)
C13	0.0280 (8)	0.0382 (9)	0.0242 (7)	0.0013 (7)	0.0064 (6)	0.0041 (7)
C14	0.0450 (12)	0.0463 (11)	0.0414 (11)	-0.0047 (9)	0.0169 (9)	-0.0047 (9)
C15	0.0620 (15)	0.0597 (14)	0.0487 (12)	-0.0002 (12)	0.0251 (11)	-0.0140 (11)
C16	0.0557 (15)	0.0773 (16)	0.0489 (13)	0.0082 (12)	0.0305 (11)	-0.0038 (11)
C17	0.0401 (12)	0.0717 (15)	0.0587 (14)	-0.0052 (10)	0.0250 (11)	-0.0033 (12)
C18	0.0334 (10)	0.0561 (12)	0.0433 (11)	-0.0075 (9)	0.0129 (8)	-0.0069 (9)
C19	0.0225 (8)	0.0276 (8)	0.0355 (9)	-0.0022 (6)	0.0039 (7)	0.0054 (6)
C20	0.0383 (11)	0.0418 (10)	0.0480 (11)	-0.0009 (8)	0.0109 (9)	0.0156 (9)
C21	0.0400 (12)	0.0423 (11)	0.0863 (18)	0.0007 (9)	0.0152 (12)	0.0338 (12)
C22	0.0352 (11)	0.0272 (9)	0.113 (2)	0.0012 (8)	0.0159 (13)	0.0108 (12)
C23	0.0567 (14)	0.0352 (10)	0.0802 (18)	0.0027 (10)	0.0138 (13)	-0.0131 (11)
C24	0.0462 (12)	0.0316 (9)	0.0459 (11)	0.0012 (8)	0.0095 (9)	-0.0015 (8)
C25	0.0455 (14)	0.0845 (18)	0.0543 (14)	0.0003 (12)	0.0115 (11)	-0.0174 (13)
N1	0.0234 (7)	0.0290 (6)	0.0225 (6)	-0.0021 (5)	-0.0001 (5)	0.0062 (5)
N2	0.0322 (8)	0.0340 (8)	0.0233 (7)	-0.0010 (6)	-0.0044 (6)	0.0040 (6)
P1	0.02071 (19)	0.02514 (18)	0.02432 (18)	-0.00050 (15)	0.00374 (15)	0.00298 (15)
P2	0.0231 (2)	0.02573 (19)	0.02144 (18)	-0.00157 (15)	0.00356 (15)	0.00300 (14)
Cl1	0.0304 (2)	0.0578 (3)	0.0335 (2)	-0.00264 (19)	0.00691 (17)	0.01967 (19)
C12	0.0289 (2)	0.0367 (2)	0.0316 (2)	-0.00911 (16)	-0.00041 (16)	0.00507 (16)

data reports

C13	0.0422 (3)	0.0957 (5)	0.0652 (4)	0.0064 (3)	0.0142 (3)	-0.0215 (3)
Cl4	0.0398 (3)	0.0707 (4)	0.0663 (4)	0.0047 (3)	0.0119 (3)	0.0001 (3)
Pd1	0.02080 (6)	0.02542 (6)	0.02001 (6)	-0.00052 (4)	0.00263 (4)	0.00301 (4)

Geometric parameters (Å, °)

C1—C2	1.3900	C16—C17	1.3900	
C1—C6	1.3900	C16—H16	0.9500	
C1—P1	1.7888	C17—C18	1.3900	
C2—C3	1.3900	C17—H17	0.9500	
С2—Н2	0.9500	C18—H18	0.9500	
C3—C4	1.3900	C19—C20	1.3900	
С3—Н3	0.9500	C19—C24	1.3900	
C4—C5	1.3900	C19—P2	1.7880	
C4—H4	0.9500	C20—C21	1.3900	
C5—C6	1.3900	C20—H20	0.9500	
С5—Н5	0.9500	C21—C22	1.3900	
С6—Н6	0.9500	C21—H21	0.9500	
С7—С8	1.3900	C22—C23	1.3900	
C7—C12	1.3900	C22—H22	0.9500	
C7—P1	1.7917	C23—C24	1.3900	
С8—С9	1.3900	C23—H23	0.9500	
С8—Н8	0.9500	C24—H24	0.9500	
C9—C10	1.3900	C25—C14	1.734 (3)	
С9—Н9	0.9500	C25—C13	1.738 (3)	
C10-C11	1.3900	C25—H25A	0.9900	
C10—H10	0.9500	C25—H25B	0.9900	
C11—C12	1.3900	N1—N2	1.4108 (18)	
C11—H11	0.9500	N1—P2	1.6787 (14)	
C12—H12	0.9500	N1—P1	1.6968 (13)	
C13—C14	1.3900	N2—H2A	0.91 (2)	
C13—C18	1.3900	N2—H2B	0.82 (2)	
C13—P2	1.7912	P1—Pd1	2.2319 (4)	
C14—C15	1.3900	P1—P2	2.6303 (6)	
C14—H14	0.9500	P2—Pd1	2.2063 (4)	
C15—C16	1.3900	Cl1—Pd1	2.3531 (4)	
C15—H15	0.9500	Cl2—Pd1	2.3599 (4)	
C2—C1—C6	120.0	C20—C19—P2	120.62 (7)	
C2-C1-P1	118.62 (7)	C24—C19—P2	119.33 (7)	
C6-C1-P1	121.38 (7)	C19—C20—C21	120.0	
C3—C2—C1	120.0	C19—C20—H20	120.0	
С3—С2—Н2	120.0	C21—C20—H20	120.0	
С1—С2—Н2	120.0	C22—C21—C20	120.0	
C4—C3—C2	120.0	C22—C21—H21	120.0	
С4—С3—Н3	120.0	C20—C21—H21	120.0	
С2—С3—Н3	120.0	C21—C22—C23	120.0	
C3—C4—C5	120.0	C21—C22—H22	120.0	

С3—С4—Н4	120.0	C23—C22—H22	120.0
C5—C4—H4	120.0	C24—C23—C22	120.0
C6—C5—C4	120.0	C24—C23—H23	120.0
С6—С5—Н5	120.0	C22—C23—H23	120.0
C4—C5—H5	120.0	C23—C24—C19	120.0
C5—C6—C1	120.0	C23—C24—H24	120.0
С5—С6—Н6	120.0	C19—C24—H24	120.0
C1—C6—H6	120.0	C14-C25-C13	113.86 (14)
C8-C7-C12	120.0	Cl4—C25—H25A	108.8
C8-C7-P1	120.30 (6)	C_{13} C_{25} H_{25A}	108.8
C12-C7-P1	119 30 (6)	C_{14} C_{25} H_{25B}	108.8
C9 - C8 - C7	120.0	C_{13} C_{25} H_{25B}	108.8
C9-C8-H8	120.0	$H_{25A} - C_{25} - H_{25B}$	107.7
C7 - C8 - H8	120.0	N2N1P2	124 84 (11)
C_{8}^{-} C_{9}^{-} C_{10}^{-}	120.0	N2N1P1	124.04(11) 132.44(11)
$C_8 = C_9 = C_{10}$	120.0	P2 N1 P1	102.38(7)
C_{10} C_{20} H_{20}	120.0	$\frac{12}{N1} \frac{11}{N2} 11$	102.38(7) 107.7(14)
$C_{10} - C_{9} - H_{9}$	120.0	N1 = N2 = H2R	107.7(14)
C_{9}	120.0	$N1 - N2 - \Pi2B$	110.1(10)
	120.0	$\Pi ZA - \Pi Z - \Pi Z B$	109 (2)
CII = CI0 = HI0	120.0	NI-PI-CI	106.66 (6)
	120.0	NI - PI - C7	107.82 (6)
CI2—CII—HII	120.0	CI = PI = C/	107.50 (6)
Cl0—Cl1—Hll	120.0	NI—PI—PdI	91.61 (5)
C11—C12—C7	120.0	C1—P1—Pd1	123.27 (5)
C11—C12—H12	120.0	C7—P1—Pd1	117.16 (4)
С7—С12—Н12	120.0	N1—P1—P2	38.56 (5)
C14—C13—C18	120.0	C1—P1—P2	127.72 (4)
C14—C13—P2	119.23 (7)	C7—P1—P2	118.93 (4)
C18—C13—P2	120.69 (7)	Pd1—P1—P2	53.206 (12)
C13—C14—C15	120.0	N1—P2—C19	109.91 (7)
C13—C14—H14	120.0	N1—P2—C13	108.79 (6)
C15—C14—H14	120.0	C19—P2—C13	107.73 (6)
C14—C15—C16	120.0	N1—P2—Pd1	92.99 (5)
C14—C15—H15	120.0	C19—P2—Pd1	118.36 (4)
C16—C15—H15	120.0	C13—P2—Pd1	117.68 (5)
C17—C16—C15	120.0	N1—P2—P1	39.06 (5)
C17—C16—H16	120.0	C19—P2—P1	128.18 (5)
C15—C16—H16	120.0	C13—P2—P1	120.53 (4)
C16—C17—C18	120.0	Pd1—P2—P1	54.104 (13)
С16—С17—Н17	120.0	P2—Pd1—P1	72.689 (15)
С18—С17—Н17	120.0	P2—Pd1—Cl1	171.075 (16)
C17—C18—C13	120.0	P1—Pd1—Cl1	98.708 (16)
C17—C18—H18	120.0	P2—Pd1—Cl2	91.915 (15)
C13-C18-H18	120.0	P1— $Pd1$ — $C12$	164.224 (16)
C_{20} C_{19} C_{24}	120.0	C_{11} P_{d1} C_{12}	96 807 (16)
017 021	120.0		>0.007 (10)
C6-C1-C2-C3	0.0	C2—C1—P1—N1	40 69 (10)
$P1 - C1 - C^2 - C^3$	179 37 (11)	C6-C1-P1-N1	-130 05 (0)
11 01 02 03	1,2,3, (11)		137.75 (7)

G1 G2 G2 G4	0.0	60 61 D1 65	15(10(0)
C1—C2—C3—C4	0.0	C2-C1-P1-C7	156.12 (8)
C2—C3—C4—C5	0.0	C6—C1—P1—C7	-24.52 (10)
C3—C4—C5—C6	0.0	C2—C1—P1—Pd1	-62.69 (9)
C4—C5—C6—C1	0.0	C6—C1—P1—Pd1	116.67 (8)
C2—C1—C6—C5	0.0	C2—C1—P1—P2	3.85 (11)
P1-C1-C6-C5	-179.35 (11)	C6—C1—P1—P2	-176.79 (7)
C12—C7—C8—C9	0.0	C8—C7—P1—N1	61.04 (9)
P1C7C8C9	-172.65 (9)	C12—C7—P1—N1	-111.66 (8)
C7—C8—C9—C10	0.0	C8—C7—P1—C1	-53.62 (9)
C8—C9—C10—C11	0.0	C12—C7—P1—C1	133.68 (8)
C9—C10—C11—C12	0.0	C8—C7—P1—Pd1	162.46 (6)
C10—C11—C12—C7	0.0	C12-C7-P1-Pd1	-10.24 (8)
C8—C7—C12—C11	0.0	C8—C7—P1—P2	101.51 (7)
P1-C7-C12-C11	172.72 (9)	C12—C7—P1—P2	-71.19 (8)
C18—C13—C14—C15	0.0	N2—N1—P2—C19	-59.36 (15)
P2-C13-C14-C15	176.77 (10)	P1—N1—P2—C19	126.65 (7)
C13—C14—C15—C16	0.0	N2—N1—P2—C13	58.37 (15)
C14—C15—C16—C17	0.0	P1—N1—P2—C13	-115.63 (7)
C15—C16—C17—C18	0.0	N2—N1—P2—Pd1	178.98 (14)
C16—C17—C18—C13	0.0	P1—N1—P2—Pd1	4.98 (7)
C14—C13—C18—C17	0.0	N2—N1—P2—P1	173.99 (19)
P2-C13-C18-C17	-176.72 (10)	C20—C19—P2—N1	77.91 (9)
C24—C19—C20—C21	0.0	C24—C19—P2—N1	-99.32 (9)
P2-C19-C20-C21	-177.21 (10)	C20-C19-P2-C13	-40.47 (9)
C19—C20—C21—C22	0.0	C24—C19—P2—C13	142.30 (8)
C20—C21—C22—C23	0.0	C20-C19-P2-Pd1	-177.10 (6)
C21—C22—C23—C24	0.0	C24—C19—P2—Pd1	5.67 (9)
C22—C23—C24—C19	0.0	C20-C19-P2-P1	117.93 (7)
C20—C19—C24—C23	0.0	C24—C19—P2—P1	-59.30 (9)
P2-C19-C24-C23	177.25 (10)	C14—C13—P2—N1	25.72 (10)
N2—N1—P1—C1	56.23 (17)	C18—C13—P2—N1	-157.53 (8)
P2—N1—P1—C1	-130.46 (7)	C14—C13—P2—C19	144.83 (8)
N2—N1—P1—C7	-58.99 (17)	C18—C13—P2—C19	-38.43 (9)
P2—N1—P1—C7	114.33 (7)	C14—C13—P2—Pd1	-78.21 (8)
N2—N1—P1—Pd1	-178.24 (16)	C18—C13—P2—Pd1	98.54 (8)
P2—N1—P1—Pd1	-4.92 (7)	C14—C13—P2—P1	-15.55 (10)
N2—N1—P1—P2	-173.3 (2)	C18—C13—P2—P1	161.20 (7)
	× /		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N2—H2A···Cl1 ⁱ	0.91 (2)	2.63 (2)	3.3066 (16)	132.0 (17)
N2—H2 B ····Cl2 ⁱ	0.82 (2)	2.58 (2)	3.3495 (17)	157 (2)

Symmetry code: (i) x+1/2, -y+1/2, z+1/2.