metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

μ2-Chlorido-chlorido­(μ2-4-{[2-(di­ethyl­amino)­eth­yl]imino}­pent-2-en-2-olato)bis­­(tetra­hydro­furan-κO)cobalt(II)lithium

aCentro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, 2060, San José, Costa Rica, and bEscuela de Química, Universidad de Costa Rica, 2060, San José, Costa Rica
*Correspondence e-mail: leslie.pineda@ucr.ac.cr

Edited by M. Weil, Vienna University of Technology, Austria (Received 24 October 2018; accepted 7 November 2018; online 9 November 2018)

The crystal structure of the title compound, [CoLi(C11H21N2O)Cl2(C4H8O)2], has monoclinic symmetry and comprises one heterometallic binuclear complex mol­ecule in the asymmetric unit. The Co2+ cation is bonded to one oxygen and two nitro­gen atoms of a β-ketoiminato ligand and to two chlorido ligands, leading to a distorted trigonal-bipyramidal coordination sphere. One of the Cl ligands and the oxygen atom of the β-ketoiminato ligand are bridging to a Li+ cation, which is further bonded to oxygen atoms of two THF mol­ecules. The resulting coordination sphere is distorted tetra­hedral. In the crystal, weak inter­molecular C—H⋯Cl hydrogen bonds are identified that link the complex mol­ecules into a three-dimensional network structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Inter­est in cobalt complexes for solar harvesting devices such as dye-sensitized solar cells (DSSCs) stems from their application as alternative redox mediators to iodide/triiodide electrolytes (Hamann, 2012[Hamann, T. W. (2012). Dalton Trans. 41, 3111-3115.]). Several synthetic approaches based on organic (Sauvage, 2014[Sauvage, F. (2014). Adv. Chem. pp. 1-23.]), inorganic (Bergeron et al., 2005[Bergeron, B. V., Marton, A., Oskam, G. & Meyer, G. J. (2005). J. Phys. Chem. B, 109, 937-943.]; Burschka et al., 2012[Burschka, J., Brault, V., Ahmad, S., Breau, L., Nazeeruddin, M. K., Marsan, B., Zakeeruddin, S. M. & Grätzel, M. (2012). Energy Environ. Sci. 5, 6089-6097.]; Carli et al., 2013[Carli, S., Busatto, E., Caramori, S., Boaretto, R., Argazzi, R., Timpson, C. J. & Bignozzi, C. A. (2013). J. Phys. Chem. C, 117, 5142-5153.]), or organometallic compounds (Carli et al., 2016[Carli, S., Benazzi, E., Casarin, L., Bernardi, T., Bertolasi, V., Argazzi, R., Caramori, S. & Bignozzi, C. A. (2016). Phys. Chem. Chem. Phys. 18, 5949-5956.]; Spokoyny et al., 2010[Spokoyny, A. M., Li, T. C., Farha, O. K., Machan, C. W., She, C., Stern, C. L., Marks, T. J., Hupp, J. T. & Mirkin, C. A. (2010). Angew. Chem. Int. Ed. 49, 5339-5343.]; Sun et al., 2015[Sun, Z., Liang, M. & Chen, J. (2015). Acc. Chem. Res. 48, 1541-1550.]; Magni et al., 2016[Magni, M., Biagini, P., Colombo, A., Dragonetti, C., Roberto, D. & Valore, A. (2016). Coord. Chem. Rev. 322, 69-93.]) have been reported with [Co(bpy)3]2+/3+ and [Co(phen)3]2+/3+ (where bpy = 2,2′-bi­pyridine and phen = 1,10-phenanthroline) as redox couples. Notably, DSSCs using cobalt redox pairs mostly tether to pyridine-type ligands with complex formal charge (2+/3+) (Ben Aribia et al., 2013[Ben Aribia, K., Moehl, T., Zakeeruddin, S. M. & Grätzel, M. (2013). Chem. Sci. 4, 454-459.]; Lee et al., 2015[Lee, N. A., Frenzel, B. A., Rochford, J. & Hightower, S. E. (2015). Eur. J. Inorg. Chem. pp. 3843-3849.]; Bella et al., 2016[Bella, F., Galliano, S., Gerbaldi, C. & Viscardi, G. (2016). Energies, 9, 384.]; Kashif et al., 2013[Kashif, M. K., Nippe, M., Duffy, N. W., Forsyth, C. M., Chang, C. J., Long, J. R., Spiccia, L. & Bach, U. (2013). Angew. Chem. Int. Ed. 52, 5527-5531.]; Pashaei et al., 2015[Pashaei, B., Shahroosvand, H. & Abbasi, P. (2015). RSC Adv. 5, 94814-94848.]; Giribabu et al., 2015[Giribabu, L., Bolligarla, R. & Panigrahi, M. (2015). Chem. Rec. 15, 760-788.]), displaying few structural deviations mainly by varying the ligand backbone with groups of different donating/withdrawing ability (Pashaei et al., 2015[Pashaei, B., Shahroosvand, H. & Abbasi, P. (2015). RSC Adv. 5, 94814-94848.]; Xu et al., 2013[Xu, D., Zhang, H., Chen, X. & Yan, F. (2013). J. Mater. Chem. A, 1, 11933-11941.]), and without non-neutral ligands in the coordination sphere.

As part of our work on the synthesis and properties of redox couples in DSSCs (Flores-Díaz et al., 2018[Flores-Díaz, N., Soto-Navarro, A., Freitag, M., Lamoureux, G. & Pineda, L. W. (2018). Solar Energy, 167, 76-83.]; Vinocour, 2016[Vinocour, F. A. (2016). MS thesis, University of Costa Rica, San José, Costa Rica.]), we herein report on the preparation and crystal structure determination of a cobalt complex bearing a monoanionic β-ketoiminate scaffold of chemical composition [Co(C11H21ON2)Cl(μ-Cl)Li(THF)2]. The coordination chemistry of this ligand gives an electronic situation resembling that of a formal neutral/monocationic (0/+) charge in CoII/III complexes.

The mol­ecular structure consists of a central Co2+ cation which is penta-coordinated by one oxygen and two nitro­gen atoms from the 4-(2-di­ethyl­amino-ethyl­amino)-pent-3-en-2-one pendant arm, as well as two chlorido ligands. Bond lengths and angles are collated in Table 1[link]. Calculation of the angular structural index for five-coordinate complexes (τ5) as a descriptor of trigonality (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) suggests that the Co2+ cation adopts a distorted trigonal–bipyramidal coordin­ation sphere (τ5 = 0.69; τ5 = 0 for an ideal square pyramid and 1 for an ideal trigonal bipyramid). One of the chlorido ligand (Cl1) and the oxygen atom of the ligand backbone (O1) bridge the Co2+ cation to a Li+ cation, whose distorted tetra­hedral coordination sphere is completed by two THF mol­ecules (Fig. 1[link], Table 1[link]). The corresponding τ4 and τ4′ geometric parameters for four-coordinated central atoms (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]; Okuniewski et al., 2015[Okuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47-57.]; Rosiak et al., 2018[Rosiak, D., Okuniewski, A. & Chojnacki, J. (2018). Polyhedron, 146, 35-41.]) are 0.86 and 0.85, respectively. They indicate that Li1 has a distorted tetra­hedral coordination sphere (τ4 = 0 for an ideal square and 1 for an ideal tetra­hedron). As such, the title compound has six-, five-, and four-membered rings around the two metal cations. The resulting coordination environment of Co2+ in the title compound is associated with insufficient crowding that prevents the elimination of chloride as a lithium salt by-product. The tendency of forming metal–halogen–lithium fragments was previously reported in many cases where β-ketoiminate or β-diketiminate ligands have been employed (Yang et al., 2012[Yang, Y., Zhao, N., Wu, Y., Zhu, H. & Roesky, H. W. (2012). Inorg. Chem. 51, 2425-2431.]; Eckert et al., 2004[Eckert, N. A., Smith, J. M., Lachicotte, R. J. & Holland, P. L. (2004). Inorg. Chem. 43, 3306-3321.]; Panda et al., 2002[Panda, A., Stender, M., Wright, R. J., Olmstead, M. M., Klavins, P. & Power, P. P. (2002). Inorg. Chem. 41, 3909-3916.]).

Table 1
Selected geometric parameters (Å, °)

Co1—N1 2.013 (3) O1—Li1 1.879 (6)
Co1—O1 2.074 (2) Cl1—Li1 2.371 (6)
Co1—N2 2.258 (3) O2—Li1 1.936 (6)
Co1—Cl2 2.3026 (8) O3—Li1 1.909 (6)
Co1—Cl1 2.3773 (8)    
       
N1—Co1—O1 88.14 (10) N2—Co1—Cl1 94.13 (7)
N1—Co1—N2 80.51 (10) Cl2—Co1—Cl1 113.01 (3)
O1—Co1—N2 166.65 (9) O1—Li1—O3 118.9 (3)
N1—Co1—Cl2 121.87 (8) O1—Li1—O2 120.4 (3)
O1—Co1—Cl2 95.82 (7) O3—Li1—O2 102.6 (3)
N2—Co1—Cl2 96.14 (7) O1—Li1—Cl1 91.4 (2)
N1—Co1—Cl1 125.12 (8) O3—Li1—Cl1 110.7 (3)
O1—Co1—Cl1 86.63 (7) O2—Li1—Cl1 112.7 (3)
[Figure 1]
Figure 1
Mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

In the crystal structure, weak C—H⋯Cl hydrogen-bonding contacts are observed between the mol­ecules (Table 2[link] and Fig. 2[link]), leading to the formation of a three-dimensional network structure.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H00H⋯Cl1i 0.98 2.80 3.770 (3) 172
C6—H6⋯Cl1i 0.99 2.96 3.924 (3) 166
C8—H00L⋯Cl2 0.99 2.86 3.365 (3) 113
C10—H00I⋯Cl1 0.99 2.80 3.357 (3) 117
C13—H017⋯Cl2ii 0.99 2.89 3.608 (3) 130
C19—H00X⋯Cl1 0.99 2.91 3.635 (3) 131
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z.
[Figure 2]
Figure 2
Packing of the mol­ecules viewed along the b-axis direction. C—H⋯Cl hydrogen-bonding inter­actions are shown as red dashed lines.

The title compound is isostructural with other previously reported transition metal complexes, viz. the manganese(II) analogue (Lesikar et al., 2008[Lesikar, L. A., Gushwa, A. F. & Richards, A. F. (2008). J. Organomet. Chem. 693, 3245-3255.]) and the iron(II) analogue where Cl is additionally substituted by Br ligands [Lugo (neé Gushwa) & Richards, 2010[Lugo (neé Gushwa), A. F. & Richards, A. F. (2010). Inorg. Chim. Acta, 363, 2104-2112.]].

Synthesis and crystallization

All manipulations were carried out using standard Schlenk techniques or in a glovebox (Lab MBraun workstation) under nitro­gen atmosphere. All reagents and solvents were procured from commercial sources. Anhydrous solvents were dried using MBraun Solvent Purification Systems (MB-SPS).

The ligand 4-(2-di­ethyl­amino-ethyl­amino)-pent-3-en-2-one was synthesized according to a literature procedure (Neculai et al., 2002[Neculai, D., Roesky, H. W., Neculai, A. M., Magull, J., Schmidt, H.-G. & Noltemeyer, M. (2002). J. Organomet. Chem. 643-644, 47-52.]; Neculai, 2003[Neculai, D. (2003). PhD thesis, Göttingen University, Göttingen, Germany.]) (Fig. 3[link]). In short, a solution of N,N-di­ethyl­endi­amine (42 ml, 0.29 mol) and acetyl­acetone (30 ml, 0.29 mol) was refluxed for 2 d in benzene (250 ml). Then, the solvent was removed, and the remaining crude product was purified by vacuum distillation to furnish a pale-yellow oil. 1H NMR (400 MHz, CDCl3, 25 °C): δ 10.63 (s, 1 H), 4.79 (s, 1H), 3.15 (q, 2 H), 2.45 (t, 2 H), 2.40 (q, 4 H), 1.83 (s, 3 H), 1.78 (s, 3 H), 0.88 (t, 6 H).

[Figure 3]
Figure 3
Synthetic scheme for the preparation of the title compound.

Synthesis of the title compound (Fig. 3[link]): In a 100 ml Schlenk flask 5.06 g (25 mmol) of the ligand were dissolved in dry tetra­hydro­furan and cooled to 195 K before a solution of methyl lithium (11 ml, 1.6 M, 18 mmol) was added dropwise. The reaction mixture was stirred for 2 h, until the evolution of methane ceased, then 2.22 g (17 mmol) of anhydrous cobalt chloride in tetra­hydro­furan were transferred via a syringe; the reaction mixture was stirred overnight at ambient temperature, and kept at 258 K until a green precipitate formed. The product was filtered under nitro­gen protection, washed with anhydrous diethyl ether, and dried under vacuum. Yield 6.26 g (77%). ICP-AES: Co (11.9 ± 0.3) % m/m (Theoretical 12.3%). FTIR (cm−1): 3386 (m, broad), 2968 (m), 2873 (m), 1607 (w), 1510 (m, sh) 1440 (m), 1402 (w), 1047 (s), 901 (s), 737(sh). UV–vis (MeCN): (304 nm, 1015 L mol−1 cm1; 634 nm, 351 L mol−1 cm−1; 666 nm, 391 L mol−1 cm−1; 693 nm, 373 L mol−1 cm−1). Single crystals suitable for X-ray diffraction analysis were grown from a saturated THF solution kept at 258 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [CoLi(C11H21N2O)Cl2(C4H8O)2]
Mr 478.27
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 10.0535 (12), 12.3705 (14), 19.236 (2)
β (°) 104.476 (3)
V3) 2316.4 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.99
Crystal size (mm) 0.50 × 0.40 × 0.30
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.669, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 165035, 6723, 5903
Rint 0.051
(sin θ/λ)max−1) 0.705
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.140, 1.23
No. of reflections 6723
No. of parameters 257
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.46, −0.75
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: APEX3 (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

µ2-Chlorido-chlorido(µ2-4-{[2-(diethylamino)ethyl]imino}pent-2-en-2-olato)bis(tetrahydrofuran-κO)cobalt(II)lithium top
Crystal data top
[CoLi(C11H21N2O)Cl2(C4H8O)2]F(000) = 1012
Mr = 478.27Dx = 1.371 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.0535 (12) ÅCell parameters from 141 reflections
b = 12.3705 (14) Åθ = 4.1–21.7°
c = 19.236 (2) ŵ = 0.99 mm1
β = 104.476 (3)°T = 100 K
V = 2316.4 (5) Å3Block, translucent light green
Z = 40.50 × 0.40 × 0.30 mm
Data collection top
Bruker D8 Venture
diffractometer
6723 independent reflections
Radiation source: Incoatec Microsource5903 reflections with I > 2σ(I)
Mirrors monochromatorRint = 0.051
Detector resolution: 10.4167 pixels mm-1θmax = 30.1°, θmin = 2.6°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 1716
Tmin = 0.669, Tmax = 0.746l = 2627
165035 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.0222P)2 + 11.0438P]
where P = (Fo2 + 2Fc2)/3
6723 reflections(Δ/σ)max = 0.001
257 parametersΔρmax = 1.46 e Å3
0 restraintsΔρmin = 0.75 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.25048 (4)0.65764 (3)0.47738 (2)0.01112 (10)
N10.2825 (3)0.4991 (2)0.46436 (14)0.0121 (4)
O10.2577 (2)0.68095 (18)0.37162 (12)0.0162 (4)
Cl10.42565 (7)0.79101 (6)0.50801 (4)0.01488 (14)
Cl20.03316 (7)0.72744 (6)0.46380 (4)0.01811 (15)
N20.2776 (2)0.6011 (2)0.59167 (13)0.0121 (4)
O20.4784 (2)0.85707 (19)0.33491 (13)0.0170 (4)
O30.2200 (2)0.94302 (19)0.36576 (12)0.0169 (4)
C10.1864 (4)0.6494 (3)0.24640 (17)0.0228 (7)
H00T0.17470.58790.21330.034*
H00U0.26190.69510.23970.034*
H00V0.10140.69180.23670.034*
C20.2191 (3)0.6085 (3)0.32249 (16)0.0145 (5)
C30.2061 (3)0.4996 (3)0.33519 (17)0.0157 (6)
H00E0.17110.45520.29440.019*
C40.2399 (3)0.4471 (2)0.40325 (17)0.0139 (5)
C50.2270 (3)0.3254 (3)0.40296 (19)0.0194 (6)
H00F0.18710.30030.35380.029*
H00G0.16740.30380.43380.029*
H00H0.31810.29310.4210.029*
C60.3299 (3)0.4361 (2)0.53076 (17)0.0161 (6)
H60.40520.38680.52670.019*
H00B0.25360.39210.53970.019*
C70.3804 (3)0.5155 (3)0.59168 (16)0.0143 (5)
H00C0.39980.47640.6380.017*
H00D0.4670.54910.58690.017*
C80.1461 (3)0.5544 (3)0.60083 (17)0.0153 (5)
H00K0.10990.50420.56050.018*
H00L0.07880.61390.59710.018*
C90.1543 (3)0.4939 (3)0.67086 (18)0.0216 (6)
H0140.06490.46130.66960.032*
H0150.1790.54460.71120.032*
H0160.22420.43720.67680.032*
C100.3376 (3)0.6792 (2)0.64914 (16)0.0147 (5)
H00I0.42690.70440.64240.018*
H00J0.35540.64170.6960.018*
C110.2476 (4)0.7762 (3)0.65123 (19)0.0209 (6)
H00M0.22410.81120.6040.031*
H00N0.2970.82750.68740.031*
H00O0.16320.75290.66360.031*
C120.5612 (3)0.7755 (3)0.3118 (2)0.0233 (7)
H0120.54120.7740.25870.028*
H0130.54120.70330.32880.028*
C130.7108 (3)0.8055 (3)0.34383 (19)0.0224 (7)
H0170.76560.74120.36410.027*
H0180.75190.83910.30740.027*
C140.7028 (4)0.8858 (3)0.4025 (2)0.0259 (7)
H00R0.70140.84850.44790.031*
H00S0.78060.93730.41160.031*
C150.5679 (4)0.9420 (3)0.3705 (2)0.0234 (7)
H0190.53120.9760.40850.028*
H01A0.57910.99840.33590.028*
C160.0872 (3)0.9337 (3)0.31570 (18)0.0204 (6)
H00P0.04310.86420.32220.024*
H00Q0.09570.93840.26560.024*
C170.0046 (3)1.0280 (3)0.33303 (19)0.0214 (6)
H0100.09511.01240.31940.026*
H0110.02261.0950.30870.026*
C180.0590 (4)1.0365 (3)0.41409 (19)0.0215 (6)
H00Y0.04311.10950.43160.026*
H00Z0.0160.98190.43920.026*
C190.2101 (3)1.0146 (3)0.42389 (19)0.0209 (6)
H00W0.26041.08270.42150.025*
H00X0.24930.97980.47090.025*
Li10.3372 (6)0.8193 (5)0.3830 (3)0.0172 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01081 (17)0.00929 (18)0.01389 (19)0.00048 (13)0.00425 (13)0.00067 (14)
N10.0124 (11)0.0099 (11)0.0153 (11)0.0018 (8)0.0058 (9)0.0001 (9)
O10.0209 (11)0.0145 (10)0.0147 (10)0.0025 (8)0.0070 (8)0.0014 (8)
Cl10.0135 (3)0.0135 (3)0.0171 (3)0.0019 (2)0.0027 (2)0.0010 (2)
Cl20.0127 (3)0.0193 (3)0.0215 (3)0.0045 (3)0.0028 (3)0.0024 (3)
N20.0097 (10)0.0127 (11)0.0141 (11)0.0005 (9)0.0035 (8)0.0018 (9)
O20.0144 (10)0.0159 (11)0.0222 (11)0.0004 (8)0.0076 (8)0.0011 (9)
O30.0136 (10)0.0164 (10)0.0199 (11)0.0036 (8)0.0027 (8)0.0030 (8)
C10.0263 (16)0.0270 (17)0.0141 (14)0.0006 (14)0.0034 (12)0.0010 (13)
C20.0103 (12)0.0185 (14)0.0158 (13)0.0007 (10)0.0053 (10)0.0013 (11)
C30.0152 (13)0.0167 (14)0.0156 (14)0.0011 (11)0.0042 (10)0.0036 (11)
C40.0102 (12)0.0144 (13)0.0182 (14)0.0013 (10)0.0058 (10)0.0032 (11)
C50.0197 (15)0.0134 (14)0.0243 (16)0.0003 (11)0.0040 (12)0.0042 (12)
C60.0201 (14)0.0119 (13)0.0171 (14)0.0042 (11)0.0059 (11)0.0015 (11)
C70.0112 (12)0.0156 (14)0.0164 (13)0.0045 (10)0.0042 (10)0.0005 (11)
C80.0115 (12)0.0172 (14)0.0182 (14)0.0006 (10)0.0053 (10)0.0004 (11)
C90.0187 (15)0.0266 (17)0.0211 (15)0.0030 (13)0.0080 (12)0.0025 (13)
C100.0151 (13)0.0142 (13)0.0144 (13)0.0015 (10)0.0031 (10)0.0029 (10)
C110.0273 (16)0.0150 (14)0.0217 (15)0.0043 (12)0.0084 (13)0.0036 (12)
C120.0187 (15)0.0230 (16)0.0295 (17)0.0016 (12)0.0083 (13)0.0075 (14)
C130.0161 (14)0.0308 (18)0.0200 (15)0.0057 (13)0.0043 (12)0.0021 (13)
C140.0193 (15)0.0328 (19)0.0261 (17)0.0063 (14)0.0065 (13)0.0062 (15)
C150.0233 (16)0.0142 (14)0.0359 (19)0.0049 (12)0.0134 (14)0.0057 (13)
C160.0163 (14)0.0232 (16)0.0202 (15)0.0026 (12)0.0018 (11)0.0018 (12)
C170.0179 (14)0.0210 (16)0.0252 (16)0.0064 (12)0.0051 (12)0.0022 (13)
C180.0213 (15)0.0189 (15)0.0266 (17)0.0032 (12)0.0103 (13)0.0018 (13)
C190.0212 (15)0.0167 (15)0.0228 (16)0.0050 (12)0.0018 (12)0.0068 (12)
Li10.018 (2)0.015 (3)0.020 (3)0.002 (2)0.008 (2)0.003 (2)
Geometric parameters (Å, º) top
Co1—N12.013 (3)C7—H00D0.99
Co1—O12.074 (2)C8—C91.525 (4)
Co1—N22.258 (3)C8—H00K0.99
Co1—Cl22.3026 (8)C8—H00L0.99
Co1—Cl12.3773 (8)C9—H0140.98
Co1—Li12.974 (6)C9—H0150.98
N1—C41.314 (4)C9—H0160.98
N1—C61.470 (4)C10—C111.510 (4)
O1—C21.290 (4)C10—H00I0.99
O1—Li11.879 (6)C10—H00J0.99
Cl1—Li12.371 (6)C11—H00M0.98
N2—C101.478 (4)C11—H00N0.98
N2—C71.479 (4)C11—H00O0.98
N2—C81.493 (4)C12—C131.522 (5)
O2—C151.441 (4)C12—H0120.99
O2—C121.447 (4)C12—H0130.99
O2—Li11.936 (6)C13—C141.522 (5)
O3—C161.442 (4)C13—H0170.99
O3—C191.449 (4)C13—H0180.99
O3—Li11.909 (6)C14—C151.512 (5)
C1—C21.505 (4)C14—H00R0.99
C1—H00T0.98C14—H00S0.99
C1—H00U0.98C15—H0190.99
C1—H00V0.98C15—H01A0.99
C2—C31.381 (4)C16—C171.516 (5)
C3—C41.424 (4)C16—H00P0.99
C3—H00E0.95C16—H00Q0.99
C4—C51.511 (4)C17—C181.522 (5)
C5—H00F0.98C17—H0100.99
C5—H00G0.98C17—H0110.99
C5—H00H0.98C18—C191.508 (5)
C6—C71.517 (4)C18—H00Y0.99
C6—H60.99C18—H00Z0.99
C6—H00B0.99C19—H00W0.99
C7—H00C0.99C19—H00X0.99
N1—Co1—O188.14 (10)H014—C9—H015109.5
N1—Co1—N280.51 (10)C8—C9—H016109.5
O1—Co1—N2166.65 (9)H014—C9—H016109.5
N1—Co1—Cl2121.87 (8)H015—C9—H016109.5
O1—Co1—Cl295.82 (7)N2—C10—C11113.9 (3)
N2—Co1—Cl296.14 (7)N2—C10—H00I108.8
N1—Co1—Cl1125.12 (8)C11—C10—H00I108.8
O1—Co1—Cl186.63 (7)N2—C10—H00J108.8
N2—Co1—Cl194.13 (7)C11—C10—H00J108.8
Cl2—Co1—Cl1113.01 (3)H00I—C10—H00J107.7
N1—Co1—Li1119.92 (13)C10—C11—H00M109.5
O1—Co1—Li138.78 (13)C10—C11—H00N109.5
N2—Co1—Li1145.09 (13)H00M—C11—H00N109.5
Cl2—Co1—Li195.35 (11)C10—C11—H00O109.5
Cl1—Co1—Li151.13 (11)H00M—C11—H00O109.5
C4—N1—C6118.7 (3)H00N—C11—H00O109.5
C4—N1—Co1124.2 (2)O2—C12—C13107.0 (3)
C6—N1—Co1115.84 (19)O2—C12—H012110.3
C2—O1—Li1139.5 (3)C13—C12—H012110.3
C2—O1—Co1123.0 (2)O2—C12—H013110.3
Li1—O1—Co197.5 (2)C13—C12—H013110.3
Li1—Cl1—Co177.56 (14)H012—C12—H013108.6
C10—N2—C7108.3 (2)C14—C13—C12103.3 (3)
C10—N2—C8111.8 (2)C14—C13—H017111.1
C7—N2—C8111.2 (2)C12—C13—H017111.1
C10—N2—Co1116.94 (19)C14—C13—H018111.1
C7—N2—Co197.83 (17)C12—C13—H018111.1
C8—N2—Co1109.87 (18)H017—C13—H018109.1
C15—O2—C12108.4 (2)C15—C14—C13101.9 (3)
C15—O2—Li1113.2 (3)C15—C14—H00R111.4
C12—O2—Li1121.7 (3)C13—C14—H00R111.4
C16—O3—C19109.5 (2)C15—C14—H00S111.4
C16—O3—Li1118.7 (3)C13—C14—H00S111.4
C19—O3—Li1120.9 (3)H00R—C14—H00S109.2
C2—C1—H00T109.5O2—C15—C14104.4 (3)
C2—C1—H00U109.5O2—C15—H019110.9
H00T—C1—H00U109.5C14—C15—H019110.9
C2—C1—H00V109.5O2—C15—H01A110.9
H00T—C1—H00V109.5C14—C15—H01A110.9
H00U—C1—H00V109.5H019—C15—H01A108.9
O1—C2—C3124.9 (3)O3—C16—C17104.9 (3)
O1—C2—C1115.6 (3)O3—C16—H00P110.8
C3—C2—C1119.5 (3)C17—C16—H00P110.8
C2—C3—C4126.6 (3)O3—C16—H00Q110.8
C2—C3—H00E116.7C17—C16—H00Q110.8
C4—C3—H00E116.7H00P—C16—H00Q108.8
N1—C4—C3123.3 (3)C16—C17—C18101.7 (3)
N1—C4—C5120.0 (3)C16—C17—H010111.4
C3—C4—C5116.8 (3)C18—C17—H010111.4
C4—C5—H00F109.5C16—C17—H011111.4
C4—C5—H00G109.5C18—C17—H011111.4
H00F—C5—H00G109.5H010—C17—H011109.3
C4—C5—H00H109.5C19—C18—C17102.0 (3)
H00F—C5—H00H109.5C19—C18—H00Y111.4
H00G—C5—H00H109.5C17—C18—H00Y111.4
N1—C6—C7107.5 (2)C19—C18—H00Z111.4
N1—C6—H6110.2C17—C18—H00Z111.4
C7—C6—H6110.2H00Y—C18—H00Z109.2
N1—C6—H00B110.2O3—C19—C18106.0 (3)
C7—C6—H00B110.2O3—C19—H00W110.5
H6—C6—H00B108.5C18—C19—H00W110.5
N2—C7—C6111.4 (2)O3—C19—H00X110.5
N2—C7—H00C109.3C18—C19—H00X110.5
C6—C7—H00C109.3H00W—C19—H00X108.7
N2—C7—H00D109.3O1—Li1—O3118.9 (3)
C6—C7—H00D109.3O1—Li1—O2120.4 (3)
H00C—C7—H00D108.0O3—Li1—O2102.6 (3)
N2—C8—C9116.1 (3)O1—Li1—Cl191.4 (2)
N2—C8—H00K108.3O3—Li1—Cl1110.7 (3)
C9—C8—H00K108.3O2—Li1—Cl1112.7 (3)
N2—C8—H00L108.3O1—Li1—Co143.74 (13)
C9—C8—H00L108.3O3—Li1—Co1112.5 (2)
H00K—C8—H00L107.4O2—Li1—Co1144.7 (3)
C8—C9—H014109.5Cl1—Li1—Co151.31 (11)
C8—C9—H015109.5
Li1—O1—C2—C3156.6 (4)Co1—N2—C10—C1166.0 (3)
Co1—O1—C2—C319.4 (4)C15—O2—C12—C137.8 (4)
Li1—O1—C2—C123.5 (5)Li1—O2—C12—C13126.2 (3)
Co1—O1—C2—C1160.4 (2)O2—C12—C13—C1416.6 (4)
O1—C2—C3—C43.9 (5)C12—C13—C14—C1533.3 (4)
C1—C2—C3—C4176.3 (3)C12—O2—C15—C1429.5 (4)
C6—N1—C4—C3172.9 (3)Li1—O2—C15—C14108.8 (3)
Co1—N1—C4—C320.9 (4)C13—C14—C15—O238.8 (3)
C6—N1—C4—C56.0 (4)C19—O3—C16—C1716.7 (4)
Co1—N1—C4—C5160.2 (2)Li1—O3—C16—C17161.3 (3)
C2—C3—C4—N13.6 (5)O3—C16—C17—C1834.8 (3)
C2—C3—C4—C5175.4 (3)C16—C17—C18—C1939.2 (3)
C4—N1—C6—C7176.8 (3)C16—O3—C19—C188.6 (4)
Co1—N1—C6—C715.9 (3)Li1—O3—C19—C18135.0 (3)
C10—N2—C7—C6176.2 (2)C17—C18—C19—O330.1 (3)
C8—N2—C7—C660.5 (3)C2—O1—Li1—O390.2 (5)
Co1—N2—C7—C654.4 (2)Co1—O1—Li1—O393.2 (3)
N1—C6—C7—N250.6 (3)C2—O1—Li1—O237.6 (6)
C10—N2—C8—C959.3 (3)Co1—O1—Li1—O2139.1 (3)
C7—N2—C8—C961.9 (3)C2—O1—Li1—Cl1155.1 (3)
Co1—N2—C8—C9169.1 (2)Co1—O1—Li1—Cl121.53 (18)
C7—N2—C10—C11175.2 (3)C2—O1—Li1—Co1176.6 (4)
C8—N2—C10—C1161.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H00H···Cl1i0.982.803.770 (3)172
C6—H6···Cl1i0.992.963.924 (3)166
C8—H00L···Cl20.992.863.365 (3)113
C10—H00I···Cl10.992.803.357 (3)117
C13—H017···Cl2ii0.992.893.608 (3)130
C19—H00X···Cl10.992.913.635 (3)131
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.
 

Acknowledgements

Rectoría and Vicerrectoría de Investigación, Universidad de Costa Rica are acknowledged for funding the purchase of a D8 Venture SC XRD. CELEQ is thanked for supplying liquid nitro­gen for X-ray measurements.

Funding information

Funding for this research was provided by: Centro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica (scholarship to Felipe A. Vinocour); Vicerrectoría de Investigación, Universidad de Costa Rica (grant No. 804-B5-190).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CrossRef Web of Science Google Scholar
First citationBen Aribia, K., Moehl, T., Zakeeruddin, S. M. & Grätzel, M. (2013). Chem. Sci. 4, 454–459.  Google Scholar
First citationBella, F., Galliano, S., Gerbaldi, C. & Viscardi, G. (2016). Energies, 9, 384.  CrossRef Google Scholar
First citationBergeron, B. V., Marton, A., Oskam, G. & Meyer, G. J. (2005). J. Phys. Chem. B, 109, 937–943.  CrossRef PubMed Google Scholar
First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurschka, J., Brault, V., Ahmad, S., Breau, L., Nazeeruddin, M. K., Marsan, B., Zakeeruddin, S. M. & Grätzel, M. (2012). Energy Environ. Sci. 5, 6089–6097.  CrossRef Google Scholar
First citationCarli, S., Benazzi, E., Casarin, L., Bernardi, T., Bertolasi, V., Argazzi, R., Caramori, S. & Bignozzi, C. A. (2016). Phys. Chem. Chem. Phys. 18, 5949–5956.  CrossRef PubMed Google Scholar
First citationCarli, S., Busatto, E., Caramori, S., Boaretto, R., Argazzi, R., Timpson, C. J. & Bignozzi, C. A. (2013). J. Phys. Chem. C, 117, 5142–5153.  CrossRef Google Scholar
First citationEckert, N. A., Smith, J. M., Lachicotte, R. J. & Holland, P. L. (2004). Inorg. Chem. 43, 3306–3321.  CrossRef PubMed Google Scholar
First citationFlores-Díaz, N., Soto-Navarro, A., Freitag, M., Lamoureux, G. & Pineda, L. W. (2018). Solar Energy, 167, 76–83.  Google Scholar
First citationGiribabu, L., Bolligarla, R. & Panigrahi, M. (2015). Chem. Rec. 15, 760–788.  CrossRef PubMed Google Scholar
First citationHamann, T. W. (2012). Dalton Trans. 41, 3111–3115.  CrossRef PubMed Google Scholar
First citationKashif, M. K., Nippe, M., Duffy, N. W., Forsyth, C. M., Chang, C. J., Long, J. R., Spiccia, L. & Bach, U. (2013). Angew. Chem. Int. Ed. 52, 5527–5531.  CrossRef Google Scholar
First citationLee, N. A., Frenzel, B. A., Rochford, J. & Hightower, S. E. (2015). Eur. J. Inorg. Chem. pp. 3843–3849.  CrossRef Google Scholar
First citationLesikar, L. A., Gushwa, A. F. & Richards, A. F. (2008). J. Organomet. Chem. 693, 3245–3255.  CrossRef Google Scholar
First citationLugo (neé Gushwa), A. F. & Richards, A. F. (2010). Inorg. Chim. Acta, 363, 2104–2112.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMagni, M., Biagini, P., Colombo, A., Dragonetti, C., Roberto, D. & Valore, A. (2016). Coord. Chem. Rev. 322, 69–93.  CrossRef Google Scholar
First citationNeculai, D. (2003). PhD thesis, Göttingen University, Göttingen, Germany.  Google Scholar
First citationNeculai, D., Roesky, H. W., Neculai, A. M., Magull, J., Schmidt, H.-G. & Noltemeyer, M. (2002). J. Organomet. Chem. 643–644, 47–52.  CrossRef Google Scholar
First citationOkuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47–57.  Web of Science CrossRef CAS Google Scholar
First citationPanda, A., Stender, M., Wright, R. J., Olmstead, M. M., Klavins, P. & Power, P. P. (2002). Inorg. Chem. 41, 3909–3916.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPashaei, B., Shahroosvand, H. & Abbasi, P. (2015). RSC Adv. 5, 94814–94848.  CrossRef Google Scholar
First citationRosiak, D., Okuniewski, A. & Chojnacki, J. (2018). Polyhedron, 146, 35–41.  CrossRef Google Scholar
First citationSauvage, F. (2014). Adv. Chem. pp. 1–23.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpokoyny, A. M., Li, T. C., Farha, O. K., Machan, C. W., She, C., Stern, C. L., Marks, T. J., Hupp, J. T. & Mirkin, C. A. (2010). Angew. Chem. Int. Ed. 49, 5339–5343.  CrossRef Google Scholar
First citationSun, Z., Liang, M. & Chen, J. (2015). Acc. Chem. Res. 48, 1541–1550.  CrossRef PubMed Google Scholar
First citationVinocour, F. A. (2016). MS thesis, University of Costa Rica, San José, Costa Rica.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, D., Zhang, H., Chen, X. & Yan, F. (2013). J. Mater. Chem. A, 1, 11933–11941.  CrossRef Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYang, Y., Zhao, N., Wu, Y., Zhu, H. & Roesky, H. W. (2012). Inorg. Chem. 51, 2425–2431.  CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds