metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(C7H6NS)2[Nb6Cl18]·2C4H8O: first niobium cluster with an N,S-heterocyclic cation

aUniversität Rostock, Institut für Chemie, Anorganische Festkörperchemie, Albert-Einstein-Strasse 3a, D-18059 Rostock, Germany
*Correspondence e-mail: Martin.Koeckerling@uni-rostock.de

Edited by O. Blacque, University of Zürich, Switzerland (Received 13 November 2018; accepted 12 December 2018; online 18 December 2018)

The title compound bis­(benzo­thia­zolium) dodeca-μ-chlorido-hexa­chlorido-octa­hedro-hexa­niobium(12 Nb—Nb) tetra­hydro­furan disolvate, (C7H6NS)2[Nb6Cl18]·2C4H8O or (HBTh)2[Nb6Cl18]·2THF, is the first known niobium cluster compound to contain an N,S-heterocyclic cation. The synthesis takes place within a few hours as an one-pot reaction at room temperature of the cluster precursor compound [Nb6Cl14(H2O)4]·4H2O with SOCl2 in the presence of BTh (benzothiazole) in very high yield. The stabilization of the acidic proton of the cation is achieved by the use of tetra­hydro­furan as a co-solvent and by the formation of hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In 2016, we reported a new synthetic route that allows the generation of niobium cluster compounds of the composition A2[Nb6Cl18], where A is an organic cation) by the reaction of [Nb6Cl14(H2O)4]·4H2O with thionyl chloride (König et al., 2016[König, J., Dartsch, I., Topp, A., Guillamón, E., Llusar, R. & Köckerling, M. (2016). Z. Anorg. Allg. Chem. 642, 572-578.]). The addition of ACl results in the formation of the new compounds. Here, we present a further way to synthesize such compounds. In this case, a neutral heterocyclic compound L is used instead of ACl. L is protonated and the resulting acidic cation acts as the counter-ion in cluster compounds of the formula (HL)2[Nb6Cl18].

The title compound consists of the well known [Nb6Cl18]2− anion, two benzo­thia­zolium cations (HBTh)+, and two co-crystallized tetra­hydro­furan mol­ecules (THF) that bond to the acidic proton of the cation through hydrogen bonds. The disordered THF mol­ecule is present in two different orientations with an occupancy ratio of 0.560 (9):0.440 (9). Only one orientation is shown in Fig. 1[link] for the sake of clarity. The average Nb—Nb distance of the metal cluster unit (Cotton, 1964[Cotton, F. A. (1964). Inorg. Chem. 3, 1217-1220.]; Simon, 1988[Simon, A. (1988). Angew. Chem. 100, 163-188.]) is 3.0257 Å, which is in the expected range for the doubly negatively charged [Nb6Cl18]2− anion, and the Nb—Cli and Nb—Cla distances with averages of 2.4261 and 2.4863 Å, respectively, are also typical for this anion (Koknat & McCarley, 1972[Koknat, F. W. & McCarley, R. E. (1972). Inorg. Chem. 11, 812-816.]; Field et al., 1973[Field, A., Kepert, D. L., Robinson, B. W. & White, A. H. (1973). J. Chem. Soc. Dalton Trans. pp. 1858-1863.]; Lin & Williams, 1996[Lin, Z. & Williams, I. D. (1996). Polyhedron, 15, 3277-3287.]; Ströbele & Meyer, 2001[Ströbele, M. & Meyer, H. J. (2001). Z. Naturforsch. Teil B, 56, 1025-1034.]; Flemming et al., 2008[Flemming, A., Hoppe, A. & Köckerling, M. (2008). J. Solid State Chem. 181, 2660-2665.]).

[Figure 1]
Figure 1
View of the structure of the niobium cluster anion, the benzo­thia­zolium cation and the co-crystallized tetra­hydro­furan mol­ecule in crystals of (HBTh)2[Nb6Cl18]·2THF with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed red line represents a hydrogen bond. The dashed red line represents a hydrogen bond. Symmetry code: (i) −x, 1 − y, 1 − z.

The position of the acidic proton of the cation was freely refined, resulting in bond lengths [N1—H1A 0.83 (4), O1A⋯H1A = 1.86 (4), N1—H1B = 0.83 (4), O1B⋯H1A = 1.75 (4), N1⋯O1A = 2.691 (5) and N1⋯O1B = 2.573 (6) Å; Table 1[link]] that agree well with those found in similar bonding situations (Steiner, 2002[Steiner, T. (2002). Angew. Chem. 114, 50-80.]). The packing is shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1A 0.83 (4) 1.86 (4) 2.691 (5) 175 (4)
N1—H1A⋯O1B 0.83 (4) 1.75 (4) 2.573 (6) 172 (4)
[Figure 2]
Figure 2
Packing of the cluster anions, cations and THF mol­ecules in the unit cell of (HBTh)2[Nb6Cl18]·2THF in a view along the a axis. The niobium cluster core is shown in a polyhedral representation. Hydrogen bonds are shown as red dashed lines.

Synthesis and crystallization

The preparation of the title compound was carried out via an one-pot reaction. 20 mg (16.70 µmol) of the niobium cluster starting compound [Nb6Cl14(H2O)4]·4H2O and 0.05 ml (0.46 µmol) of benzo­thia­zole (BTh) were dissolved in a mixture of 1 ml (13.79 mmol) thionyl chloride (SOCl2) and 1 ml (12.50 mmol) tetra­hydro­furan (THF). The niobium cluster precursor [Nb6Cl14(H2O)4]·4H2O was dehydrated with thionyl chloride, under evolution of SO2 and HCl. The remaining chloride ions occupied the vacant ligand positions on the niobium cluster and the neutral ligand was protonated to the benzo­thia­zonium cation. In addition, the niobium cluster core was oxidized from [Nb6Cl12]2+ to [Nb6Cl12]4+. SOCl2 functionalized as oxidation agent, forming SCl2 (König et al., 2016[König, J., Dartsch, I., Topp, A., Guillamón, E., Llusar, R. & Köckerling, M. (2016). Z. Anorg. Allg. Chem. 642, 572-578.]). Crystallization was favored by the formation of hydrogen bonds between the proton of the cation and the THF mol­ecules. After one day at room temperature, brown crystals of the title compound (HBTh)2[Nb6Cl18]·2THF formed. The supernatant solution was removed and the crystals were washed three times with diethyl ether. The product was obtained in a yield of 96% (26.60 mg).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The disordered THF mol­ecule was refined with split atom positions over two orientations [occupancy ratio of 0.560 (9):0.440 (9)] with the sum of the occupational factors of each atom being fixed to unity.

Table 2
Experimental details

Crystal data
Chemical formula (C7H6NS)2[Nb6Cl18]·2C4H8O
Mr 1612.14
Crystal system, space group Monoclinic, P21/c
Temperature (K) 123
a, b, c (Å) 8.7110 (3), 24.171 (1), 11.0653 (4)
β (°) 102.598 (1)
V3) 2273.8 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.61
Crystal size (mm) 0.20 × 0.15 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2017[Bruker (2017). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
No. of measured, independent and observed [I > 2σ(I)] reflections 102833, 5454, 4867
Rint 0.045
(sin θ/λ)max−1) 0.659
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.047, 1.05
No. of reflections 5454
No. of parameters 286
No. of restraints 86
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.25, −1.00
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Putz, 2014[Brandenburg, K. & Putz, H. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2014); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Bis(benzothiazolium) dodeca-µ-chlorido-hexachlorido-octahedro-hexaniobium(12 Nb—Nb) tetrahydrofuran disolvate top
Crystal data top
(C7H6NS)2[Nb6Cl18]·2C4H8OF(000) = 1548
Mr = 1612.14Dx = 2.355 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.7110 (3) ÅCell parameters from 9607 reflections
b = 24.171 (1) Åθ = 2.4–27.9°
c = 11.0653 (4) ŵ = 2.61 mm1
β = 102.598 (1)°T = 123 K
V = 2273.8 (2) Å3Block, brown
Z = 20.20 × 0.15 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
4867 reflections with I > 2σ(I)
Radiation source: microfocus sealed tubeRint = 0.045
φ and ω scansθmax = 27.9°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
h = 1111
k = 3131
102833 measured reflectionsl = 1414
5454 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.047 w = 1/[σ2(Fo2) + (0.0133P)2 + 5.1918P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.003
5454 reflectionsΔρmax = 1.25 e Å3
286 parametersΔρmin = 1.00 e Å3
86 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00216 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Nb10.16489 (2)0.43379 (2)0.54806 (2)0.01537 (6)
Nb20.17270 (2)0.44311 (2)0.40346 (2)0.01362 (6)
Nb30.08185 (2)0.51378 (2)0.33389 (2)0.01343 (6)
Cl10.00984 (7)0.36126 (3)0.44714 (6)0.0230 (1)
Cl20.27598 (7)0.44047 (3)0.36589 (6)0.0229 (1)
Cl30.35309 (8)0.35643 (3)0.60609 (8)0.0366 (2)
Cl40.09382 (7)0.40977 (3)0.74224 (6)0.0223 (1)
Cl50.10366 (8)0.45219 (3)0.20332 (5)0.0257 (2)
Cl60.38072 (7)0.51032 (3)0.34026 (6)0.0235 (1)
Cl70.36886 (8)0.37615 (3)0.29128 (6)0.0278 (2)
Cl80.17478 (8)0.53147 (3)0.13888 (6)0.0303 (2)
Cl90.28546 (6)0.57995 (2)0.42073 (5)0.0157 (1)
S10.4979 (1)0.43271 (4)0.04878 (8)0.0383 (2)
N10.3389 (3)0.3668 (1)0.0501 (2)0.0333 (6)
H1A0.273 (5)0.356 (2)0.089 (4)0.05 (1)*
C10.3572 (4)0.4193 (1)0.0308 (3)0.0310 (7)
H1B0.29710.44740.05890.037*
C20.5361 (4)0.3627 (2)0.0584 (3)0.0369 (8)
C30.6409 (5)0.3356 (2)0.1173 (3)0.050 (1)
H30.70550.35570.16090.060*
C40.6474 (5)0.2793 (2)0.1103 (4)0.059 (1)
H40.71640.26000.15120.071*
C50.5551 (6)0.2490 (2)0.0442 (4)0.063 (1)
H50.56590.20990.03840.076*
C60.4500 (5)0.2751 (2)0.0121 (4)0.057 (1)
H60.38640.25470.05590.068*
C70.4395 (4)0.3324 (1)0.0030 (3)0.0378 (8)
O1A0.1371 (5)0.3338 (2)0.1885 (4)0.034 (1)0.560 (9)
C8A0.0116 (7)0.3094 (2)0.1260 (5)0.038 (1)0.560 (9)
H8A0.03050.31560.03550.046*0.560 (9)
H8B0.09990.32560.15720.046*0.560 (9)
C9A0.0044 (6)0.2488 (2)0.1553 (5)0.040 (1)0.560 (9)
H9A0.09720.23320.16540.048*0.560 (9)
H9B0.03930.22840.08850.048*0.560 (9)
C10A0.1238 (7)0.2450 (2)0.2726 (6)0.038 (1)0.560 (9)
H10A0.18500.21030.27560.046*0.560 (9)
H10B0.07320.24580.34450.046*0.560 (9)
C11A0.2283 (6)0.2943 (2)0.2740 (5)0.034 (1)0.560 (9)
H11A0.25780.31030.35830.041*0.560 (9)
H11B0.32540.28390.24690.041*0.560 (9)
O1B0.1404 (9)0.3237 (3)0.1642 (7)0.062 (2)0.440 (9)
C8B0.0152 (9)0.3084 (3)0.0947 (7)0.063 (2)0.440 (9)
H8C0.00890.29160.01420.076*0.440 (9)
H8D0.08480.34120.07900.076*0.440 (9)
C9B0.0757 (8)0.2673 (3)0.1745 (7)0.063 (2)0.440 (9)
H9C0.14260.28580.22410.075*0.440 (9)
H9D0.13840.23820.12310.075*0.440 (9)
C10B0.066 (1)0.2432 (3)0.2560 (8)0.062 (2)0.440 (9)
H10C0.09820.20910.21880.075*0.440 (9)
H10D0.04440.23400.33800.075*0.440 (9)
C11B0.1908 (8)0.2866 (4)0.2683 (8)0.061 (2)0.440 (9)
H11C0.20140.30670.34760.073*0.440 (9)
H11D0.29340.26960.26560.073*0.440 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nb10.0085 (1)0.0181 (1)0.0207 (1)0.00211 (8)0.00572 (8)0.00766 (8)
Nb20.0103 (1)0.0202 (1)0.0109 (1)0.00342 (8)0.00341 (7)0.00206 (8)
Nb30.0105 (1)0.0203 (1)0.0106 (1)0.00263 (8)0.00461 (7)0.00265 (8)
Cl10.0214 (3)0.0175 (3)0.0344 (3)0.0016 (2)0.0154 (3)0.0019 (2)
Cl20.0189 (3)0.0219 (3)0.0337 (3)0.0011 (2)0.0184 (3)0.0020 (3)
Cl30.0192 (3)0.0299 (4)0.0647 (5)0.0131 (3)0.0181 (3)0.0254 (4)
Cl40.0140 (3)0.0303 (3)0.0215 (3)0.0005 (2)0.0017 (2)0.0159 (3)
Cl50.0271 (3)0.0392 (4)0.0125 (3)0.0172 (3)0.0082 (2)0.0039 (3)
Cl60.0082 (3)0.0335 (4)0.0265 (3)0.0021 (2)0.0013 (2)0.0150 (3)
Cl70.0272 (3)0.0379 (4)0.0182 (3)0.0185 (3)0.0051 (2)0.0044 (3)
Cl80.0316 (4)0.0476 (4)0.0158 (3)0.0161 (3)0.0139 (3)0.0001 (3)
Cl90.0112 (2)0.0224 (3)0.0147 (3)0.0039 (2)0.0053 (2)0.0028 (2)
S10.0379 (4)0.0470 (5)0.0320 (4)0.0094 (4)0.0118 (3)0.0157 (4)
N10.043 (2)0.042 (2)0.018 (1)0.026 (1)0.013 (1)0.010 (1)
C10.032 (2)0.042 (2)0.017 (1)0.014 (1)0.003 (1)0.001 (1)
C20.047 (2)0.046 (2)0.020 (1)0.019 (2)0.013 (1)0.002 (1)
C30.060 (2)0.063 (3)0.034 (2)0.020 (2)0.029 (2)0.003 (2)
C40.076 (3)0.063 (3)0.049 (2)0.022 (2)0.038 (2)0.025 (2)
C50.098 (3)0.042 (2)0.064 (3)0.034 (2)0.051 (3)0.032 (2)
C60.089 (3)0.041 (2)0.055 (2)0.040 (2)0.047 (2)0.031 (2)
C70.054 (2)0.042 (2)0.022 (1)0.028 (2)0.019 (1)0.017 (1)
O1A0.035 (2)0.030 (2)0.043 (2)0.010 (1)0.020 (1)0.007 (1)
C8A0.038 (2)0.033 (2)0.047 (2)0.011 (1)0.016 (1)0.007 (1)
C9A0.040 (2)0.033 (2)0.049 (2)0.010 (1)0.015 (1)0.008 (1)
C10A0.038 (2)0.032 (2)0.048 (2)0.010 (1)0.017 (1)0.007 (1)
C11A0.034 (2)0.030 (2)0.044 (2)0.010 (1)0.021 (1)0.006 (1)
O1B0.067 (3)0.055 (3)0.078 (4)0.021 (2)0.050 (3)0.002 (2)
C8B0.068 (3)0.056 (3)0.080 (4)0.022 (2)0.049 (3)0.003 (2)
C9B0.068 (3)0.055 (3)0.080 (4)0.022 (2)0.049 (3)0.004 (2)
C10B0.068 (3)0.054 (3)0.079 (4)0.021 (2)0.050 (3)0.003 (2)
C11B0.067 (3)0.054 (3)0.078 (4)0.021 (2)0.051 (3)0.002 (2)
Geometric parameters (Å, º) top
Nb1—Cl6i2.4234 (7)C3—C41.363 (6)
Nb1—Cl22.4242 (6)C3—H30.9500
Nb1—Cl12.4281 (7)C4—C51.405 (5)
Nb1—Cl42.4326 (6)C4—H40.9500
Nb1—Cl32.4774 (7)C5—C61.368 (6)
Nb1—Nb2i3.0215 (3)C5—H50.9500
Nb1—Nb33.0216 (3)C6—C71.392 (5)
Nb1—Nb3i3.0261 (3)C6—H60.9500
Nb1—Nb23.0342 (3)O1A—C11A1.452 (3)
Nb2—Cl62.4206 (7)O1A—C8A1.454 (3)
Nb2—Cl12.4209 (7)C8A—C9A1.501 (4)
Nb2—Cl9i2.4276 (6)C8A—H8A0.9900
Nb2—Cl52.4280 (6)C8A—H8B0.9900
Nb2—Cl72.4809 (7)C9A—C10A1.479 (7)
Nb2—Nb1i3.0215 (3)C9A—H9A0.9900
Nb2—Nb3i3.0258 (3)C9A—H9B0.9900
Nb2—Nb33.0286 (3)C10A—C11A1.498 (4)
Nb3—Cl22.4215 (7)C10A—H10A0.9900
Nb3—Cl92.4256 (6)C10A—H10B0.9900
Nb3—Cl52.4282 (7)C11A—H11A0.9900
Nb3—Cl4i2.4296 (7)C11A—H11B0.9900
Nb3—Cl82.5013 (6)O1B—C11B1.451 (3)
Nb3—Nb2i3.0258 (3)O1B—C8B1.453 (3)
Nb3—Nb1i3.0260 (3)C8B—C9B1.500 (4)
Cl4—Nb3i2.4297 (7)C8B—H8C0.9900
Cl6—Nb1i2.4234 (7)C8B—H8D0.9900
Cl9—Nb2i2.4276 (6)C9B—C10B1.477 (7)
S1—C11.689 (3)C9B—H9C0.9900
S1—C21.733 (4)C9B—H9D0.9900
N1—C11.304 (4)C10B—C11B1.497 (4)
N1—C71.388 (4)C10B—H10C0.9900
N1—H1A0.83 (4)C10B—H10D0.9900
C1—H1B0.9500C11B—H11C0.9900
C2—C31.396 (5)C11B—H11D0.9900
C2—C71.398 (4)
Cl6i—Nb1—Cl288.91 (2)Cl5—Nb3—Nb1i94.04 (2)
Cl6i—Nb1—Cl1167.35 (2)Cl4i—Nb3—Nb1i51.55 (2)
Cl2—Nb1—Cl189.40 (2)Cl8—Nb3—Nb1i134.01 (2)
Cl6i—Nb1—Cl490.07 (2)Nb1—Nb3—Nb1i90.026 (8)
Cl2—Nb1—Cl4167.17 (2)Nb2i—Nb3—Nb1i60.181 (7)
Cl1—Nb1—Cl488.80 (2)Cl2—Nb3—Nb294.40 (2)
Cl6i—Nb1—Cl383.84 (3)Cl9—Nb3—Nb2141.61 (2)
Cl2—Nb1—Cl384.50 (2)Cl5—Nb3—Nb251.42 (2)
Cl1—Nb1—Cl383.52 (3)Cl4i—Nb3—Nb294.38 (2)
Cl4—Nb1—Cl382.67 (2)Cl8—Nb3—Nb2135.10 (2)
Cl6i—Nb1—Nb2i51.37 (2)Nb1—Nb3—Nb260.198 (7)
Cl2—Nb1—Nb2i94.84 (2)Nb2i—Nb3—Nb290.153 (8)
Cl1—Nb1—Nb2i141.28 (2)Nb1i—Nb3—Nb259.874 (7)
Cl4—Nb1—Nb2i94.50 (2)Nb2—Cl1—Nb177.47 (2)
Cl3—Nb1—Nb2i135.18 (2)Nb3—Cl2—Nb177.15 (2)
Cl6i—Nb1—Nb394.00 (2)Nb3i—Cl4—Nb176.98 (2)
Cl2—Nb1—Nb351.38 (2)Nb2—Cl5—Nb377.17 (2)
Cl1—Nb1—Nb394.73 (2)Nb2—Cl6—Nb1i77.18 (2)
Cl4—Nb1—Nb3141.44 (2)Nb3—Cl9—Nb2i77.14 (2)
Cl3—Nb1—Nb3135.89 (2)C1—S1—C290.9 (2)
Nb2i—Nb1—Nb360.092 (8)C1—N1—C7114.3 (3)
Cl6i—Nb1—Nb3i95.25 (2)C1—N1—H1A121 (3)
Cl2—Nb1—Nb3i141.35 (2)C7—N1—H1A125 (3)
Cl1—Nb1—Nb3i93.89 (2)N1—C1—S1113.6 (3)
Cl4—Nb1—Nb3i51.47 (2)N1—C1—H1B123.2
Cl3—Nb1—Nb3i134.14 (2)S1—C1—H1B123.2
Nb2i—Nb1—Nb3i60.105 (7)C3—C2—C7120.4 (3)
Nb3—Nb1—Nb3i89.974 (8)C3—C2—S1129.9 (3)
Cl6i—Nb1—Nb2141.48 (2)C7—C2—S1109.7 (3)
Cl2—Nb1—Nb294.21 (2)C4—C3—C2117.7 (3)
Cl1—Nb1—Nb251.16 (2)C4—C3—H3121.1
Cl4—Nb1—Nb294.55 (2)C2—C3—H3121.1
Cl3—Nb1—Nb2134.68 (2)C3—C4—C5121.9 (4)
Nb2i—Nb1—Nb290.127 (8)C3—C4—H4119.1
Nb3—Nb1—Nb260.015 (7)C5—C4—H4119.1
Nb3i—Nb1—Nb259.906 (7)C6—C5—C4120.9 (4)
Cl6—Nb2—Cl1167.24 (2)C6—C5—H5119.6
Cl6—Nb2—Cl9i88.70 (2)C4—C5—H5119.6
Cl1—Nb2—Cl9i88.53 (2)C5—C6—C7117.7 (3)
Cl6—Nb2—Cl589.69 (2)C5—C6—H6121.1
Cl1—Nb2—Cl590.29 (2)C7—C6—H6121.1
Cl9i—Nb2—Cl5167.33 (2)N1—C7—C6127.3 (3)
Cl6—Nb2—Cl784.42 (3)N1—C7—C2111.5 (3)
Cl1—Nb2—Cl782.90 (3)C6—C7—C2121.3 (3)
Cl9i—Nb2—Cl784.05 (2)C11A—O1A—C8A110.3 (3)
Cl5—Nb2—Cl783.29 (2)O1A—C8A—C9A105.2 (3)
Cl6—Nb2—Nb1i51.45 (2)O1A—C8A—H8A110.7
Cl1—Nb2—Nb1i141.24 (2)C9A—C8A—H8A110.7
Cl9i—Nb2—Nb1i94.66 (2)O1A—C8A—H8B110.7
Cl5—Nb2—Nb1i94.15 (2)C9A—C8A—H8B110.7
Cl7—Nb2—Nb1i135.86 (2)H8A—C8A—H8B108.8
Cl6—Nb2—Nb3i93.95 (2)C10A—C9A—C8A105.3 (2)
Cl1—Nb2—Nb3i94.05 (2)C10A—C9A—H9A110.7
Cl9i—Nb2—Nb3i51.40 (2)C8A—C9A—H9A110.7
Cl5—Nb2—Nb3i141.26 (2)C10A—C9A—H9B110.7
Cl7—Nb2—Nb3i135.44 (2)C8A—C9A—H9B110.7
Nb1i—Nb2—Nb3i59.955 (7)H9A—C9A—H9B108.8
Cl6—Nb2—Nb395.25 (2)C9A—C10A—C11A105.6 (2)
Cl1—Nb2—Nb394.71 (2)C9A—C10A—H10A110.6
Cl9i—Nb2—Nb3141.25 (2)C11A—C10A—H10A110.6
Cl5—Nb2—Nb351.42 (2)C9A—C10A—H10B110.6
Cl7—Nb2—Nb3134.70 (2)C11A—C10A—H10B110.6
Nb1i—Nb2—Nb360.022 (7)H10A—C10A—H10B108.7
Nb3i—Nb2—Nb389.847 (8)O1A—C11A—C10A105.8 (3)
Cl6—Nb2—Nb1141.31 (2)O1A—C11A—H11A110.6
Cl1—Nb2—Nb151.37 (2)C10A—C11A—H11A110.6
Cl9i—Nb2—Nb194.32 (2)O1A—C11A—H11B110.6
Cl5—Nb2—Nb194.78 (2)C10A—C11A—H11B110.6
Cl7—Nb2—Nb1134.27 (2)H11A—C11A—H11B108.7
Nb1i—Nb2—Nb189.874 (8)C11B—O1B—C8B110.4 (3)
Nb3i—Nb2—Nb159.915 (7)O1B—C8B—C9B105.3 (3)
Nb3—Nb2—Nb159.787 (7)O1B—C8B—H8C110.7
Cl2—Nb3—Cl989.86 (2)C9B—C8B—H8C110.7
Cl2—Nb3—Cl589.50 (3)O1B—C8B—H8D110.7
Cl9—Nb3—Cl5166.95 (2)C9B—C8B—H8D110.7
Cl2—Nb3—Cl4i166.95 (2)H8C—C8B—H8D108.8
Cl9—Nb3—Cl4i89.24 (2)C10B—C9B—C8B105.5 (2)
Cl5—Nb3—Cl4i88.45 (3)C10B—C9B—H9C110.6
Cl2—Nb3—Cl884.50 (2)C8B—C9B—H9C110.6
Cl9—Nb3—Cl883.27 (2)C10B—C9B—H9D110.6
Cl5—Nb3—Cl883.69 (2)C8B—C9B—H9D110.6
Cl4i—Nb3—Cl882.46 (2)H9C—C9B—H9D108.8
Cl2—Nb3—Nb151.46 (2)C9B—C10B—C11B105.9 (2)
Cl9—Nb3—Nb194.70 (2)C9B—C10B—H10C110.6
Cl5—Nb3—Nb195.09 (2)C11B—C10B—H10C110.6
Cl4i—Nb3—Nb1141.58 (2)C9B—C10B—H10D110.6
Cl8—Nb3—Nb1135.96 (2)C11B—C10B—H10D110.6
Cl2—Nb3—Nb2i94.79 (2)H10C—C10B—H10D108.7
Cl9—Nb3—Nb2i51.46 (1)O1B—C11B—C10B105.8 (3)
Cl5—Nb3—Nb2i141.56 (2)O1B—C11B—H11C110.6
Cl4i—Nb3—Nb2i94.82 (2)C10B—C11B—H11C110.6
Cl8—Nb3—Nb2i134.73 (2)O1B—C11B—H11D110.6
Nb1—Nb3—Nb2i59.953 (8)C10B—C11B—H11D110.6
Cl2—Nb3—Nb1i141.48 (2)H11C—C11B—H11D108.7
Cl9—Nb3—Nb1i94.57 (2)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1A0.83 (4)1.86 (4)2.691 (5)175 (4)
N1—H1A···O1B0.83 (4)1.75 (4)2.573 (6)172 (4)
 

Acknowledgements

We gratefully acknowledge the maintenance of the XRD equipment through Dr Alexander Villinger (University of Rostock).

Funding information

Funding for this research was provided by: DFG-SPP 1708; Material Synthesis Near Room Temperature .

References

First citationBrandenburg, K. & Putz, H. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2017). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCotton, F. A. (1964). Inorg. Chem. 3, 1217–1220.  CrossRef CAS Web of Science Google Scholar
First citationField, A., Kepert, D. L., Robinson, B. W. & White, A. H. (1973). J. Chem. Soc. Dalton Trans. pp. 1858–1863.  CrossRef Google Scholar
First citationFlemming, A., Hoppe, A. & Köckerling, M. (2008). J. Solid State Chem. 181, 2660–2665.  CrossRef Google Scholar
First citationKoknat, F. W. & McCarley, R. E. (1972). Inorg. Chem. 11, 812–816.  CrossRef Google Scholar
First citationKönig, J., Dartsch, I., Topp, A., Guillamón, E., Llusar, R. & Köckerling, M. (2016). Z. Anorg. Allg. Chem. 642, 572–578.  Google Scholar
First citationLin, Z. & Williams, I. D. (1996). Polyhedron, 15, 3277–3287.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimon, A. (1988). Angew. Chem. 100, 163–188.  CrossRef Google Scholar
First citationSteiner, T. (2002). Angew. Chem. 114, 50–80.  CrossRef Google Scholar
First citationStröbele, M. & Meyer, H. J. (2001). Z. Naturforsch. Teil B, 56, 1025–1034.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds