organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3,4,6-Tri­methyl-1-phenyl-5-(thio­phen-3-yl)-1H-pyrazolo­[3,4-b]pyridine

aLaboratoire de Chimie Bioorganique & Analytique, URAC 22 Université Hassan II, Mohammedia-Casablanca, Faculté des Sciences et Techniques, BP 146, 28800, Mohammedia, Morocco, bLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay, Slimane, Faculté des Sciences et Techniques, BP 523, 23000, Beni-Mellal, Morocco, cLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche Des Sciences des Médicaments, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: m.loubidi@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 24 October 2018; accepted 10 November 2018; online 30 November 2018)

In the title compound, C19H17N3S, the pyrazolo­[3,4-b]pyridine unit is slightly bowed across the C—C bond common to the two rings. In the crystal, ribbons extending along the a-axis direction are formed by C—H⋯π(ring) inter­actions. The ribbons are packed into corrugated layers inclined to the ac plane by approximately 22°. The thio­phenyl group is rotationally disordered over two sites 180° apart in a 0.606 (2)/0.394 (2) ratio.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Bi-heterocyclic systems have received considerable attention due to their biologically inter­esting properties that are often exploited in drug manufacture. The pyrazolo­[3,4-b]pyridines are bi-heterocyclic systems that are included in many drugs targeting bacterial diseases and malaria. They are also active anti-proliferative and anti-coagulant agents (Goda et al., 2004[Goda, F. E., Abdel-Aziz, A. A. M. & Attef, O. A. (2004). Bioorg. Med. Chem. 12, 1845-1852.]; Kundariya et al., 2011[Kundariya, D. S., Bheshdadia, B. M., Joshi, N. K. & Patel, P. K. (2011). Int. J. Chem. Tech. Res, 3, 238-243.]). This work is part of our continuing efforts to develop new pyrazolo­[3,4-b]pyridine derivatives (Jouha et al., 2017[Jouha, J., Loubidi, M., Bouali, J., Hamri, S., Hafid, A., Suzenet, F., Guillaumet, G., Dagcı, T., Khouili, M., Aydın, F., Saso, L. & Armagan, G. (2017). Eur. J. Med. Chem. 129, 41-52.]).

In the title compound (Fig. 1[link]), the pyrazolo­[3,4-b]pyridine unit is slightly bowed about the C1⋯C5 axis with an angle of 2.2 (1)° between the two constituent rings. The thio­phenyl ring (major orientation) is almost orthogonal to the mean plane of the pyridine ring with an angle of 89.8 (2)° between them. In contrast, the C14–C19 phenyl ring is almost coplanar with the pyrazole ring with an inter­planar angle of 22.3 (1)°. This conformation is aided by the formation of an intra­molecular C15—H15⋯N1 hydrogen bond (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 and Cg5 are the centroids of the N1/C1–C5 and C14–C19 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cg4i 0.95 2.63 3.491 (3) 151
C13—H13ACg5ii 0.97 (2) 2.70 (2) 3.4771 (18) 138.1 (16)
C15—H15⋯N1 0.98 (2) 2.44 (2) 3.040 (2) 119.2 (15)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1, y, z.
[Figure 1]
Figure 1
The title mol­ecule with the labelling scheme and 50% probability ellipsoids. The intra­molecular C—H⋯N hydrogen bond is shown as a dashed line.

In the crystal, inversion-related pairs of C10—H10⋯Cg4 inter­actions (Table 1[link]) form dimers, which are joined into ribbons extending along the a-axis direction by C13—H13ACg5 inter­actions (Table 1[link] and Fig. 2[link]). The ribbons are packed to form corrugated layers (Fig. 3[link]) inclined to the ac plane by approximately 22°.

[Figure 2]
Figure 2
Detail of the C—H⋯π(ring) inter­actions (dashed lines) viewed along the c-axis direction.
[Figure 3]
Figure 3
Packing viewed along the b-axis direction with inter­molecular inter­actions depicted as in Fig. 2[link].

Synthesis and crystallization

A flask containing a stirring bar was charged with 5-bromo-3,4,6-trimethyl-1-phenyl-1H-pyrazolo­[3,4-b]pyridine (100 mg, 0.31 mmol), 3-thio­phene­boronic acid (52 mg, 0.35 mmol) and sodium bicarbonate (1.5 equiv, 0.47 mmol) in a mixture of toluene/ethanol (2/1 v/v). Pd(PPh3)4 (0.05 equiv, 0.018 mmol) was added and the mixture was refluxed for 12 h. After cooling, solvents were removed under reduced pressure and the residue was purified by flash chromatography on silica gel (90:10 petroleum ether/ethyl acetate). The title compound was recrystallized from ethanol, at room temperature, giving colourless crystals (yield: 74%; m.p. 434–436 K).

Refinement

Crystal and refinement details are presented in Table 2[link]. The thio­phenyl group is rotationally disordered over two sites 180° apart in a 0.606 (2)/0.394 (2) ratio. The two components of the disorder were refined as idealized rigid groups.

Table 2
Experimental details

Crystal data
Chemical formula C19H17N3S
Mr 319.41
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 7.6672 (3), 9.9098 (4), 11.4101 (4)
α, β, γ (°) 82.548 (1), 78.176 (2), 76.607 (2)
V3) 822.39 (6)
Z 2
Radiation type Cu Kα
μ (mm−1) 1.75
Crystal size (mm) 0.43 × 0.17 × 0.16
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.63, 0.77
No. of measured, independent and observed [I > 2σ(I)] reflections 6351, 3048, 2722
Rint 0.027
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.117, 1.04
No. of reflections 3048
No. of parameters 262
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.26
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

3,4,6-Trimethyl-1-phenyl-5-(thiophen-3-yl)-1H-pyrazolo[3,4-b]pyridine top
Crystal data top
C19H17N3SZ = 2
Mr = 319.41F(000) = 336
Triclinic, P1Dx = 1.290 Mg m3
a = 7.6672 (3) ÅCu Kα radiation, λ = 1.54178 Å
b = 9.9098 (4) ÅCell parameters from 5350 reflections
c = 11.4101 (4) Åθ = 4.0–72.2°
α = 82.548 (1)°µ = 1.75 mm1
β = 78.176 (2)°T = 150 K
γ = 76.607 (2)°Column, colourless
V = 822.39 (6) Å30.43 × 0.17 × 0.16 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3048 independent reflections
Radiation source: INCOATEC IµS micro-focus source2722 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.4167 pixels mm-1θmax = 72.2°, θmin = 4.0°
ω scansh = 89
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1111
Tmin = 0.63, Tmax = 0.77l = 1413
6351 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: mixed
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0631P)2 + 0.2279P]
where P = (Fo2 + 2Fc2)/3
3048 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The thiophenyl group is rotationally disordered over two sites 180° apart. The two components of the disorder were refined as idealized rigid groups with riding hydrogens.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.76462 (17)0.22090 (13)0.55436 (11)0.0343 (3)
N20.61196 (17)0.34682 (13)0.72855 (11)0.0318 (3)
N30.44124 (17)0.42717 (13)0.76695 (11)0.0329 (3)
C10.4452 (2)0.34579 (14)0.58985 (12)0.0304 (3)
C20.4127 (2)0.30555 (15)0.48398 (13)0.0321 (3)
C30.5603 (2)0.22109 (15)0.41634 (13)0.0330 (3)
C40.7329 (2)0.18473 (15)0.45272 (13)0.0345 (3)
C50.6183 (2)0.29736 (15)0.62018 (13)0.0308 (3)
C60.3413 (2)0.42794 (15)0.68545 (13)0.0319 (3)
C70.2296 (2)0.3506 (2)0.44751 (15)0.0402 (4)
H7A0.234 (3)0.329 (2)0.368 (2)0.063 (6)*
H7B0.138 (3)0.312 (2)0.505 (2)0.063 (6)*
H7C0.185 (3)0.450 (3)0.445 (2)0.066 (7)*
C80.5523 (7)0.1636 (3)0.30143 (14)0.0277 (8)0.606 (2)
C90.5743 (8)0.2332 (3)0.18973 (18)0.0423 (8)0.606 (2)
H90.6109940.3199520.1712810.051*0.606 (2)
S10.52573 (14)0.14045 (9)0.08737 (6)0.0471 (3)0.606 (2)
C100.4936 (5)0.0382 (3)0.30243 (10)0.0463 (10)0.606 (2)
H100.4710900.0217350.3733220.056*0.606 (2)
C110.4724 (5)0.0112 (2)0.19456 (14)0.0581 (5)0.606 (2)
H110.4334550.0682260.1797270.070*0.606 (2)
C8A0.5135 (13)0.1704 (6)0.3104 (3)0.0277 (8)0.394 (2)
C9A0.4500 (8)0.0520 (4)0.31229 (13)0.0423 (8)0.394 (2)
H9A0.4103520.0031770.3828540.051*0.394 (2)
S1A0.4527 (3)0.01780 (16)0.16774 (12)0.0581 (5)0.394 (2)
C10A0.5659 (13)0.2295 (6)0.1924 (4)0.0463 (10)0.394 (2)
H10A0.6137570.3116230.1758780.056*0.394 (2)
C11A0.5421 (9)0.1596 (4)0.1058 (2)0.0471 (3)0.394 (2)
H11A0.5708360.1850350.0220560.056*0.394 (2)
C120.8937 (3)0.0994 (2)0.37643 (16)0.0462 (4)
H12A0.879 (4)0.005 (3)0.387 (2)0.071 (7)*
H12B0.907 (3)0.133 (3)0.292 (2)0.068 (7)*
H12C1.006 (3)0.094 (2)0.407 (2)0.060 (6)*
C130.1498 (2)0.50792 (18)0.69981 (15)0.0380 (4)
H13A0.063 (3)0.449 (2)0.7058 (19)0.055 (6)*
H13B0.132 (3)0.577 (2)0.6308 (19)0.050 (5)*
H13C0.121 (3)0.562 (2)0.770 (2)0.058 (6)*
C140.7449 (2)0.32305 (16)0.80297 (13)0.0337 (3)
C150.8874 (2)0.20766 (19)0.79334 (15)0.0433 (4)
H150.899 (3)0.142 (2)0.7341 (19)0.049 (5)*
C161.0143 (3)0.1856 (2)0.86897 (18)0.0530 (5)
H161.113 (3)0.099 (2)0.866 (2)0.062 (6)*
C170.9990 (3)0.2778 (2)0.95380 (16)0.0515 (4)
H171.087 (3)0.263 (2)1.007 (2)0.057 (6)*
C180.8557 (2)0.3923 (2)0.96290 (14)0.0445 (4)
H180.836 (3)0.456 (2)1.023 (2)0.056 (6)*
C190.7284 (2)0.41651 (17)0.88843 (13)0.0371 (3)
H190.625 (3)0.4989 (19)0.8953 (16)0.038 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0383 (7)0.0391 (7)0.0284 (6)0.0103 (5)0.0050 (5)0.0118 (5)
N20.0338 (6)0.0375 (6)0.0280 (6)0.0104 (5)0.0055 (5)0.0123 (5)
N30.0356 (7)0.0367 (6)0.0296 (6)0.0114 (5)0.0046 (5)0.0107 (5)
C10.0359 (7)0.0334 (7)0.0258 (7)0.0136 (6)0.0044 (6)0.0067 (5)
C20.0401 (8)0.0342 (7)0.0268 (7)0.0157 (6)0.0060 (6)0.0061 (5)
C30.0428 (8)0.0348 (7)0.0260 (7)0.0149 (6)0.0059 (6)0.0074 (5)
C40.0425 (8)0.0369 (8)0.0265 (7)0.0112 (6)0.0040 (6)0.0098 (6)
C50.0374 (7)0.0338 (7)0.0256 (7)0.0143 (6)0.0043 (6)0.0081 (5)
C60.0369 (8)0.0352 (7)0.0276 (7)0.0140 (6)0.0045 (6)0.0080 (5)
C70.0410 (9)0.0523 (10)0.0328 (8)0.0129 (7)0.0103 (7)0.0122 (7)
C80.022 (2)0.0366 (8)0.0257 (7)0.0083 (10)0.0019 (10)0.0121 (6)
C90.0608 (18)0.0439 (18)0.0282 (16)0.0170 (13)0.0100 (12)0.0112 (14)
S10.0692 (5)0.0549 (5)0.0266 (4)0.0235 (3)0.0131 (3)0.0123 (3)
C100.064 (2)0.051 (2)0.0330 (18)0.0355 (16)0.0003 (13)0.0078 (14)
C110.0854 (8)0.0653 (7)0.0400 (8)0.0407 (6)0.0121 (6)0.0181 (5)
C8A0.022 (2)0.0366 (8)0.0257 (7)0.0083 (10)0.0019 (10)0.0121 (6)
C9A0.0608 (18)0.0439 (18)0.0282 (16)0.0170 (13)0.0100 (12)0.0112 (14)
S1A0.0854 (8)0.0653 (7)0.0400 (8)0.0407 (6)0.0121 (6)0.0181 (5)
C10A0.064 (2)0.051 (2)0.0330 (18)0.0355 (16)0.0003 (13)0.0078 (14)
C11A0.0692 (5)0.0549 (5)0.0266 (4)0.0235 (3)0.0131 (3)0.0123 (3)
C120.0486 (10)0.0536 (11)0.0366 (9)0.0026 (8)0.0070 (7)0.0201 (8)
C130.0373 (8)0.0458 (9)0.0324 (8)0.0081 (7)0.0055 (6)0.0115 (7)
C140.0355 (8)0.0441 (8)0.0263 (7)0.0159 (6)0.0048 (6)0.0081 (6)
C150.0456 (9)0.0492 (9)0.0391 (9)0.0077 (7)0.0131 (7)0.0143 (7)
C160.0488 (10)0.0629 (12)0.0500 (10)0.0037 (8)0.0190 (8)0.0129 (8)
C170.0500 (10)0.0740 (12)0.0384 (9)0.0185 (9)0.0182 (8)0.0073 (8)
C180.0490 (10)0.0636 (11)0.0296 (8)0.0248 (8)0.0067 (7)0.0132 (7)
C190.0405 (8)0.0475 (9)0.0282 (7)0.0167 (7)0.0040 (6)0.0109 (6)
Geometric parameters (Å, º) top
N1—C41.3403 (18)C11—H110.9500
N1—C51.3438 (19)C8A—C9A1.3662
N2—C51.3760 (17)C8A—C10A1.4147
N2—N31.3827 (17)C9A—S1A1.7217
N2—C141.4170 (18)C9A—H9A0.9500
N3—C61.3189 (18)S1A—C11A1.7128
C1—C51.401 (2)C10A—C11A1.3415
C1—C21.4050 (19)C10A—H10A0.9500
C1—C61.4356 (19)C11A—H11A0.9500
C2—C31.396 (2)C12—H12A0.95 (3)
C2—C71.499 (2)C12—H12B0.97 (3)
C3—C41.421 (2)C12—H12C0.98 (2)
C3—C8A1.504 (2)C13—H13A0.97 (2)
C3—C81.5133 (16)C13—H13B0.98 (2)
C4—C121.504 (2)C13—H13C0.98 (2)
C6—C131.486 (2)C14—C151.385 (2)
C7—H7A0.95 (2)C14—C191.398 (2)
C7—H7B0.97 (3)C15—C161.392 (2)
C7—H7C0.96 (3)C15—H150.98 (2)
C8—C91.3662C16—C171.386 (3)
C8—C101.4147C16—H161.00 (2)
C9—S11.7216C17—C181.382 (3)
C9—H90.9500C17—H170.97 (2)
S1—C111.7128C18—C191.382 (2)
C10—C111.3415C18—H180.96 (2)
C10—H100.9500C19—H190.994 (18)
C4—N1—C5114.22 (13)C9A—C8A—C10A112.6
C5—N2—N3110.22 (11)C9A—C8A—C3125.5 (3)
C5—N2—C14130.64 (13)C10A—C8A—C3120.8 (3)
N3—N2—C14119.08 (11)C8A—C9A—S1A109.9
C6—N3—N2107.32 (11)C8A—C9A—H9A125.1
C5—C1—C2118.55 (13)S1A—C9A—H9A125.1
C5—C1—C6105.07 (12)C11A—S1A—C9A92.9
C2—C1—C6136.37 (14)C11A—C10A—C8A114.2
C3—C2—C1115.97 (13)C11A—C10A—H10A122.9
C3—C2—C7122.59 (13)C8A—C10A—H10A122.9
C1—C2—C7121.44 (13)C10A—C11A—S1A110.4
C2—C3—C4120.47 (13)C10A—C11A—H11A124.8
C2—C3—C8A113.7 (4)S1A—C11A—H11A124.8
C4—C3—C8A125.8 (4)C4—C12—H12A108.1 (15)
C2—C3—C8124.2 (2)C4—C12—H12B112.5 (14)
C4—C3—C8115.3 (2)H12A—C12—H12B111 (2)
N1—C4—C3123.97 (13)C4—C12—H12C110.9 (13)
N1—C4—C12115.76 (14)H12A—C12—H12C103 (2)
C3—C4—C12120.27 (13)H12B—C12—H12C111.0 (19)
N1—C5—N2126.35 (13)C6—C13—H13A112.5 (12)
N1—C5—C1126.65 (13)C6—C13—H13B110.9 (12)
N2—C5—C1106.97 (12)H13A—C13—H13B107.0 (17)
N3—C6—C1110.41 (13)C6—C13—H13C110.2 (13)
N3—C6—C13120.49 (13)H13A—C13—H13C110.6 (18)
C1—C6—C13129.09 (13)H13B—C13—H13C105.5 (17)
C2—C7—H7A111.4 (14)C15—C14—C19120.19 (14)
C2—C7—H7B111.1 (14)C15—C14—N2120.79 (13)
H7A—C7—H7B112 (2)C19—C14—N2119.01 (14)
C2—C7—H7C112.7 (15)C14—C15—C16119.59 (15)
H7A—C7—H7C104 (2)C14—C15—H15120.4 (12)
H7B—C7—H7C105 (2)C16—C15—H15120.0 (12)
C9—C8—C10112.6C17—C16—C15120.55 (18)
C9—C8—C3124.92 (17)C17—C16—H16119.6 (13)
C10—C8—C3121.82 (18)C15—C16—H16119.7 (13)
C8—C9—S1109.9C18—C17—C16119.31 (16)
C8—C9—H9125.1C18—C17—H17119.8 (12)
S1—C9—H9125.1C16—C17—H17120.9 (12)
C11—S1—C992.9C19—C18—C17121.11 (15)
C11—C10—C8114.2C19—C18—H18116.5 (13)
C11—C10—H10122.9C17—C18—H18122.3 (13)
C8—C10—H10122.9C18—C19—C14119.25 (16)
C10—C11—S1110.4C18—C19—H19120.9 (11)
C10—C11—H11124.8C14—C19—H19119.9 (11)
S1—C11—H11124.8
C5—N2—N3—C60.41 (16)C2—C1—C6—C132.9 (3)
C14—N2—N3—C6177.05 (12)C2—C3—C8—C984.6 (2)
C5—C1—C2—C31.1 (2)C4—C3—C8—C994.6 (2)
C6—C1—C2—C3179.68 (16)C2—C3—C8—C1085.7 (4)
C5—C1—C2—C7178.51 (14)C4—C3—C8—C1095.0 (4)
C6—C1—C2—C70.1 (3)C10—C8—C9—S11.1
C1—C2—C3—C42.4 (2)C3—C8—C9—S1172.2 (4)
C7—C2—C3—C4178.02 (15)C8—C9—S1—C111.0
C1—C2—C3—C8A174.6 (2)C9—C8—C10—C110.5
C7—C2—C3—C8A4.9 (3)C3—C8—C10—C11171.9 (4)
C1—C2—C3—C8178.37 (17)C8—C10—C11—S10.3
C7—C2—C3—C81.2 (3)C9—S1—C11—C100.7
C5—N1—C4—C30.8 (2)C2—C3—C8A—C9A88.1 (6)
C5—N1—C4—C12179.82 (14)C4—C3—C8A—C9A88.7 (6)
C2—C3—C4—N13.6 (2)C2—C3—C8A—C10A104.4 (4)
C8A—C3—C4—N1173.1 (2)C4—C3—C8A—C10A78.8 (4)
C8—C3—C4—N1177.12 (17)C10A—C8A—C9A—S1A1.1
C2—C3—C4—C12177.07 (15)C3—C8A—C9A—S1A169.5 (7)
C8A—C3—C4—C126.3 (3)C8A—C9A—S1A—C11A1.0
C8—C3—C4—C122.2 (2)C9A—C8A—C10A—C11A0.5
C4—N1—C5—N2179.18 (14)C3—C8A—C10A—C11A169.5 (7)
C4—N1—C5—C13.1 (2)C8A—C10A—C11A—S1A0.3
N3—N2—C5—N1177.01 (14)C9A—S1A—C11A—C10A0.7
C14—N2—C5—N15.9 (2)C5—N2—C14—C1520.9 (2)
N3—N2—C5—C11.05 (16)N3—N2—C14—C15155.93 (15)
C14—N2—C5—C1176.02 (14)C5—N2—C14—C19160.39 (15)
C2—C1—C5—N14.2 (2)N3—N2—C14—C1922.8 (2)
C6—C1—C5—N1176.83 (14)C19—C14—C15—C160.2 (3)
C2—C1—C5—N2177.77 (12)N2—C14—C15—C16178.91 (16)
C6—C1—C5—N21.23 (16)C14—C15—C16—C170.2 (3)
N2—N3—C6—C10.40 (16)C15—C16—C17—C180.1 (3)
N2—N3—C6—C13179.02 (13)C16—C17—C18—C190.4 (3)
C5—C1—C6—N31.03 (16)C17—C18—C19—C140.3 (3)
C2—C1—C6—N3177.70 (16)C15—C14—C19—C180.0 (2)
C5—C1—C6—C13178.33 (15)N2—C14—C19—C18178.71 (14)
Hydrogen-bond geometry (Å, º) top
Cg4 and Cg5 are the centroids of the N1/C1–C5 and C14–C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg4i0.952.633.491 (3)151
C13—H13A···Cg5ii0.97 (2)2.70 (2)3.4771 (18)138.1 (16)
C15—H15···N10.98 (2)2.44 (2)3.040 (2)119.2 (15)
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z.
 

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGoda, F. E., Abdel-Aziz, A. A. M. & Attef, O. A. (2004). Bioorg. Med. Chem. 12, 1845–1852.  CrossRef PubMed Google Scholar
First citationJouha, J., Loubidi, M., Bouali, J., Hamri, S., Hafid, A., Suzenet, F., Guillaumet, G., Dagcı, T., Khouili, M., Aydın, F., Saso, L. & Armagan, G. (2017). Eur. J. Med. Chem. 129, 41–52.  CrossRef PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKundariya, D. S., Bheshdadia, B. M., Joshi, N. K. & Patel, P. K. (2011). Int. J. Chem. Tech. Res, 3, 238–243.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds