

ISSN 2414-3146

Received 21 November 2018 Accepted 4 January 2019

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; quinoline derivative; human immunodeficiency virus (HIV).

CCDC reference: 1888738

Structural data: full structural data are available from iucrdata.iucr.org

Ethyl 4-chloro-2-oxo-1,2,5,6,7,8-hexahydroquinoline-3-carboxylate

Gibran Rodriguez-Vega, Gerardo Aguirre and Daniel Chávez*

Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química. Apartado Postal 1166, Tijuana, B.C., Mexico. *Correspondence e-mail: dchavez@tectijuana.mx

In the title compound, $C_{12}H_{14}CINO_3$, the aliphatic ring of the hexahydroquinoline system adopts a half-chair conformation while the ethyl carboxylate substituent is inclined to the hexahydroquinoline ring system by 85.1 (2)°. In the crystal, a pair of N–H···O hydrogen bonds form an inversion dimer. The structure is further stabilized by C–H···O and C–H···Cl hydrogen bonds, forming a three-dimensional network.

Structure description

HIV or the human immunodeficiency virus is the virus that causes AIDS. HIV attacks the immune system by destroying CD4⁺ T lymphocytes, a cell type that is vital in fighting infections. The actual treatment consists of a group of several drugs known as anti-retroviral agents that inhibit proteins that are important for virus replication, including reverse transcriptase (Le Van *et al.*, 2009). During work on the synthesis of promising compounds to be used as anti-retroviral agents, Medina-Franco and co-workers found that compounds maintaining a pyridinone core in the base structure showed activity in the inhibition of reverse transcriptase (Medina-Franco *et al.*, 2007). As part of our ongoing research, we have synthesized another pyridin-2 (1H)-one analogue (Cabrera *et al.*, 2015). In this work, we report the structure of the closely related title compound, again containing a hexahydroquinoline ring system.

The molecular structure of the title molecule is shown in Fig. 1. The hexahydroquinoline ring system is almost planar, r.m.s. deviation 0.1603 Å, with an angle of 4.86 (9)° between the best fit planes of the aromatic and half-chair aliphatic rings. The O1 and Cl1 substituents are very close to the mean plane of the aromatic ring. In contrast, the almost planar ester substituent, r.m.s. deviation 0.1108 Å, is almost orthogonal to the hexahydroquinoline ring system, at a dihedral angle of 89.45 (4)°.

Figure 1

The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

The 2-pyridinone unit participates in intermolecular N1– H1···O1ⁱ hydrogen bonding, forming an inversion dimer with a classical $R_2^2(8)$ ring motif, see Fig. 2 and Table 1. These hydrogen-bonding interactions form dimers that are reminiscent of those frequently observed in carboxylic acids. The structure is further consolidated by C–H···O hydrogen bonds and inversion-related C7–H7B···Cl1 contacts that generate $R_2^2(14)$ rings These additional contacts form a three-dimensional network with molecules stacked along b, see Fig. 3.

Synthesis and crystallization

The synthesis of ethyl 4-chloro-2-oxo-1,2,5,6,7,8-hexahydroquinoline-3-carboxylate used reagents and reagent-grade solvents, which were used without further purification. In a 100 mL round-bottom flask equipped with a magnetic stirrer was placed 1 g of ethyl 4-hydroxy-2-oxo-1,2,5,6,7,8-hexahydroquinoline-3-carboxylate (4.22 mmol) and 3.84 g of benzyltriethylammonium chloride (4 eq) in 20 mL of acetonitrile. Under continuous stirring, 0.59 mL of the phosphoryl

Figure 2

Dimers formed by classical $N{-}H{\cdots}O$ hydrogen-bonding interactions, dashed lines.

Table	1				
Hydro	gen-bond	geometry	(Å,	°).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H1\cdotsO1^{i}$	0.86	1.97	2.8280 (17)	176
$C6-H6B\cdots O2^{ii}$	0.97	2.47	3.379 (2)	155
$C8-H8B\cdots O1^{ii}$	0.97	2.60	3.492 (2)	153
$C11 - H11A \cdots O2^{iii}$	0.97	2.70	3.502 (2)	141
$C7-H7B\cdots Cl1^{iv}$	0.97	2.85	3.7731 (19)	160

Symmetry codes: (i) -x, -y + 2, -z + 1; (ii) -x + 1, -y + 2, -z + 1; (iii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) -x + 1, -y + 1, -z + 1.

Table 2
Experimental details.

Crystal data	
Chemical formula	$C_{12}H_{14}CINO_{2}$
M _r	255.69
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	100
a, b, c (Å)	5.7323 (3), 9.2537 (5), 21.6899 (12)
β (°)	91.168 (5)
$V(\dot{A}^3)$	1150.30 (11)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.33
Crystal size (mm)	$0.32 \times 0.23 \times 0.09$
Data collection	
Diffractometer	Rigaku Oxford Diffraction Super- Nova, Dual, Cu at zero, AtlasS2
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2015)
T_{\min}, T_{\max}	0.773, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	13970, 3017, 2676
R _{int}	0.032
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.690
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.101, 1.09
No. of reflections	3017
No. of parameters	155
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.86, -0.30

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SIR2004 (Burla et al., 2007), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2008) and publCIF(Westrip, 2010).

chloride (6.33 mmol, 1.5 eq) were added dropwise. The mixture was stirred at 40° C for 30 min and later at reflux for 8 h. Next the solvent was evaporated, 15 mL of cold water

The crystal packing of the title compound viewed along the *b*-axis direction.

were added and the mixture stirred for 1 h. A precipitate was obtained, comprising a mixture of ethyl 4-chloro-2-oxo-1,2,5,6,7,8-hexahydroquinoline-3-carboxylate (60%) and ethyl 2,4-dichloro-5,6,7,8-tetrahydroquinoline-3-carboxylate (40%). The product of interest was purified by column chromato-graphy (dichloromethane/hexane, 2:1). NMR ¹H (CDCl₃), 400 MHz): δ 4.41 (q, J = 7.2 Hz, COOCH₂CH₃), 2.66 (br s, 2H, H-8), 2.53 (br s, 2H, H-5), 1.78 (m, 4H, H-6 and H-7), 1.38 (t, J = 7.2 Hz, COOCH₂CH₃). NMR ¹³C (CDCl₃, 100 MHz): δ 164.4, 160.6, 147.4, 146.1, 122.0, 113.8, 61.8, 27.1, 24.3, 22.2, 21.1, 14.1. EIME m/z (Rel. Ab): [M]⁺ 255 (42), [M]⁺+2 257 (14), 212 (19), 210 (60), 185 (27), 183 (100), 181 (51) amu.

Crystals of the title compound suitable for X-ray diffraction were obtained by dissolving 15 mg of ethyl 4-chloro-2-oxo-1,2,5,6,7,8-hexahydroquinoline-3-carboxylate in 0.5 mL of chloroform and placing the solution in a glass vial. The solution was allowed to stand at room temperature for two days and the crystals formed were filtered.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

GR-V acknowledge support from CONACyT in the form of graduate scholarships (grant Nos. 155029, INFRA-2011-3-173395, INFRA-2014-224405).

References

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
- Cabrera, A., Miranda, L. D., Reyes, H., Aguirre, G. & Chávez, D. (2015). Acta Cryst. E71, 0939.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Le Van, K., Cauvin, C., de Walque, S., Georges, B., Boland, S., Martinelli, V., Demonté, D., Durant, F., Hevesi, L. & Van Lint, C. (2009). J. Med. Chem. 52, 3636–3643.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. **41**, 466–470.
- Medina-Franco, J. L., Martínez-Mayorga, K., Juárez-Gordiano, C. & Castillo, R. (2007). *ChemMedChem*, 2, 1141–1147.
- Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2019). 4, x190016 [https://doi.org/10.1107/S2414314619000166]

Ethyl 4-chloro-2-oxo-1,2,5,6,7,8-hexahydroguinoline-3-carboxylate

Gibran Rodriguez-Vega, Gerardo Aguirre and Daniel Chávez

Ethyl 4-chloro-2-oxo-1,2,5,6,7,8-hexahydroguinoline-3-carboxylate

Crystal data

C₁₂H₁₄ClNO₃ $M_r = 255.69$ Monoclinic, $P2_1/c$ a = 5.7323 (3) Å b = 9.2537(5) Å c = 21.6899 (12) Å $\beta = 91.168 (5)^{\circ}$ $V = 1150.30 (11) \text{ Å}^3$ Z = 4

Data collection

Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero. AtlasS2 diffractometer Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 5.1980 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015)

Refinement

Refinement on F^2 Primary atom site location: structure-invariant Least-squares matrix: full direct methods $R[F^2 > 2\sigma(F^2)] = 0.044$ Hydrogen site location: inferred from $wR(F^2) = 0.101$ neighbouring sites *S* = 1.09 H-atom parameters constrained 3017 reflections $w = 1/[\sigma^2(F_o^2) + (0.0349P)^2 + 1.0951P]$ where $P = (F_o^2 + 2F_c^2)/3$ 155 parameters 0 restraints $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.86 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 536 $D_{\rm x} = 1.476 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 5245 reflections $\theta = 2.4 - 28.8^{\circ}$ $\mu = 0.33 \text{ mm}^{-1}$ T = 100 KBlock, translucent intense colourless $0.32 \times 0.23 \times 0.09 \text{ mm}$

 $T_{\rm min} = 0.773, T_{\rm max} = 1.000$ 13970 measured reflections 3017 independent reflections 2676 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.032$ $\theta_{\text{max}} = 29.4^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$ $h = -7 \rightarrow 7$ $k = -12 \rightarrow 11$ $l = -29 \rightarrow 29$

 $\Delta \rho_{\rm min} = -0.30 \ {\rm e} \ {\rm \AA}^{-3}$

	x	v	Ζ	$U_{\rm iso}^*/U_{\rm ea}$
C11	0.75996 (7)	0.62470 (5)	0.40163 (2)	0.01866 (12)
01	0.0556 (2)	0.94748 (14)	0.42371 (5)	0.0162 (3)
O2	0.4402 (2)	0.87426 (15)	0.31021 (6)	0.0240 (3)
O3	0.2426 (2)	0.66734 (14)	0.32599 (5)	0.0162 (3)
N1	0.2608 (2)	0.87959 (15)	0.51040 (6)	0.0124 (3)
H1	0.169504	0.931850	0.532114	0.015*
C1	0.2208 (3)	0.87798 (18)	0.44748 (7)	0.0129 (3)
C2	0.3831 (3)	0.79147 (18)	0.41342 (7)	0.0130 (3)
C3	0.5600 (3)	0.72128 (18)	0.44430 (7)	0.0133 (3)
C4	0.5911 (3)	0.72343 (18)	0.50944 (7)	0.0123 (3)
C5	0.4335 (3)	0.80509 (18)	0.54128 (7)	0.0117 (3)
C6	0.4387 (3)	0.81981 (19)	0.61038 (7)	0.0145 (3)
H6A	0.281068	0.811392	0.625398	0.017*
H6B	0.496584	0.915069	0.621399	0.017*
C7	0.5925 (3)	0.7056 (2)	0.64185 (8)	0.0235 (4)
H7A	0.623150	0.732936	0.684420	0.028*
H7B	0.512014	0.613363	0.641614	0.028*
C8	0.8206 (3)	0.6912 (2)	0.60853 (8)	0.0226 (4)
H8A	0.920094	0.622654	0.630360	0.027*
H8B	0.899644	0.783933	0.608639	0.027*
C9	0.7836 (3)	0.64067 (19)	0.54209 (7)	0.0152 (3)
H9A	0.927464	0.652904	0.519912	0.018*
H9B	0.745109	0.538585	0.541940	0.018*
C10	0.3596 (3)	0.78524 (19)	0.34424 (7)	0.0141 (3)
C11	0.2272 (3)	0.6444 (2)	0.25915 (7)	0.0189 (4)
H11A	0.374809	0.608271	0.244386	0.023*
H11B	0.192908	0.734998	0.238396	0.023*
C12	0.0378 (4)	0.5373 (3)	0.24549 (9)	0.0325 (5)
H12A	0.024954	0.522164	0.201769	0.049*
H12B	-0.107534	0.573636	0.260352	0.049*
H12C	0.074284	0.447459	0.265581	0.049*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.01586 (19)	0.0218 (2)	0.0184 (2)	0.00599 (16)	0.00289 (14)	-0.00607 (16)
O1	0.0162 (5)	0.0169 (6)	0.0154 (5)	0.0053 (5)	-0.0006 (4)	-0.0014 (5)
02	0.0338 (7)	0.0209 (7)	0.0173 (6)	-0.0080 (6)	0.0019 (5)	0.0014 (5)
O3	0.0198 (6)	0.0169 (6)	0.0118 (5)	-0.0038 (5)	0.0012 (4)	-0.0031 (5)
N1	0.0122 (6)	0.0118 (7)	0.0132 (6)	0.0027 (5)	0.0022 (5)	-0.0027 (5)
C1	0.0121 (7)	0.0123 (8)	0.0143 (7)	-0.0018 (6)	0.0009 (5)	-0.0020 (6)
C2	0.0138 (7)	0.0123 (8)	0.0131 (7)	-0.0008 (6)	0.0018 (5)	-0.0019 (6)
C3	0.0117 (7)	0.0105 (8)	0.0178 (7)	-0.0011 (6)	0.0041 (6)	-0.0038 (6)
C4	0.0106 (7)	0.0101 (8)	0.0161 (7)	-0.0012 (6)	0.0007 (5)	-0.0004 (6)
C5	0.0109 (7)	0.0095 (8)	0.0147 (7)	-0.0017 (6)	0.0005 (5)	0.0000 (6)

data reports

C6 C7	0.0138 (7) 0.0257 (9)	0.0168 (9) 0.0263 (10)	0.0131 (7) 0.0185 (8)	0.0011 (6) 0.0054 (8)	0.0012 (5) 0.0005 (7)	-0.0013 (6) 0.0019 (7)
C8	0.0214 (8)	0.0276 (11)	0.0188 (8)	0.0083 (8)	-0.0026 (6)	0.0018 (7)
C9	0.0135 (7)	0.0130 (8)	0.0190 (8)	0.0020 (6)	0.0007 (6)	0.0001 (6)
C10	0.0129 (7)	0.0148 (8)	0.0148 (7)	0.0024 (6)	0.0007 (5)	-0.0024 (6)
C11	0.0247 (8)	0.0211 (10)	0.0108 (7)	-0.0028 (7)	0.0009 (6)	-0.0031 (6)
C12	0.0376 (11)	0.0428 (14)	0.0168 (8)	-0.0178 (10)	-0.0057 (8)	-0.0007 (9)

Geometric parameters (Å, °)

Cl1—C3	1.7357 (16)	С6—Н6В	0.9700
O1—C1	1.248 (2)	C6—C7	1.528 (2)
O2—C10	1.205 (2)	C7—H7A	0.9700
O3—C10	1.336 (2)	С7—Н7В	0.9700
O3—C11	1.4660 (19)	C7—C8	1.513 (3)
N1—H1	0.8600	C8—H8A	0.9700
N1—C1	1.379 (2)	C8—H8B	0.9700
N1—C5	1.370 (2)	C8—C9	1.526 (2)
C1—C2	1.442 (2)	С9—Н9А	0.9700
C2—C3	1.367 (2)	С9—Н9В	0.9700
C2—C10	1.505 (2)	C11—H11A	0.9700
C3—C4	1.421 (2)	C11—H11B	0.9700
C4—C5	1.375 (2)	C11—C12	1.495 (3)
C4—C9	1.508 (2)	C12—H12A	0.9600
C5—C6	1.505 (2)	C12—H12B	0.9600
C6—H6A	0.9700	C12—H12C	0.9600
C10—O3—C11	115.52 (13)	С8—С7—Н7А	109.6
C1—N1—H1	117.2	С8—С7—Н7В	109.6
C5—N1—H1	117.2	С7—С8—Н8А	109.2
C5—N1—C1	125.60 (13)	C7—C8—H8B	109.2
O1—C1—N1	120.85 (14)	C7—C8—C9	111.90 (15)
O1—C1—C2	124.52 (14)	H8A—C8—H8B	107.9
N1—C1—C2	114.64 (14)	С9—С8—Н8А	109.2
C1—C2—C10	119.09 (14)	C9—C8—H8B	109.2
C3—C2—C1	119.48 (14)	C4—C9—C8	111.98 (14)
C3—C2—C10	121.38 (14)	С4—С9—Н9А	109.2
C2—C3—Cl1	118.33 (12)	С4—С9—Н9В	109.2
C2—C3—C4	123.88 (14)	С8—С9—Н9А	109.2
C4—C3—Cl1	117.80 (12)	С8—С9—Н9В	109.2
C3—C4—C9	122.42 (14)	H9A—C9—H9B	107.9
C5—C4—C3	115.89 (14)	O2—C10—O3	124.98 (15)
C5—C4—C9	121.69 (14)	O2—C10—C2	123.85 (16)
N1—C5—C4	120.45 (14)	O3—C10—C2	111.15 (14)
N1—C5—C6	116.16 (13)	O3—C11—H11A	109.9
C4—C5—C6	123.39 (14)	O3—C11—H11B	109.9
С5—С6—Н6А	109.1	O3—C11—C12	108.71 (14)
С5—С6—Н6В	109.1	H11A—C11—H11B	108.3

C5—C6—C7	112.44 (14)	C12—C11—H11A	109.9
H6A—C6—H6B	107.8	C12—C11—H11B	109.9
C7—C6—H6A	109.1	C11—C12—H12A	109.5
C7—C6—H6B	109.1	C11—C12—H12B	109.5
C6—C7—H7A	109.6	C11—C12—H12C	109.5
C6—C7—H7B	109.6	H12A—C12—H12B	109.5
H7A—C7—H7B	108.2	H12A—C12—H12C	109.5
C8—C7—C6	110.10 (15)	H12B—C12—H12C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 177.91\ (12)\\ -2.6\ (2)\\ 179.14\ (16)\\ 1.5\ (2)\\ -0.8\ (2)\\ -178.38\ (14)\\ 165.33\ (15)\\ 2.3\ (2)\\ -178.14\ (15)\\ -177.15\ (12)\\ 2.4\ (3)\\ 83.9\ (2)\\ -97.36\ (17)\\ -1.6\ (2)\\ 177.91\ (16)\\ -93.6\ (2)\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.7 (2) \\ 179.81 (15) \\ 164.73 (16) \\ -15.1 (2) \\ 178.55 (15) \\ -1.5 (2) \\ -15.8 (2) \\ 44.9 (2) \\ -62.2 (2) \\ 46.6 (2) \\ 179.79 (15) \\ 0.3 (2) \\ -163.49 (16) \\ 0.4 (2) \\ 179.91 (15) \\ 3.7 (2) \end{array}$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1···O1 ⁱ	0.86	1.97	2.8280 (17)	176
C6—H6 <i>B</i> ···O2 ⁱⁱ	0.97	2.47	3.379 (2)	155
C8—H8 <i>B</i> …O1 ⁱⁱ	0.97	2.60	3.492 (2)	153
C11—H11 <i>A</i> ···O2 ⁱⁱⁱ	0.97	2.70	3.502 (2)	141
C7—H7 <i>B</i> ····Cl1 ^{iv}	0.97	2.85	3.7731 (19)	160

Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+2, -z+1; (iii) -x+1, y-1/2, -z+1/2; (iv) -x+1, -y+1, -z+1.