metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

catena-Poly[[[bis­(glycolato-κ2O,O′)copper(II)]-μ-4,4′-bi­pyridine-κ2N:N′] ethane-1,2-diol mono­solvate]

aSchool of Biology and Environment, Nanjing Polytechnic Institute, Nanjing, 210048, People's Republic of China
*Correspondence e-mail: zklong76@163.com

Edited by O. Blacque, University of Zürich, Switzerland (Received 12 November 2018; accepted 17 November 2018; online 30 November 2018)

In the title compound, {[Cu(C2H3O3)2(C10H8N2)]·C2H6O2}n, the CuII cation is six-coordinated in a slightly distorted octa­hedral manner by two N atoms from two different bridging 4,4′-bi­pyridine (4,4′-bipy) ligands and four O atoms from two individual glycolate anions. The 4,4′-bipy ligand bridges adjacent CuII centres, generating linear chains running parallel to the [1[\overline1]0] direction. In the crystal structure, adjacent chains are further connected by classical O—H⋯O hydrogen bonds, resulting in a two-dimensional supermolecular network structure parallel to (100). The C atom of one of the ethane-1,2-diol solvent mol­ecules is disordered over two sets of sites with occupancies of 0.51 (2) and 0.49 (2).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In recent years, the self-assembly of coordination polymers and the crystal engineering of metal-organic coordination frameworks have attracted great inter­est, owing to their intriguing structures and potential application as functional materials (Pan et al., 2004[Pan, L., Sander, M.-B., Huang, X.-Y., Li, J., Smith, M., Bittner, E., Bockrath, B. & Johnson, J.-K. (2004). J. Am. Chem. Soc. 126, 1308-1309.]; Zhong, 2014[Zhong, K.-L. (2014). Acta Cryst. C70, 189-193.]; Xu et al., 2017[Xu, W., Si, Z.-X., Xie, M., Zhou, L.-X. & Zheng, Y.-Q. (2017). Cryst. Growth Des. 17, 2147-2157.]). Much research has been carried out based on using mixed N- and O-donor ligands to construct metal-organic framework materials (Luo et al., 2012[Luo, L., Zhao, Y., Lu, Y., Okamura, T. & Sun, W.-Y. (2012). Polyhedron, 38, 88-96.]; Moulton & Zaworotko, 2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]). 4,4′-Bi­pyridine (4,4′-bipy) is widely used as a bridging ligand in the construction of coordination polymers. Many copper complexes with polycarb­oxy­lic acid and 4,4′-bipy, such as catena-[tetra­kis­(μ4-trans-cyclo­hexane-1,4-di­carboxyl­ato)bis­(μ2-4,4′-bipyrid­yl)dicopper(II) trans-cyclo­hexane-1,4-di­carboxyic acid hydrate] (Chen et al., 2006[Chen, B., Fronczek, F. R., Courtney, B. H. & Zapata, F. (2006). Cryst. Growth Des. 6, 825-828.]), catena-[bis­(μ2-(1R,2R)-1,2-cyclo­hexa­nedi­carboxyl­ato)bis(μ2-(1R,2R)-hydrogen 1,2-cyclo­hexa­nedi­carboxyl­ato)tris­(μ2-4,4′-bi­pyridine)­tricopper tetra­hydrate] (Yue et al., 2016[Yue, Q., Huang, Q., Gao, Y.-Y. & Gao, E.-Q. (2016). Inorg. Chim. Acta, 443, 110-117.]), catena-[bis­(μ3-isophthalato)bis­(μ2-4,4′-bipyrid­yl)di­copper(II) hexa­hydrate] (Wen et al., 2005[Wen, Y.-H., Cheng, J.-K., Feng, Y.-L., Zhang, J., Li, Z.-J. & Yao, Y.-G. (2005). Inorg. Chim. Acta, 358, 3347-3354.]), or catena-[(μ6-benzene-1,2,4,5-tetra­carboxyl­ato)bis­(μ4-benzene-1,2,4-tri­carb­oxyl­ato-5-carb­oxy­lic acid)bis­(4,4′-bipyridinium)tetra­aqua­tetra­copper(II) tetra­hydrate] (Cao et al., 2002[Cao, R., Shi, Q., Sun, D., Hong, M. C., Bi, W. H. & Zhao, Y. J. (2002). Inorg. Chem. 41, 6161-6168.]) have been synthesized and reported. The crystal structure has not been reported previously.

The title compound crystallizes in the monoclinic space group P[\overline{1}]. The asymmetric unit consists of one CuII ion, two half 4,4′-bi­pyridine mol­ecules, two glycolate anions and two half non-coordinating ethane-1,2-diol mol­ecules. As shown in Fig. 1[link], the CuII cation is coordinated by two N atoms (N1 and N2) of two bridging 4,4′-bipy ligands occupying the axial positions and four O atoms (O1, O2, O4 and O5) of two different glycolate anions occupying the equatorial sites, forming a distorted octa­hedral CuN2O4 coordination sphere. Atoms Cu1, O1, O2, O4, O5 are almost coplanar, the mean deviation from the plane being 0.003 Å. The cis bond angles around the CuII cation are in the range 88.91 (6)–91.55 (6)° (Fig. 1[link]). The Cu—O bonds involving the carboxyl groups are considerably longer [2.2979 (13) – 2.3177 (13) Å] than those to the hydroxyl group [1.9875 (13) – 1.9902 (12) Å] (Fig. 1[link] and Table 1[link]). The two O—Cu—O bite angles are 76.16 (5) and 76.72 (5)°. The Cu—N bond lengths vary from 2.0100 (14) to 2.0159 (14) Å, comparable with that observed in the methyl-substituted glycolate-copper compound [2.049 (2) Å; Carballo et al., 2001[Carballo, R., Castiñeiras, A., Covelo, B. & Vázquez-López, E. M. (2001). Polyhedron, 20, 899-904.]]. The two pyridine rings of the 4,4′-bi­pyridine unit are twisted slightly away from each other, forming a dihedral angle of 14.15 (13)°. The two non-coordinating ethane-1,2-diol mol­ecules lie on inversion centres (Fig. 1[link]). The bridging 4,4′-bipy ligands link the CuII cations, giving rise to infinite chains along the [1[\overline{1}]0] direction (Fig. 2[link]).

Table 1
Selected geometric parameters (Å, °)

Cu1—O4 1.9875 (13) Cu1—N1 2.0159 (14)
Cu1—O2 1.9902 (12) Cu1—O5 2.2979 (13)
Cu1—N2 2.0100 (14) Cu1—O1 2.3177 (13)
       
O4—Cu1—N2 88.91 (6) N2—Cu1—O5 90.18 (6)
O2—Cu1—N2 91.55 (6) N1—Cu1—O5 89.15 (6)
O4—Cu1—N1 90.61 (6) N2—Cu1—O1 89.97 (5)
O2—Cu1—N1 88.92 (6) N1—Cu1—O1 90.71 (6)
N2—Cu1—N1 179.25 (6)    
[Figure 1]
Figure 1
The expanded asymmetric unit of the title complex showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) −x + 1, −y + 1, z; (ii) −x + 1, y + 1, z; (iii) −x + 1, −y + 1, −z + 1.]
[Figure 2]
Figure 2
One-dimensional structure of the title polymer constructed by 4,4′-bipy ligands bridging the CuII ions along the [1[\overline{1}]0] direction. The solvate ethane-1,2-diol mol­ecules have been omitted for clarity.

In the crystal, neighbouring chains are further connected by Ohydrox­yl—H⋯Ocarbox­yl (O1—H1⋯O6i and O5—H3⋯O3ii) hydrogen bonds (Table 2[link]), resulting in a two-dimensional supra­molecular structure running parallel to the (100) plane (Fig. 3[link]). The solvent ethane-1,2-diol mol­ecules reside in this layer and are linked to the complex mol­ecules via classical O7—H7⋯O6 and O8—H8⋯O3iii hydrogen-bonding inter­actions (Fig. 3[link] and Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O6i 0.82 1.88 2.6412 (19) 153
O5—H5⋯O3ii 0.82 1.84 2.6307 (19) 161
O7—H7⋯O6 0.82 1.98 2.769 (2) 160
O8—H8⋯O3iii 0.82 2.23 2.799 (3) 126
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y, -z+2; (iii) x, y+1, z-1.
[Figure 3]
Figure 3
Two-dimensional supra­molecular structure of the title polymer, formed by O—H⋯O hydrogen bonds [shown as red or green dashed lines; symmetry codes: (iv) −x + 1, −y + 1, −z; (v) −x + 1, −y, −z + 1; (vi) −x + 1, −y, − z + 2].

Synthesis and crystallization

0.10 mmol of CuSO4·5H2O, 0.10 mmol of 4,4′-bi­pyridine, 0.10 mmol of sodium glycolate, 0.10 mmol of cyclo­hexane-1,3,5-tri­carboxyl­ate, 9 ml of water and 3 ml of ethane-1,2-diol were mixed and placed in a thick Pyrex tube, which was sealed and heated to 403 K for 72 h. The tube was cooled to ambient temperature spontaneously, whereupon blue block-shaped crystals (37% yield, base on Cu) suitable for X-ray analysis were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. One solvent ethane-1,2-diol mol­ecular (atom C17) is disordered over two sets of sites with occupancies of 0.51 (2) and 0.49 (2).

Table 3
Experimental details

Crystal data
Chemical formula [Cu(C10H8N2)(C2H3O3)2]·C2H6O2
Mr 431.88
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.0214 (8), 11.0562 (11), 11.2503 (11)
α, β, γ (°) 84.437 (4), 77.592 (4), 69.037 (4)
V3) 909.72 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.25
Crystal size (mm) 0.30 × 0.25 × 0.22
 
Data collection
Diffractometer Rigaku Mercury CCD
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.])
Tmin, Tmax 0.715, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 32734, 4538, 4002
Rint 0.045
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.04
No. of reflections 4538
No. of parameters 254
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.37
Computer programs: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), XP, SHELXTL and SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

catena-Poly[[[bis(glycolato-κ2O,O')copper(II)]-µ-4,4'-bipyridine-κ2N:N'] ethane-1,2-diol monosolvate] top
Crystal data top
[Cu(C2H3O3)2(C10H8N2)]·C2H6O2Z = 2
Mr = 431.88F(000) = 446
Triclinic, P1Dx = 1.577 Mg m3
a = 8.0214 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.0562 (11) ÅCell parameters from 9717 reflections
c = 11.2503 (11) Åθ = 2.7–28.3°
α = 84.437 (4)°µ = 1.25 mm1
β = 77.592 (4)°T = 293 K
γ = 69.037 (4)°Block, blue
V = 909.72 (16) Å30.30 × 0.25 × 0.22 mm
Data collection top
Rigaku Mercury CCD
diffractometer
4538 independent reflections
Radiation source: fine-focus sealed tube4002 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.045
Graphite Monochromator scansθmax = 28.4°, θmin = 2.7°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1010
Tmin = 0.715, Tmax = 1.000k = 1414
32734 measured reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0337P)2 + 0.6457P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4538 reflectionsΔρmax = 0.43 e Å3
254 parametersΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All non-hydrogen atoms were refined anisotropically. The H atoms of 4,4'-bipydine were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of the ethane-1,2-diol and glycolate anion were located in a difference map and then allowed to ride on their parent atoms, with C—H = 0.97 Å and O—H = 0.82 Å; Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.44924 (3)0.03560 (2)0.75186 (2)0.02006 (7)
O10.23840 (19)0.04526 (13)0.71074 (11)0.0295 (3)
H10.27360.09270.65200.044*
O20.32676 (17)0.00618 (12)0.91579 (11)0.0251 (3)
O50.65660 (18)0.11466 (14)0.79711 (11)0.0318 (3)
H50.71350.10320.85210.048*
O40.57492 (18)0.07665 (12)0.58904 (11)0.0270 (3)
O70.7479 (2)0.42174 (17)0.47606 (17)0.0522 (4)
H70.77090.34560.46150.078*
O80.2632 (3)0.5987 (2)0.0048 (2)0.0690 (6)
H80.19590.66020.04730.103*
N10.63615 (19)0.14436 (13)0.74846 (13)0.0238 (3)
N20.26552 (19)0.21599 (13)0.75465 (13)0.0235 (3)
C10.6689 (3)0.22458 (18)0.65783 (17)0.0320 (4)
H1A0.60680.19480.59390.038*
C20.7911 (3)0.34969 (18)0.65555 (17)0.0327 (4)
H2A0.80860.40310.59170.039*
C30.8882 (2)0.39579 (15)0.74901 (15)0.0231 (3)
C40.8555 (3)0.31038 (17)0.84135 (17)0.0296 (4)
H4A0.91910.33630.90490.036*
C50.7288 (3)0.18709 (17)0.83866 (17)0.0287 (4)
H5A0.70710.13180.90190.034*
C60.1470 (3)0.25284 (17)0.67928 (18)0.0295 (4)
H6A0.14850.19190.62730.035*
C70.0230 (2)0.37657 (17)0.67491 (18)0.0289 (4)
H7A0.05750.39760.62140.035*
C80.0191 (2)0.46982 (15)0.75130 (15)0.0228 (3)
C90.1429 (3)0.43177 (18)0.82874 (18)0.0321 (4)
H9A0.14600.49110.88070.038*
C100.2614 (3)0.30553 (18)0.82819 (18)0.0316 (4)
H10A0.34230.28150.88150.038*
C110.1822 (3)0.1122 (2)0.81534 (16)0.0333 (4)
H11A0.23500.20460.80150.040*
H11B0.05080.08800.83070.040*
C120.2392 (2)0.08201 (18)0.92580 (15)0.0262 (4)
O30.1938 (2)0.13645 (16)1.02335 (12)0.0426 (4)
C140.7542 (3)0.1516 (2)0.69024 (18)0.0386 (5)
H14A0.88280.10210.68400.046*
H14B0.73780.24260.69370.046*
C150.6921 (3)0.12971 (17)0.57861 (16)0.0270 (4)
O60.7644 (2)0.16704 (16)0.47915 (13)0.0460 (4)
C160.5753 (3)0.4975 (3)0.4482 (2)0.0553 (6)
H16A0.55750.46120.37890.066*
H16B0.57340.58490.42580.066*
C170.4363 (15)0.5519 (12)0.0376 (16)0.086 (4)0.49 (2)
H17A0.42360.52170.12190.103*0.49 (2)
H17B0.48320.62230.03110.103*0.49 (2)
C17'0.4585 (12)0.5495 (10)0.0389 (15)0.079 (4)0.51 (2)
H17C0.48530.51650.12030.095*0.51 (2)
H17D0.50650.61910.04290.095*0.51 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01994 (11)0.01348 (10)0.02389 (11)0.00219 (7)0.00471 (7)0.00000 (7)
O10.0425 (7)0.0317 (7)0.0197 (6)0.0182 (6)0.0074 (5)0.0014 (5)
O20.0295 (6)0.0273 (6)0.0215 (6)0.0127 (5)0.0047 (5)0.0038 (5)
O50.0365 (7)0.0453 (8)0.0219 (6)0.0219 (6)0.0114 (5)0.0039 (5)
O40.0334 (7)0.0296 (6)0.0225 (6)0.0149 (5)0.0079 (5)0.0003 (5)
O70.0435 (9)0.0453 (9)0.0752 (12)0.0208 (8)0.0207 (8)0.0067 (8)
O80.0593 (12)0.0620 (12)0.0925 (16)0.0278 (10)0.0131 (11)0.0111 (11)
N10.0249 (7)0.0159 (6)0.0259 (7)0.0007 (5)0.0060 (6)0.0011 (5)
N20.0222 (7)0.0169 (6)0.0287 (7)0.0028 (5)0.0063 (6)0.0007 (5)
C10.0353 (10)0.0252 (9)0.0284 (9)0.0030 (7)0.0140 (8)0.0032 (7)
C20.0361 (10)0.0247 (9)0.0301 (9)0.0044 (8)0.0135 (8)0.0089 (7)
C30.0226 (8)0.0164 (7)0.0266 (8)0.0018 (6)0.0053 (6)0.0005 (6)
C40.0349 (10)0.0212 (8)0.0295 (9)0.0002 (7)0.0148 (7)0.0029 (7)
C50.0349 (10)0.0196 (8)0.0283 (9)0.0020 (7)0.0101 (7)0.0046 (7)
C60.0304 (9)0.0183 (8)0.0420 (10)0.0051 (7)0.0156 (8)0.0043 (7)
C70.0290 (9)0.0198 (8)0.0387 (10)0.0035 (7)0.0164 (8)0.0025 (7)
C80.0220 (8)0.0173 (7)0.0254 (8)0.0020 (6)0.0047 (6)0.0013 (6)
C90.0367 (10)0.0221 (8)0.0333 (10)0.0014 (7)0.0154 (8)0.0079 (7)
C100.0336 (10)0.0245 (9)0.0326 (9)0.0018 (7)0.0162 (8)0.0055 (7)
C110.0450 (11)0.0433 (11)0.0234 (8)0.0277 (9)0.0104 (8)0.0014 (8)
C120.0289 (9)0.0303 (9)0.0208 (8)0.0110 (7)0.0053 (7)0.0022 (7)
O30.0612 (10)0.0599 (10)0.0236 (7)0.0408 (8)0.0121 (6)0.0073 (6)
C140.0477 (12)0.0560 (13)0.0272 (9)0.0349 (11)0.0122 (8)0.0053 (9)
C150.0348 (9)0.0253 (8)0.0227 (8)0.0125 (7)0.0058 (7)0.0008 (6)
O60.0736 (11)0.0574 (10)0.0233 (7)0.0460 (9)0.0029 (7)0.0004 (6)
C160.0518 (15)0.0618 (16)0.0547 (15)0.0237 (13)0.0163 (12)0.0167 (13)
C170.082 (6)0.093 (7)0.076 (8)0.004 (5)0.032 (5)0.033 (5)
C17'0.080 (6)0.079 (6)0.078 (8)0.039 (5)0.008 (5)0.021 (5)
Geometric parameters (Å, º) top
Cu1—O41.9875 (13)C4—H4A0.9300
Cu1—O21.9902 (12)C5—H5A0.9300
Cu1—N22.0100 (14)C6—C71.378 (2)
Cu1—N12.0159 (14)C6—H6A0.9300
Cu1—O52.2979 (13)C7—C81.393 (2)
Cu1—O12.3177 (13)C7—H7A0.9300
O1—C111.406 (2)C8—C91.387 (2)
O1—H10.8200C8—C3ii1.483 (2)
O2—C121.256 (2)C9—C101.379 (2)
O5—C141.398 (2)C9—H9A0.9300
O5—H50.8200C10—H10A0.9300
O4—C151.255 (2)C11—C121.516 (2)
O7—C161.422 (3)C11—H11A0.9700
O7—H70.8200C11—H11B0.9700
O8—C171.415 (9)C12—O31.248 (2)
O8—C17'1.451 (9)C14—C151.516 (2)
O8—H80.8200C14—H14A0.9700
N1—C51.336 (2)C14—H14B0.9700
N1—C11.337 (2)C15—O61.250 (2)
N2—C101.338 (2)C16—C16iii1.476 (5)
N2—C61.338 (2)C16—H16A0.9700
C1—C21.379 (2)C16—H16B0.9700
C1—H1A0.9300C17—C17iv1.43 (2)
C2—C31.391 (2)C17—H17A0.9700
C2—H2A0.9300C17—H17B0.9700
C3—C41.391 (2)C17'—C17'iv1.40 (2)
C3—C8i1.483 (2)C17'—H17C0.9700
C4—C51.381 (2)C17'—H17D0.9700
O4—Cu1—O2179.17 (5)C6—C7—C8119.43 (16)
O4—Cu1—N288.91 (6)C6—C7—H7A120.3
O2—Cu1—N291.55 (6)C8—C7—H7A120.3
O4—Cu1—N190.61 (6)C9—C8—C7117.25 (15)
O2—Cu1—N188.92 (6)C9—C8—C3ii121.67 (15)
N2—Cu1—N1179.25 (6)C7—C8—C3ii121.08 (15)
O4—Cu1—O576.72 (5)C10—C9—C8119.63 (17)
O2—Cu1—O5102.58 (5)C10—C9—H9A120.2
N2—Cu1—O590.18 (6)C8—C9—H9A120.2
N1—Cu1—O589.15 (6)N2—C10—C9123.16 (17)
O4—Cu1—O1104.54 (5)N2—C10—H10A118.4
O2—Cu1—O176.16 (5)C9—C10—H10A118.4
N2—Cu1—O189.97 (5)O1—C11—C12111.44 (15)
N1—Cu1—O190.71 (6)O1—C11—H11A109.3
O5—Cu1—O1178.73 (4)C12—C11—H11A109.3
C11—O1—Cu1108.23 (10)O1—C11—H11B109.3
C11—O1—H1109.5C12—C11—H11B109.3
Cu1—O1—H1115.5H11A—C11—H11B108.0
C12—O2—Cu1119.71 (11)O3—C12—O2123.92 (16)
C14—O5—Cu1110.19 (10)O3—C12—C11115.97 (16)
C14—O5—H5109.5O2—C12—C11120.11 (15)
Cu1—O5—H5135.7O5—C14—C15111.50 (15)
C15—O4—Cu1121.09 (11)O5—C14—H14A109.3
C16—O7—H7109.5C15—C14—H14A109.3
C17—O8—H8109.5O5—C14—H14B109.3
C5—N1—C1118.29 (15)C15—C14—H14B109.3
C5—N1—Cu1120.32 (12)H14A—C14—H14B108.0
C1—N1—Cu1121.38 (12)O6—C15—O4123.69 (16)
C10—N2—C6117.25 (15)O6—C15—C14116.06 (16)
C10—N2—Cu1121.50 (12)O4—C15—C14120.25 (16)
C6—N2—Cu1121.19 (12)O7—C16—C16iii112.2 (3)
N1—C1—C2122.55 (17)O7—C16—H16A109.2
N1—C1—H1A118.7C16iii—C16—H16A109.2
C2—C1—H1A118.7O7—C16—H16B109.2
C1—C2—C3119.85 (17)C16iii—C16—H16B109.2
C1—C2—H2A120.1H16A—C16—H16B107.9
C3—C2—H2A120.1O8—C17—C17iv112.3 (9)
C2—C3—C4116.96 (15)O8—C17—H17A109.1
C2—C3—C8i121.75 (15)C17iv—C17—H17A109.1
C4—C3—C8i121.29 (15)O8—C17—H17B109.1
C5—C4—C3119.97 (16)C17iv—C17—H17B109.1
C5—C4—H4A120.0H17A—C17—H17B107.9
C3—C4—H4A120.0C17'iv—C17'—O8110.1 (10)
N1—C5—C4122.35 (16)C17'iv—C17'—H17C109.6
N1—C5—H5A118.8O8—C17'—H17C109.6
C4—C5—H5A118.8C17'iv—C17'—H17D109.6
N2—C6—C7123.27 (16)O8—C17'—H17D109.6
N2—C6—H6A118.4H17C—C17'—H17D108.2
C7—C6—H6A118.4
C5—N1—C1—C21.4 (3)C7—C8—C9—C100.7 (3)
Cu1—N1—C1—C2177.56 (16)C3ii—C8—C9—C10179.62 (18)
N1—C1—C2—C31.2 (3)C6—N2—C10—C90.4 (3)
C1—C2—C3—C40.2 (3)Cu1—N2—C10—C9176.97 (16)
C1—C2—C3—C8i179.14 (18)C8—C9—C10—N20.9 (3)
C2—C3—C4—C51.3 (3)Cu1—O1—C11—C1213.88 (19)
C8i—C3—C4—C5178.03 (17)Cu1—O2—C12—O3163.10 (15)
C1—N1—C5—C40.2 (3)Cu1—O2—C12—C1116.9 (2)
Cu1—N1—C5—C4178.76 (15)O1—C11—C12—O3179.47 (17)
C3—C4—C5—N11.2 (3)O1—C11—C12—O20.5 (3)
C10—N2—C6—C70.3 (3)Cu1—O5—C14—C150.6 (2)
Cu1—N2—C6—C7177.66 (15)Cu1—O4—C15—O6174.01 (15)
N2—C6—C7—C80.5 (3)Cu1—O4—C15—C146.1 (2)
C6—C7—C8—C90.0 (3)O5—C14—C15—O6175.96 (18)
C6—C7—C8—C3ii179.75 (17)O5—C14—C15—O44.2 (3)
Symmetry codes: (i) x+1, y1, z; (ii) x1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O6v0.821.882.6412 (19)153
O5—H5···O3vi0.821.842.6307 (19)161
O7—H7···O60.821.982.769 (2)160
O8—H8···O3vii0.822.232.799 (3)126
Symmetry codes: (v) x+1, y, z+1; (vi) x+1, y, z+2; (vii) x, y+1, z1.
 

Funding information

This work was supported by the Scientific Research Foundation of Nanjing Polytechnic Institute (grant No. NHKY-2016–11).

References

First citationCao, R., Shi, Q., Sun, D., Hong, M. C., Bi, W. H. & Zhao, Y. J. (2002). Inorg. Chem. 41, 6161–6168.  CrossRef Google Scholar
First citationCarballo, R., Castiñeiras, A., Covelo, B. & Vázquez-López, E. M. (2001). Polyhedron, 20, 899–904.  CrossRef Google Scholar
First citationChen, B., Fronczek, F. R., Courtney, B. H. & Zapata, F. (2006). Cryst. Growth Des. 6, 825–828.  Web of Science CrossRef CAS Google Scholar
First citationLuo, L., Zhao, Y., Lu, Y., Okamura, T. & Sun, W.-Y. (2012). Polyhedron, 38, 88–96.  CrossRef Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPan, L., Sander, M.-B., Huang, X.-Y., Li, J., Smith, M., Bittner, E., Bockrath, B. & Johnson, J.-K. (2004). J. Am. Chem. Soc. 126, 1308–1309.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWen, Y.-H., Cheng, J.-K., Feng, Y.-L., Zhang, J., Li, Z.-J. & Yao, Y.-G. (2005). Inorg. Chim. Acta, 358, 3347–3354.  Web of Science CrossRef CAS Google Scholar
First citationXu, W., Si, Z.-X., Xie, M., Zhou, L.-X. & Zheng, Y.-Q. (2017). Cryst. Growth Des. 17, 2147–2157.  CrossRef Google Scholar
First citationYue, Q., Huang, Q., Gao, Y.-Y. & Gao, E.-Q. (2016). Inorg. Chim. Acta, 443, 110–117.  CrossRef Google Scholar
First citationZhong, K.-L. (2014). Acta Cryst. C70, 189–193.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds