inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

The crystal structure of BaH6As4O14 redetermined, revealing the localization of the hydrogen atoms

CROSSMARK_Color_square_no_text.svg

aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: Matthias.Weil@tuwien.ac.at

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 16 January 2019; accepted 16 January 2019; online 18 January 2019)

The crystal structure of barium hexa­hydrogen cyclo-tetra­deca­oxido­tetra­arsenate(V), was redetermined. In comparison with the previous determination [Blum, Durif & Guitel. (1977[Blum, D., Durif, A. & Guitel, J. C. (1977). Acta Cryst. B33, 3222-3224.]). Acta Cryst. B33, 3222–3224] the positions of the hydrogen atoms were located, and more precise data in terms of bond lengths and angles were obtained. The crystal structure is composed of an eight-coordinate Ba2+ cation and a condensed oxoarsenate anion with connectivity [As[4](OH)1/1O1/1O2/2As[6](OH)2/1O1/2]22–. O—H⋯O hydrogen bonds between isolated anions consolidate the crystal packing.

3D view (loading...)
[Scheme 3D1]

Structure description

During phase-formation studies of hydrous and anhydrous barium arsenates (Weil, 2016[Weil, M. (2016). Cryst. Growth Des. 16, 908-921.]), high-quality single crystals of BaH6As4O14 were grown. The structure of this compound has been determined previously (Blum et al., 1977[Blum, D., Durif, A. & Guitel, J. C. (1977). Acta Cryst. B33, 3222-3224.]), however without localization of the hydrogen atoms. In the current study, the positions of the hydrogen atoms were located unambiguously and the structure redetermined, leading to more precise data as can be seen by a comparison of selected bond lengths of the two refinements (Table 1[link]), and to a better understanding of the hydrogen-bonding scheme.

Table 1
Comparison of selected bond lengths (Å) from the current and the previous (Blum et al., 1977[Blum, D., Durif, A. & Guitel, J. C. (1977). Acta Cryst. B33, 3222-3224.]) refinement of BaH6As4O14

In the previous refinement, a = 8.496 (3), b = 11.249 (8), c = 5.858 (3) Å; T = 298 K; R = 0.051.

  Current refinement Previous refinement
Ba—OE1 2.7807 (6) 2.800 (3)
Ba—OE21iv 2.9154 (9) 2.935 (3)
Ba—OE22vi 2.9229 (9) 2.948 (4)
As1—OE1 1.7628 (6) 1.767 (3)
As1—OL11 1.8346 (6) 1.839 (3)
As1—OL12 1.8804 (6) 1.887 (3)
As2—OE21 1.6497 (9) 1.656 (5)
As2—OE22x 1.7011 (9) 1.703 (5)
As2—OL12 1.7119 (9) 1.721 (3)
Symmetry codes: (iv) −x + [{1\over 2}], −y + [{1\over 2}], z − 1; (vi) −x + [{1\over 2}], −y + [{1\over 2}], z; (x) x, y, z + 1.

The main building units of the crystal structure of BaH6As4O14 are one Ba2+ cation (site symmetry 2/m) and a condensed anion H6As4O142− with point group symmetry 2/m. In the anion, two edge-sharing [As1O6] octa­hedra are bridged by two [As2O4] tetra­hedra. The non-bridging O atom (OE1) and its three symmetry-related counterparts of the two [As1O6] octa­hedra are bonded to hydrogen atoms (H2); one of the two terminal O atoms of the the [AsO4] tetra­hedron (OE22) likewise carries a hydrogen atom (H1). The connectivity of the anion can be formulated as [As[4](OH)1/1O1/1O2/2As[6](OH)2/1O1/2]22–. Adjacent anions are linked by an intricate network of strong to medium O—H⋯O hydrogen bonds (Table 2[link], Fig. 1[link]) between the outward OH groups and the second non-bridging O atom of the [AsO4] tetra­hedra (OE21) and the bridging O atoms of the two [AsO6] octa­hedra (O11). Bond lengths and angles in the anion are consistent with published data as detailed in a review on oxoarsenate anions comprising of tetra­hedral and octa­hedral building units (Schwendtner & Kolitsch, 2007[Schwendtner, K. & Kolitsch, U. (2007). Acta Cryst. B63, 205-215.]). The Ba2+ cation is situated in the voids of the hydrogen-bonded anionic network and is surrounded by eight O atoms in form of a trigonal prism that is capped on one face by two O atoms.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OE22—H1⋯OL11 0.85 (1) 1.71 (1) 2.5552 (13) 178 (3)
OE1—H2⋯OE21i 0.85 (1) 1.83 (1) 2.6319 (10) 158 (2)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z].
[Figure 1]
Figure 1
The crystal structure of BaH6As4O14 in a projection along [00[\overline{1}]]. Displacement ellipsoids are drawn at the 97% probability level. [AsO4] tetra­hedra are orange, [AsO6] octa­hedra are red, and O—H⋯O hydrogen-bonding inter­actions are shown as green lines.

Synthesis and crystallization

Single crystals of BaH6As4O14 with a maximal edge-length of 2 mm and a pinacoidal form were grown by refluxing 1.5 g of Ba(OH)2·8H2O in a mixture of 20 ml of glacial acetic acid and 13.5 ml of H3AsO4 (80%wt) for three days.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula BaH6As4O14
Mr 667.07
Crystal system, space group Orthorhombic, Pman
Temperature (K) 100
a, b, c (Å) 8.4638 (5), 11.1799 (7), 5.8353 (4)
V3) 552.16 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 15.57
Crystal size (mm) 0.12 × 0.10 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.551, 0.749
No. of measured, independent and observed [I > 2σ(I)] reflections 18011, 2384, 2146
Rint 0.030
(sin θ/λ)max−1) 0.995
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.032, 1.05
No. of reflections 2384
No. of parameters 60
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.11, −0.98
Coordinates taken from previous refinement. Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ATOMS (Dowty, 2006[Dowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The same non-standard setting Pman of space group number 53 (standard setting Pmna) and atom-labelling scheme as given in the original structure study (Blum et al., 1977[Blum, D., Durif, A. & Guitel, J. C. (1977). Acta Cryst. B33, 3222-3224.]) were used. The published atomic coordinates were used as starting parameters for refinement. The H atoms bonded to OE1 and OE22 were clearly discernible from difference-Fourier maps. The corresponding hydrogen atoms were refined with a distance restraint d(O—H) = 0.85 (1) Å, and with an independent Uiso parameter for each H atom.

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: coordinates taken from previous refinement; program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Barium hexahydrogen cyclo-tetradecaoxidotetraarsenate(V) top
Crystal data top
BaH6As4O14F(000) = 612
Mr = 667.07Dx = 4.012 Mg m3
Orthorhombic, PmanMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2Cell parameters from 8994 reflections
a = 8.4638 (5) Åθ = 3.0–45.0°
b = 11.1799 (7) ŵ = 15.57 mm1
c = 5.8353 (4) ÅT = 100 K
V = 552.16 (6) Å3Fragment, colourless
Z = 20.12 × 0.10 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
2384 independent reflections
Radiation source: fine-focus sealed tube2146 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω– and φ–scansθmax = 45.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1615
Tmin = 0.551, Tmax = 0.749k = 2221
18011 measured reflectionsl = 511
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.015 w = 1/[σ2(Fo2) + (0.0132P)2 + 0.1747P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.032(Δ/σ)max = 0.001
S = 1.05Δρmax = 1.11 e Å3
2384 reflectionsΔρmin = 0.98 e Å3
60 parametersExtinction correction: SHELXL2017 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0072 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba0.5000000.0000000.0000000.00498 (2)
As10.16637 (2)0.0000000.5000000.00269 (2)
As20.0000000.19072 (2)0.78506 (2)0.00290 (2)
OL120.16513 (7)0.10385 (6)0.75348 (10)0.00498 (9)
OE210.0000000.31803 (8)0.64215 (16)0.00545 (13)
OE220.0000000.24048 (8)0.06056 (16)0.00613 (13)
OL110.0000000.08529 (8)0.38202 (15)0.00430 (12)
OE10.30358 (7)0.08639 (6)0.34427 (11)0.00573 (9)
H10.0000000.1876 (17)0.165 (3)0.028 (8)*
H20.352 (2)0.1338 (14)0.434 (3)0.032 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba0.00751 (4)0.00420 (4)0.00322 (4)0.0000.0000.00032 (3)
As10.00190 (4)0.00349 (4)0.00268 (4)0.0000.0000.00003 (3)
As20.00286 (4)0.00294 (4)0.00290 (4)0.0000.0000.00008 (3)
OL120.0041 (2)0.0061 (2)0.0047 (2)0.00150 (17)0.00042 (15)0.00182 (16)
OE210.0057 (3)0.0045 (3)0.0061 (3)0.0000.0000.0022 (3)
OE220.0093 (4)0.0054 (3)0.0038 (3)0.0000.0000.0007 (3)
OL110.0028 (3)0.0051 (3)0.0050 (3)0.0000.0000.0014 (2)
OE10.0046 (2)0.0072 (2)0.0054 (2)0.00268 (17)0.00091 (17)0.00025 (18)
Geometric parameters (Å, º) top
Ba—OE12.7807 (6)As1—OE11.7628 (6)
Ba—OE1i2.7808 (6)As1—OL111.8346 (6)
Ba—OE1ii2.7808 (6)As1—OL11ix1.8346 (6)
Ba—OE1iii2.7808 (6)As1—OL121.8804 (6)
Ba—OE21iv2.9153 (9)As1—OL12viii1.8804 (6)
Ba—OE21v2.9153 (9)As2—OE211.6497 (9)
Ba—OE22vi2.9229 (9)As2—OE22x1.7012 (9)
Ba—OE22vii2.9229 (9)As2—OL121.7119 (6)
Ba—As2iv3.6782 (2)As2—OL12xi1.7119 (6)
Ba—As2v3.6782 (2)OE22—H10.8501 (10)
As1—OE1viii1.7628 (6)OE1—H20.8498 (10)
OE1—Ba—OE1i73.43 (3)OE1viii—As1—OL11169.69 (3)
OE1—Ba—OE1ii106.57 (3)OE1—As1—OL1191.57 (3)
OE1i—Ba—OE1ii180.000 (18)OE1viii—As1—OL11ix91.57 (3)
OE1—Ba—OE1iii180.0OE1—As1—OL11ix169.69 (3)
OE1i—Ba—OE1iii106.57 (3)OL11—As1—OL11ix79.74 (4)
OE1ii—Ba—OE1iii73.43 (3)OE1viii—As1—OL1286.36 (3)
OE1—Ba—OE21iv105.967 (19)OE1—As1—OL1294.06 (3)
OE1i—Ba—OE21iv105.967 (19)OL11—As1—OL1288.28 (3)
OE1ii—Ba—OE21iv74.033 (19)OL11ix—As1—OL1291.23 (3)
OE1iii—Ba—OE21iv74.033 (19)OE1viii—As1—OL12viii94.06 (3)
OE1—Ba—OE21v74.033 (19)OE1—As1—OL12viii86.36 (3)
OE1i—Ba—OE21v74.033 (19)OL11—As1—OL12viii91.23 (3)
OE1ii—Ba—OE21v105.967 (19)OL11ix—As1—OL12viii88.28 (3)
OE1iii—Ba—OE21v105.967 (19)OL12—As1—OL12viii179.36 (4)
OE21iv—Ba—OE21v180.00 (3)OE21—As2—OE22x101.28 (5)
OE1—Ba—OE22vi64.396 (19)OE21—As2—OL12115.79 (3)
OE1i—Ba—OE22vi64.396 (19)OE22x—As2—OL12106.69 (3)
OE1ii—Ba—OE22vi115.604 (19)OE21—As2—OL12xi115.79 (3)
OE1iii—Ba—OE22vi115.604 (19)OE22x—As2—OL12xi106.69 (3)
OE21iv—Ba—OE22vi52.69 (3)OL12—As2—OL12xi109.46 (4)
OE21v—Ba—OE22vi127.31 (3)As2—OL12—As1116.07 (3)
OE1—Ba—OE22vii115.604 (19)As2—OE21—Baxii103.89 (4)
OE1i—Ba—OE22vii115.604 (19)As2xiii—OE22—Bavi102.14 (4)
OE1ii—Ba—OE22vii64.396 (19)As2xiii—OE22—H1116.8 (17)
OE1iii—Ba—OE22vii64.396 (19)Bavi—OE22—H1141.1 (17)
OE21iv—Ba—OE22vii127.31 (3)As1ix—OL11—As1100.26 (4)
OE21v—Ba—OE22vii52.69 (3)As1—OE1—Ba125.17 (3)
OE22vi—Ba—OE22vii180.0As1—OE1—H2110.1 (14)
OE1viii—As1—OE197.58 (4)Ba—OE1—H2111.8 (14)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z; (iii) x+1, y, z; (iv) x+1/2, y+1/2, z1; (v) x+1/2, y1/2, z+1; (vi) x+1/2, y+1/2, z; (vii) x+1/2, y1/2, z; (viii) x, y, z+1; (ix) x, y, z+1; (x) x, y, z+1; (xi) x, y, z; (xii) x+1/2, y+1/2, z+1; (xiii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OE22—H1···OL110.85 (1)1.71 (1)2.5552 (13)178 (3)
OE1—H2···OE21vi0.85 (1)1.83 (1)2.6319 (10)158 (2)
Symmetry code: (vi) x+1/2, y+1/2, z.
Comparison of selected bond lengths (Å) from the current and the previous (Blum et al., 1977) refinement of BaH6As4O14 top
In the previous refinement, a = 8.496 (3), b = 11.249 (8), c = 5.858 (3) Å; T = 298 K; R = 0.051.
Current refinementPrevious refinementa
Ba—OE12.7807 (6)2.800 (3)
Ba—OE21iv2.9154 (9)2.935 (3)
Ba—OE22vi2.9229 (9)2.948 (4)
As1—OE11.7628 (6)1.767 (3)
As1—OL111.8346 (6)1.839 (3)
As1—OL121.8804 (6)1.887 (3)
As2—OE211.6497 (9)1.656 (5)
As2—OE22x1.7011 (9)1.703 (5)
As2—OL121.7119 (9)1.721 (3)
Symmetry codes: (iv) -x + 1/2, -y + 1/2, z - 1; (vi) -x + 1/2, -y + 1/2, z; (x) x, y, z + 1.
 

Acknowledgements

The X-ray centre of TU Wien is acknowledged for financial support and providing access to the single-crystal X-ray diffractometer.

References

First citationBlum, D., Durif, A. & Guitel, J. C. (1977). Acta Cryst. B33, 3222–3224.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2007). Acta Cryst. B63, 205–215.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWeil, M. (2016). Cryst. Growth Des. 16, 908–921.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds