organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Methyl 3-(4-hy­dr­oxy­phen­yl)propionate

aEgyptian Petroleum Research Institute, Nasr City, PO 11727, Cairo, Egypt, bDepartment of Chemistry, Xi'an Jiaotong Liverpool University, Suzhou, Jiangsu, 215123, People's Republic of China, cDepartment of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK, dDepartment of Pharmacology, School of Biomedical Sciences, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool L69 3GE, UK, and eDepartment of Chemistry, Al al-Bayt University, Mafraq 25113, Jordan
*Correspondence e-mail: magdalini.matziari@xjtlu.edu.cn

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 29 October 2018; accepted 22 November 2018; online 27 November 2018)

The title compound, C10H12O3, crystallizes in the ortho­rhom­bic P212121 space group. The structure contains a phenolic group with the OH being coplanar with the phenyl ring. The structure exhibits significant hydrogen bonding between the O—H group of one mol­ecule and the CO group of an adjacent one. These O—H⋯O=C inter­actions form chains of mol­ecules parallel to the b axis. No ππ or C—H⋯π inter­molecular inter­actions are observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The application of nitro­gen-based fertilizers has been a remarkable strategy applied to meet the growing world food and fibre demands over the past 80 years (Galloway et al., 2008[Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A., Seitzinger, S. P. & Sutton, M. A. (2008). Science, 320, 889-892.]). However, these fertilizers increase anthropogenic nitrous oxide production, causing serious effects on the environment in water, the air and soil. One of the important environmentally friendly techniques applied in agriculture to control the rate of the climate-relevant N2O gas emission is the use of nitrification inhibitors (Ruser & Schulz, 2015[Ruser, R. & Schulz, R. (2015). J. Plant Nutr. Soil Sci. 178, 171-188.]). Among the various nitrification inhibitors, methyl 3-(2 or 4-hy­droxy­phen­yl)propionates (MHPPs) are the most important formed in sorghum (Sorghum bicolor; Zakir et al., 2008[Zakir, H. A., Subbarao, G. V., Pearse, S. J., Gopalakrishnan, S., Ito, O., Ishikawa, T., Kawano, N., Nakahara, K., Yoshihashi, T., Ono, H. & Yoshida, M. (2008). New Phytol. 180, 442-451.]; Nardi et al., 2013[Nardi, P., Akutsu, M., Pariasca-Tanaka, J. & Wissuwa, M. (2013). Plant Soil, 367, 627-637.]). Additionally, they exhibit an inter­esting motif in the enzymatic coupling of saccharides to proteins, also acting as modulators of the root system architecture (RSA; Martinez et al., 2017[Martinez, A. P., Qamar, B., Fuerst, T. R., Muro, S. & Andrianov, A. K. (2017). Biomacromolecules, 18, 2000-2011.]; ter Haar et al., 2011[Haar, R. ter, Wildschut, J., Sugih, A. K., Möller, W. B., de Waard, P., Boeriu, C. G., Heeres, H. J., Schols, H. A. & Gruppen, H. (2011). Carbohydr. Res. 346, 1005-1012.]). There are various reports on the synthesis of methyl 3-(2-hy­droxy­phen­yl)propionate (Yuthavong et al., 2012[Yuthavong, Y., Tarnchompoo, B., Vilaivan, T., Chitnumsub, P., Kamchonwongpaisan, S., Charman, S. A., McLennan, D. N., White, K. L., Vivas, L., Bongard, E., Thongphanchang, C., Taweechai, S., Vanichtanankul, J., Rattanajak, R., Arwon, U., Fantauzzi, P., Yuvaniyama, J., Charman, W. N. & Matthews, D. (2012). Proc. Natl Acad. Sci. USA, 109, 16823-16828.]; Rosales et al., 2011[Rosales, A., Rodríguez-García, I., López-Sánchez, C., Álvarez-Corral, M. & Muñoz-Dorado, M. (2011). Tetrahedron, 67, 3071-3075.]; Meier et al., 2006[Meier, C., Ducho, C., Jessen, H., Vukadinović-Tenter, D. & Balzarini, J. (2006). Eur. J. Org. Chem. pp. 197-206.]), but its crystal structure has not previously been been reported. As part of our ongoing studies on the synthesis and properties of phenolic compounds (Abdou, 2013a[Abdou, M. M. (2013a). New Azo Disperse Dyes Derived from 3-(Hydroxyphenyl)-2-Pyrazolin-5-One, 1st, pp. 21-50. Köln: Lambert Academic Publishing AG & Co. KG.],b[Abdou, M. M. (2013b). Azo Disperse Dyes with 2-Pyrazolin-5-Ones for Dyeing Polyester Fabrics, 1st, pp. 30-60. Köln: Lambert Academic Publishing AG & Co. KG.], 2017a[Abdou, M. M. (2017a). Arab. J. Chem. 10, S3324-S3337.],b[Abdou, M. M. (2017b). Arab. J. Chem. 10, S3664-S3675.],c[Abdou, M. M. (2017c). Arab. J. Chem. 10, S3955-S3961.], 2018[Abdou, M. M. (2018). Arab. J. Chem. 11, 1061-1071.]; Abdou et al., 2012a[Metwally, M. A., Bondock, S., I. El-Desouky, E.. & M. Abdou, M. (2012a). Ame. J. Chem. 2, 347-354.],b[Abdou, M. M., Bondock, S., El-Desouky, E. I. & Metwally, M. A. (2012b). Int. J. Modern Org. Chem. 1, 19-54.],c[Abdou, M. M., Bondock, S., El-Desouky, E. I. & Metwally, M. A. (2012c). Int. J. Modern Org. Chem. 1, 165-192.], 2013[Abdou, M. M., Bondock, S., El-Desouky, E. I. & Metwally, M. A. (2013). Am. J. Chem. 3, 59-67.], 2015[Abdou, M. M., El-Saeed, R. A., Abozeid, M. A., Sadek, M. G., Zaki, E., Barakat, Y., Ibrahim, H., Fathy, M., Shabana, S., Amine, M. & Bondock, S. (2015). Arab. J. Chem. In the press. https: doi: 10.1016/j. arabjc. 2015.11.004.], 2015a[Abdou, M. M., El-Saeed, R. A. & Bondock, S. (2015a). Arab. J. Chem. In the press. doi: 10.1016/j. arabjc. 2015.06.012.],b[Abdou, M. M., El-Saeed, R. A. & Bondock, S. (2015b). Arab. J. Chem. In the press. doi: 10.1016/j. arabjc. 2015.06.029.], 2016[Abdou, M. M., El-Saeed, R. A., Elattar, K. M., Seferoğlu, Z. & Boukouvalas, J. (2016). Mol. Divers. 20, 989-999.]; Abdou et al., 2015a[Abdou, M. M., El-Saeed, R. A. & Bondock, S. (2015a). Arab. J. Chem. In the press. doi: 10.1016/j. arabjc. 2015.06.012.],b[Abdou, M. M., El-Saeed, R. A. & Bondock, S. (2015b). Arab. J. Chem. In the press. doi: 10.1016/j. arabjc. 2015.06.029.]; Abdou, El-Saeed, Abozeid et al., 2015[Abdou, M. M., El-Saeed, R. A., Abozeid, M. A., Sadek, M. G., Zaki, E., Barakat, Y., Ibrahim, H., Fathy, M., Shabana, S., Amine, M. & Bondock, S. (2015). Arab. J. Chem. In the press. https: doi: 10.1016/j. arabjc. 2015.11.004.]; Metwally et al., 2012a[Metwally, M. A., Bondock, S., El-Desouky, E. I. & Abdou, M. M. (2012a). J. Korean Chem. Soc. 56, 82-91.],b[Metwally, M. A., Bondock, S., El-Desouky, S. I. & Abdou, M. M. (2012b). J. Korean Chem. Soc. 56, 348-356.], 2013[Metwally, M. A., Bondock, S., El-Desouky, E. I. & Abdou, M. M. (2013). Coloration Technol. 129, 418-424.]), we report herein the crystal structure of methyl 3-(2-hy­droxy­phen­yl)propionate.

The mol­ecular structure of the title compound is depicted in Fig. 1[link]. The phenyl ring is planar with the hydroxyl group being coplanar with a C2—C1—O1—H1H torsion angle of −8 (2)°. The bond distances and angles within the phenolic ring, the propionate group and the co-planarity of OH group with the phenyl ring are consistent with related structures such as methyl 3-(3,5-di-tertbutyl-4-hy­droxy­phen­yl)propionate (Li et al., 2014[Li, X., Wang, Z.-G., Chen, H.-H. & Liu, S.-G. (2014). Acta Cryst. C70, 1050-1053.]), 2-(4-acetyl­anilino)-2-oxoethyl 3-(4-hy­droxy­phen­yl)propionate (Ashraf et al., 2016[Ashraf, Z., Kim, D., Seo, S.-Y. & Kang, S. K. (2016). Acta Cryst. E72, 933-936.]) and methyl 3-[3-tert-butyl-5-(6-chloro-1-oxybenzotriazol-2-yl)-4-hy­droxy­phen­yl]pro­pion­ate (Wen et al., 2006[Wen, H.-L., Chen, Y.-H., Hu, H.-W., Zhou, X.-Y. & Liu, C.-B. (2006). Acta Cryst. E62, o4702-o4703.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

The crystal structure exhibits significant hydrogen-bonding inter­actions (Table 1[link]), in which the O1—H1 groups acts as the donor while the carbonyl group of an adjacent mol­ecule (–x + 1, y + [{1\over 2}], –z + [{3\over 2}]) being the acceptor. These hydrogen bonds shown as dashed lines in Fig. 2[link]) connect the mol­ecules into chains running parallel to the b axis (Fig. 3[link]). ππ stacking and C—H⋯π inter­actions are not present in the crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1H⋯O2i 0.86 (3) 1.96 (4) 2.805 (3) 169 (3)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Hydrogen-bonding inter­actions (dashed lines) between adjacent mol­ecules. Symmetry codes: (i) −x + 1, y + [{1\over 2}], −z + [{3\over 2}]; (ii) −x + 1, y − [{1\over 2}], −z + [{3\over 2}].
[Figure 3]
Figure 3
Crystal packing of the title compound viewed along the a axis, showing the chains parallel to the a axis formed via hydrogen bonding (dashed lines).

Synthesis and crystallization

A mixture of di­hydro­coumarin (1 ml, 7.89 mmol), a catalytic amount of conc. H2SO4, and 30 ml of dry MeOH were heated under reflux for 5 h. The methanol was removed in vacuo and the residue was neutralized with saturated NaHCO3 solution then diluted with water and extracted with Et2O. The combined organic extracts were dried over MgSO4, filtered and concentrated. The crude compound was crystallized by slow evaporation of a diethyl ether–hexane mixture (2:1 v/v) to give colourless single crystals (1.22 g, 86%). M.p. 41–42°C; IR (KBr, cm−1) 3420, 3055, 1735, 1447. 1H NMR (400 MHz, CDCl3) δ 2.76 (t, J = 6.6 Hz, 3H), 2.95 (t, J = 6.6 Hz, 2H), 3.72 (s, 3H), 6.89 (d, J = 7.4 Hz, 2H), 7.12–7.16 (m, 2H). 13C NMR (100 MHz, DMSO-d6) δ 24.86, 34.87, 52.24, 116.82, 120.81, 127.07, 128.23, 130.52, 154.26, 175.96. HRMS (ESI/QTOF) m/z: [M]+ calculated for C10H12O3 180.0786, found 180.0774.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C10H12O3
Mr 180.20
Crystal system, space group Orthorhombic, P212121
Temperature (K) 180
a, b, c (Å) 5.4774 (6), 11.1557 (12), 14.5610 (17)
V3) 889.74 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.35 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker D8 Venture diffractometer with PHOTON 100 CMOS detecter
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.614, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 9443, 1756, 1390
Rint 0.056
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.091, 1.04
No. of reflections 1756
No. of parameters 122
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.15
Absolute structure Flack x determined using 467 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.5 (8)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Methyl 3-(4-hydroxyphenyl)propionate top
Crystal data top
C10H12O3Dx = 1.345 Mg m3
Mr = 180.20Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2736 reflections
a = 5.4774 (6) Åθ = 3.3–27.6°
b = 11.1557 (12) ŵ = 0.10 mm1
c = 14.5610 (17) ÅT = 180 K
V = 889.74 (17) Å3Block, colourless
Z = 40.35 × 0.15 × 0.10 mm
F(000) = 384
Data collection top
Bruker D8 Venture
diffractometer with PHOTON 100 CMOS detecter
1390 reflections with I > 2σ(I)
φ and ω scansRint = 0.056
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 26.0°, θmin = 3.3°
Tmin = 0.614, Tmax = 0.746h = 66
9443 measured reflectionsk = 1313
1756 independent reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.1279P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.19 e Å3
1756 reflectionsΔρmin = 0.15 e Å3
122 parametersAbsolute structure: Flack x determined using 467 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.5 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms on carbon atoms were calculated with C–H = 0.95, 0.98 and 0.99 Å for CH (aromatic), CH2 and CH3, respectively, and refined as riding atoms with Uiso(H) = 1.2 Ueq(C) for CH (aromatic) and CH2, and 1.5 Ueq(C) for CH3. The H atoms of the –OH group was located in a differenceFourier map and refined without any constraint.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5468 (3)0.18977 (17)0.77139 (13)0.0302 (5)
H1H0.642 (6)0.235 (3)0.740 (2)0.051 (11)*
O20.1249 (3)0.19195 (17)0.84546 (13)0.0304 (5)
O30.2348 (3)0.18421 (16)0.91771 (11)0.0267 (5)
C10.3762 (5)0.2573 (2)0.81696 (17)0.0220 (6)
C20.3865 (5)0.3815 (2)0.8200 (2)0.0270 (7)
H2A0.5154180.4227620.7899690.032*
C30.2091 (5)0.4451 (2)0.86675 (19)0.0293 (7)
H3A0.2152940.5302160.8684760.035*
C40.0235 (6)0.3849 (2)0.9108 (2)0.0293 (7)
H4A0.0973700.4282120.9437780.035*
C50.0136 (5)0.2607 (2)0.90690 (18)0.0248 (6)
H5A0.1152330.2199040.9374260.030*
C60.1866 (4)0.1949 (2)0.85970 (16)0.0203 (6)
C70.1802 (5)0.0596 (2)0.85041 (19)0.0251 (6)
H7A0.1912820.0389870.7844030.030*
H7B0.3265840.0261630.8810190.030*
C80.0424 (5)0.0006 (2)0.88985 (19)0.0226 (6)
H8A0.0555810.0201090.9557770.027*
H8B0.1894420.0309220.8585120.027*
C90.0375 (5)0.1341 (2)0.88018 (19)0.0209 (6)
C100.2421 (5)0.3137 (2)0.91727 (19)0.0304 (7)
H10A0.3936100.3410960.9462530.046*
H10B0.2357000.3427080.8537910.046*
H10C0.1018830.3450810.9514740.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0222 (10)0.0322 (11)0.0363 (12)0.0049 (10)0.0094 (9)0.0037 (10)
O20.0278 (11)0.0272 (10)0.0362 (11)0.0043 (9)0.0102 (8)0.0033 (10)
O30.0245 (10)0.0204 (9)0.0353 (11)0.0020 (9)0.0084 (8)0.0006 (9)
C10.0193 (16)0.0266 (15)0.0201 (14)0.0011 (12)0.0020 (12)0.0008 (12)
C20.0226 (17)0.0289 (16)0.0296 (18)0.0085 (12)0.0028 (14)0.0050 (12)
C30.0329 (16)0.0195 (14)0.0355 (17)0.0050 (13)0.0071 (14)0.0006 (13)
C40.0290 (18)0.0259 (16)0.0329 (18)0.0021 (13)0.0005 (15)0.0045 (12)
C50.0203 (16)0.0265 (15)0.0276 (16)0.0018 (12)0.0029 (13)0.0009 (12)
C60.0190 (13)0.0213 (13)0.0206 (14)0.0018 (12)0.0030 (11)0.0018 (12)
C70.0226 (14)0.0248 (15)0.0278 (15)0.0000 (12)0.0048 (13)0.0015 (13)
C80.0204 (14)0.0223 (13)0.0251 (14)0.0015 (11)0.0034 (12)0.0013 (12)
C90.0200 (14)0.0239 (14)0.0188 (14)0.0001 (12)0.0016 (12)0.0019 (11)
C100.0365 (16)0.0195 (14)0.0353 (16)0.0042 (14)0.0031 (13)0.0001 (13)
Geometric parameters (Å, º) top
O1—C11.372 (3)C5—C61.381 (4)
O1—H1H0.86 (3)C5—H5A0.9500
O2—C91.210 (3)C6—C71.516 (4)
O3—C91.334 (3)C7—C81.506 (3)
O3—C101.445 (3)C7—H7A0.9900
C1—C21.387 (3)C7—H7B0.9900
C1—C61.397 (4)C8—C91.496 (3)
C2—C31.382 (4)C8—H8A0.9900
C2—H2A0.9500C8—H8B0.9900
C3—C41.377 (4)C10—H10A0.9800
C3—H3A0.9500C10—H10B0.9800
C4—C51.388 (4)C10—H10C0.9800
C4—H4A0.9500
C1—O1—H1H111 (2)C8—C7—H7A108.4
C9—O3—C10116.1 (2)C6—C7—H7A108.4
O1—C1—C2122.4 (3)C8—C7—H7B108.4
O1—C1—C6116.6 (2)C6—C7—H7B108.4
C2—C1—C6120.9 (3)H7A—C7—H7B107.5
C3—C2—C1120.0 (3)C9—C8—C7113.2 (2)
C3—C2—H2A120.0C9—C8—H8A108.9
C1—C2—H2A120.0C7—C8—H8A108.9
C4—C3—C2119.8 (3)C9—C8—H8B108.9
C4—C3—H3A120.1C7—C8—H8B108.9
C2—C3—H3A120.1H8A—C8—H8B107.8
C3—C4—C5119.8 (3)O2—C9—O3122.9 (2)
C3—C4—H4A120.1O2—C9—C8125.7 (2)
C5—C4—H4A120.1O3—C9—C8111.4 (2)
C6—C5—C4121.6 (3)O3—C10—H10A109.5
C6—C5—H5A119.2O3—C10—H10B109.5
C4—C5—H5A119.2H10A—C10—H10B109.5
C5—C6—C1117.8 (2)O3—C10—H10C109.5
C5—C6—C7123.9 (2)H10A—C10—H10C109.5
C1—C6—C7118.3 (2)H10B—C10—H10C109.5
C8—C7—C6115.4 (2)
O1—C1—C2—C3179.8 (2)O1—C1—C6—C71.6 (3)
C6—C1—C2—C30.8 (4)C2—C1—C6—C7177.5 (2)
C1—C2—C3—C40.5 (4)C5—C6—C7—C85.0 (4)
C2—C3—C4—C50.9 (4)C1—C6—C7—C8174.0 (2)
C3—C4—C5—C60.1 (5)C6—C7—C8—C9179.1 (2)
C4—C5—C6—C11.2 (4)C10—O3—C9—O21.8 (4)
C4—C5—C6—C7177.9 (3)C10—O3—C9—C8176.4 (2)
O1—C1—C6—C5179.3 (2)C7—C8—C9—O20.5 (4)
C2—C1—C6—C51.6 (4)C7—C8—C9—O3178.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1H···O2i0.86 (3)1.96 (4)2.805 (3)169 (3)
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

References

First citationAbdou, M. M. (2013a). New Azo Disperse Dyes Derived from 3-(Hydroxyphenyl)-2-Pyrazolin-5-One, 1st, pp. 21–50. Köln: Lambert Academic Publishing AG & Co. KG.  Google Scholar
First citationAbdou, M. M. (2013b). Azo Disperse Dyes with 2-Pyrazolin-5-Ones for Dyeing Polyester Fabrics, 1st, pp. 30–60. Köln: Lambert Academic Publishing AG & Co. KG.  Google Scholar
First citationAbdou, M. M. (2018). Arab. J. Chem. 11, 1061–1071.  CrossRef Google Scholar
First citationAbdou, M. M. (2017a). Arab. J. Chem. 10, S3324–S3337.  CrossRef Google Scholar
First citationAbdou, M. M. (2017b). Arab. J. Chem. 10, S3664–S3675.  CrossRef Google Scholar
First citationAbdou, M. M. (2017c). Arab. J. Chem. 10, S3955–S3961.  CrossRef Google Scholar
First citationAbdou, M. M., Bondock, S., El-Desouky, E. I. & Metwally, M. A. (2012b). Int. J. Modern Org. Chem. 1, 19–54.  Google Scholar
First citationAbdou, M. M., Bondock, S., El-Desouky, E. I. & Metwally, M. A. (2012c). Int. J. Modern Org. Chem. 1, 165–192.  Google Scholar
First citationAbdou, M. M., Bondock, S., El-Desouky, E. I. & Metwally, M. A. (2013). Am. J. Chem. 3, 59–67.  Google Scholar
First citationAbdou, M. M., El-Saeed, R. A., Abozeid, M. A., Sadek, M. G., Zaki, E., Barakat, Y., Ibrahim, H., Fathy, M., Shabana, S., Amine, M. & Bondock, S. (2015). Arab. J. Chem. In the press. https: doi: 10.1016/j. arabjc. 2015.11.004.  Google Scholar
First citationAbdou, M. M., El-Saeed, R. A. & Bondock, S. (2015a). Arab. J. Chem. In the press. doi: 10.1016/j. arabjc. 2015.06.012.  Google Scholar
First citationAbdou, M. M., El-Saeed, R. A. & Bondock, S. (2015b). Arab. J. Chem. In the press. doi: 10.1016/j. arabjc. 2015.06.029.  Google Scholar
First citationAbdou, M. M., El-Saeed, R. A., Elattar, K. M., Seferoğlu, Z. & Boukouvalas, J. (2016). Mol. Divers. 20, 989–999.  CrossRef Google Scholar
First citationAshraf, Z., Kim, D., Seo, S.-Y. & Kang, S. K. (2016). Acta Cryst. E72, 933–936.  CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGalloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A., Seitzinger, S. P. & Sutton, M. A. (2008). Science, 320, 889–892.  CrossRef Google Scholar
First citationHaar, R. ter, Wildschut, J., Sugih, A. K., Möller, W. B., de Waard, P., Boeriu, C. G., Heeres, H. J., Schols, H. A. & Gruppen, H. (2011). Carbohydr. Res. 346, 1005–1012.  Google Scholar
First citationLi, X., Wang, Z.-G., Chen, H.-H. & Liu, S.-G. (2014). Acta Cryst. C70, 1050–1053.  CrossRef IUCr Journals Google Scholar
First citationMartinez, A. P., Qamar, B., Fuerst, T. R., Muro, S. & Andrianov, A. K. (2017). Biomacromolecules, 18, 2000–2011.  CrossRef Google Scholar
First citationMeier, C., Ducho, C., Jessen, H., Vukadinović-Tenter, D. & Balzarini, J. (2006). Eur. J. Org. Chem. pp. 197–206.  CrossRef Google Scholar
First citationMetwally, M. A., Bondock, S., I. El-Desouky, E.. & M. Abdou, M. (2012a). Ame. J. Chem. 2, 347–354.  Google Scholar
First citationMetwally, M. A., Bondock, S., El-Desouky, E. I. & Abdou, M. M. (2012a). J. Korean Chem. Soc. 56, 82–91.  CrossRef Google Scholar
First citationMetwally, M. A., Bondock, S., El-Desouky, S. I. & Abdou, M. M. (2012b). J. Korean Chem. Soc. 56, 348–356.  CrossRef Google Scholar
First citationMetwally, M. A., Bondock, S., El-Desouky, E. I. & Abdou, M. M. (2013). Coloration Technol. 129, 418–424.  CrossRef Google Scholar
First citationNardi, P., Akutsu, M., Pariasca-Tanaka, J. & Wissuwa, M. (2013). Plant Soil, 367, 627–637.  CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRosales, A., Rodríguez-García, I., López-Sánchez, C., Álvarez-Corral, M. & Muñoz-Dorado, M. (2011). Tetrahedron, 67, 3071–3075.  CrossRef Google Scholar
First citationRuser, R. & Schulz, R. (2015). J. Plant Nutr. Soil Sci. 178, 171–188.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWen, H.-L., Chen, Y.-H., Hu, H.-W., Zhou, X.-Y. & Liu, C.-B. (2006). Acta Cryst. E62, o4702–o4703.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYuthavong, Y., Tarnchompoo, B., Vilaivan, T., Chitnumsub, P., Kamchonwongpaisan, S., Charman, S. A., McLennan, D. N., White, K. L., Vivas, L., Bongard, E., Thongphanchang, C., Taweechai, S., Vanichtanankul, J., Rattanajak, R., Arwon, U., Fantauzzi, P., Yuvaniyama, J., Charman, W. N. & Matthews, D. (2012). Proc. Natl Acad. Sci. USA, 109, 16823–16828.  CrossRef Google Scholar
First citationZakir, H. A., Subbarao, G. V., Pearse, S. J., Gopalakrishnan, S., Ito, O., Ishikawa, T., Kawano, N., Nakahara, K., Yoshihashi, T., Ono, H. & Yoshida, M. (2008). New Phytol. 180, 442–451.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds