organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Homopropargyl alcohol 1,1-di­phenyl­but-3-yn-1-ol

aEscuela de Química, Universidad de Costa Rica, 2060, San José, Costa Rica, and bCentro de Electroquímica y Energía Química (CELEQ), Universidad de Costa, Rica, 2060 San José, Costa Rica
*Correspondence e-mail: jorge.cabezas@ucr.ac.cr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 19 October 2018; accepted 15 November 2018; online 22 November 2018)

The asymmetric unit of the title compound, C16H14O, contains one mol­ecule with a central carbon atom having a distorted tetra­hedral geometry made of a propargylic fragment, a hy­droxy group and two aromatic rings. Directional inter­actions such as unusual O—H⋯π contacts are observed between the mol­ecules in the crystal.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Homopropargylic alcohols are very useful inter­mediates in the synthesis of a variety of organic compounds of natural (Kim et al., 2017[Kim, J., Jeong, W. & Rhee, Y. H. (2017). Org. Lett. 19, 242-245.]; Foley & Leighton, 2015[Foley, C. N. & Leighton, J. L. (2015). Org. Lett. 17, 5858-5861.]; Francais et al., 2010[Francais, A., Leyva, A., Etxebarria-Jardi, G. & Ley, S. V. (2010). Org. Lett. 12, 340-343.]) and synthetic origin (Hosseyni et al., 2016[Hosseyni, S., Wojtas, L., Li, M. & Shi, X. (2016). J. Am. Chem. Soc. 138, 3994-3997.]; Gao et al., 2014[Gao, P., Li, H. X., Hao, X. H., Jin, D. P., Chen, D. Q., Yan, X. B., Wu, X. X., Song, X. R., Liu, X. Y. & Liang, Y. M. (2014). Org. Lett. 16, 6298-6301.]; Trost & Rhee, 2003[Trost, B. M. & Rhee, Y. H. (2003). J. Am. Chem. Soc. 125, 7482-7483.]; Nicolaou et al., 1990[Nicolaou, K. C., Skokotas, G., Furuya, S., Suemune, H. & Nicolaou, D. C. (1990). Angew. Chem. Int. Ed. Engl. 29, 1064-1067.]; Yadav & Maiti, 2002[Yadav, J. S. & Maiti, A. (2002). Tetrahedron, 58, 4955-4961.]). The crystal structure of homopropargyl alcohol 1,1-di­phenyl­but-3-yn-1-ol is presented herein.

The crystal structure of the title compound comprises a central carbon atom (C7) tetra­hedrally bonded to a propargylic moiety, a hy­droxy functional group and two phenyl rings (Fig. 1[link]). The bond angles at C7 deviate from the ideal value (109.5°) with angles ranging from 106.13 (11) to 112.06 (11)°, mainly because of the bulky substituent groups attached to this atom. The bond length of the terminal carbon–carbon triple bond (C15≡C16) is 1.190 (2) Å; the propargylic unit (C14–C15–C16) exhibits an angle of 176.26 (15)°, slightly distorted from the linear geometry expected (180°).

[Figure 1]
Figure 1
The title mol­ecule with 50% probability ellipsoids.

In the crystal, the title compound features uncommon O—H⋯π inter­actions with bond lengths for atom H1 and the C4 and C5 aromatic carbon atoms of 2.72 and 2.80 Å, respectively (symmetry operation 1 − x, [{1\over 2}] + y, [{1\over 2}] − z) (Fig. 2[link]). Moreover, the hydrogen atom (H16) of the terminal alkyne group has short contacts with carbon atoms of the aromatic ring C9 (2.79 Å) and C10 (2.68 Å), with corresponding symmetry operation −1 + x, y, z. Carbon atom C15 of the alkyne fragment accepts an inter­action from hydrogen atom H9 bound to aromatic carbon C9 (2.85 Å); symmetry operation [{1\over 2}] + x, [{1\over 2}] − y,1 − z.

[Figure 2]
Figure 2
Packing view of the title compound. O–H⋯π, terminal alkyne hydrogen atom⋯π and terminal alkyne carbon atom with aromatic hydrogen atom contacts are shown, respectively, as red, blue and green dashed lines.

Synthesis and crystallization

The title compound was synthesized by treatment of propargyl bromide with n-BuLi and TMEDA, at −78°C, followed by addition of benzo­phenone (Fig. 3[link]), according to a previously reported procedure (Cabezas et al., 2001[Cabezas, J. A., Pereira, A. & Amey, A. (2001). Tetrahedron Lett. 42, 6819-6822.]). It was purified by recrystallization from an ethyl ether:hexa­nes (1:1) solvent mixture to afford colourless block-shaped crystals.

[Figure 3]
Figure 3
A synthetic scheme for the preparation of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C16H14O
Mr 222.27
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 7.485 (5), 9.173 (7), 16.995 (13)
V3) 1166.9 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.40 × 0.40 × 0.35
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.701, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 57886, 2688, 2662
Rint 0.020
(sin θ/λ)max−1) 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.075, 1.06
No. of reflections 2688
No. of parameters 157
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.15
Absolute structure Flack x determined using 1109 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.06 (16)
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: APEX3 (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

1,1-Diphenylbut-3-yn-1-ol top
Crystal data top
C16H14ODx = 1.265 Mg m3
Mr = 222.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 115 reflections
a = 7.485 (5) Åθ = 3.2–24.4°
b = 9.173 (7) ŵ = 0.08 mm1
c = 16.995 (13) ÅT = 100 K
V = 1166.9 (15) Å3Block, colourless
Z = 40.40 × 0.40 × 0.35 mm
F(000) = 472
Data collection top
Bruker D8 Venture
diffractometer
2688 independent reflections
Radiation source: Incoatec Microsource2662 reflections with I > 2σ(I)
Mirrors monochromatorRint = 0.020
Detector resolution: 10.4167 pixels mm-1θmax = 27.6°, θmin = 2.5°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 1111
Tmin = 0.701, Tmax = 0.746l = 2022
57886 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.2544P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.26 e Å3
2688 reflectionsΔρmin = 0.15 e Å3
157 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b)
0 restraintsExtinction coefficient: 0.038 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 1109 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.06 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.57457 (13)0.42888 (11)0.27540 (5)0.0168 (2)
H10.664 (3)0.481 (2)0.2894 (4)0.025*
C10.32959 (17)0.28343 (14)0.31357 (8)0.0126 (3)
C20.24610 (18)0.17965 (14)0.36076 (8)0.0153 (3)
H20.28890.16240.41260.018*
C30.10087 (19)0.10126 (15)0.33270 (8)0.0164 (3)
H30.04530.03050.36540.02*
C40.03638 (18)0.12534 (15)0.25746 (9)0.0173 (3)
H40.06270.07120.23830.021*
C50.1179 (2)0.22922 (16)0.21040 (8)0.0183 (3)
H50.07380.2470.15890.022*
C60.26348 (19)0.30746 (14)0.23819 (8)0.0154 (3)
H60.31860.37820.20540.018*
C70.48752 (18)0.37335 (14)0.34344 (7)0.0122 (3)
C80.41558 (17)0.49758 (14)0.39480 (8)0.0121 (3)
C90.37060 (18)0.47642 (15)0.47354 (8)0.0151 (3)
H90.39220.38460.49760.018*
C100.29437 (19)0.58841 (16)0.51711 (8)0.0188 (3)
H100.26270.57210.57050.023*
C110.2641 (2)0.72385 (16)0.48333 (9)0.0210 (3)
H110.21190.80020.51330.025*
C120.3107 (2)0.74623 (16)0.40560 (9)0.0219 (3)
H120.29210.83910.38220.026*
C130.38473 (19)0.63376 (16)0.36129 (8)0.0166 (3)
H130.41450.65010.30770.02*
C140.62155 (18)0.27596 (15)0.38847 (8)0.0159 (3)
H14A0.56320.23540.43590.019*
H14B0.65850.19350.35460.019*
C150.77909 (19)0.35999 (16)0.41165 (8)0.0170 (3)
C160.90564 (19)0.43325 (17)0.42685 (9)0.0214 (3)
H161.00670.49170.4390.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0153 (4)0.0212 (5)0.0138 (4)0.0062 (4)0.0024 (4)0.0000 (4)
C10.0115 (6)0.0112 (6)0.0151 (6)0.0008 (5)0.0008 (5)0.0032 (5)
C20.0157 (6)0.0161 (6)0.0140 (6)0.0008 (5)0.0010 (5)0.0011 (5)
C30.0155 (6)0.0148 (6)0.0189 (6)0.0023 (5)0.0038 (5)0.0005 (5)
C40.0133 (6)0.0155 (6)0.0231 (7)0.0011 (5)0.0010 (5)0.0035 (5)
C50.0179 (6)0.0194 (6)0.0176 (6)0.0003 (5)0.0043 (5)0.0001 (5)
C60.0162 (6)0.0136 (6)0.0165 (6)0.0006 (5)0.0000 (5)0.0013 (5)
C70.0120 (6)0.0129 (6)0.0117 (6)0.0002 (5)0.0006 (4)0.0005 (4)
C80.0090 (5)0.0129 (6)0.0145 (6)0.0010 (4)0.0016 (4)0.0016 (5)
C90.0145 (6)0.0153 (6)0.0155 (6)0.0021 (5)0.0015 (5)0.0005 (5)
C100.0157 (6)0.0248 (7)0.0160 (6)0.0027 (6)0.0004 (5)0.0063 (5)
C110.0141 (6)0.0192 (6)0.0297 (8)0.0033 (5)0.0034 (5)0.0111 (6)
C120.0209 (7)0.0135 (6)0.0313 (8)0.0032 (5)0.0068 (6)0.0002 (6)
C130.0165 (6)0.0158 (6)0.0173 (6)0.0010 (5)0.0030 (5)0.0010 (5)
C140.0139 (6)0.0143 (6)0.0195 (6)0.0020 (5)0.0013 (5)0.0002 (5)
C150.0156 (6)0.0187 (6)0.0166 (6)0.0046 (5)0.0014 (5)0.0022 (5)
C160.0164 (6)0.0231 (7)0.0249 (7)0.0000 (6)0.0046 (5)0.0024 (6)
Geometric parameters (Å, º) top
O1—C71.4217 (17)C8—C131.392 (2)
O1—H10.86 (2)C8—C91.393 (2)
C1—C61.391 (2)C9—C101.389 (2)
C1—C21.3928 (19)C9—H90.95
C1—C71.5283 (19)C10—C111.387 (2)
C2—C31.388 (2)C10—H100.95
C2—H20.95C11—C121.382 (2)
C3—C41.385 (2)C11—H110.95
C3—H30.95C12—C131.392 (2)
C4—C51.386 (2)C12—H120.95
C4—H40.95C13—H130.95
C5—C61.388 (2)C14—C151.463 (2)
C5—H50.95C14—H14A0.99
C6—H60.95C14—H14B0.99
C7—C81.5332 (19)C15—C161.190 (2)
C7—C141.5460 (19)C16—H160.95
C7—O1—H1109.5C13—C8—C7119.50 (12)
C6—C1—C2118.63 (12)C9—C8—C7121.87 (12)
C6—C1—C7119.71 (12)C10—C9—C8120.54 (13)
C2—C1—C7121.65 (12)C10—C9—H9119.7
C3—C2—C1120.51 (13)C8—C9—H9119.7
C3—C2—H2119.7C11—C10—C9120.60 (14)
C1—C2—H2119.7C11—C10—H10119.7
C4—C3—C2120.52 (13)C9—C10—H10119.7
C4—C3—H3119.7C12—C11—C10119.17 (13)
C2—C3—H3119.7C12—C11—H11120.4
C3—C4—C5119.30 (13)C10—C11—H11120.4
C3—C4—H4120.3C11—C12—C13120.50 (14)
C5—C4—H4120.3C11—C12—H12119.8
C4—C5—C6120.33 (13)C13—C12—H12119.8
C4—C5—H5119.8C8—C13—C12120.65 (14)
C6—C5—H5119.8C8—C13—H13119.7
C5—C6—C1120.72 (12)C12—C13—H13119.7
C5—C6—H6119.6C15—C14—C7110.60 (12)
C1—C6—H6119.6C15—C14—H14A109.5
O1—C7—C1106.13 (11)C7—C14—H14A109.5
O1—C7—C8110.96 (12)C15—C14—H14B109.5
C1—C7—C8108.58 (11)C7—C14—H14B109.5
O1—C7—C14108.20 (11)H14A—C14—H14B108.1
C1—C7—C14110.76 (11)C16—C15—C14176.26 (15)
C8—C7—C14112.06 (11)C15—C16—H16180.0
C13—C8—C9118.54 (12)
C6—C1—C2—C30.50 (19)C14—C7—C8—C13142.93 (12)
C7—C1—C2—C3178.85 (12)O1—C7—C8—C9161.69 (12)
C1—C2—C3—C40.2 (2)C1—C7—C8—C982.05 (15)
C2—C3—C4—C50.3 (2)C14—C7—C8—C940.62 (17)
C3—C4—C5—C60.5 (2)C13—C8—C9—C100.9 (2)
C4—C5—C6—C10.2 (2)C7—C8—C9—C10175.59 (12)
C2—C1—C6—C50.29 (19)C8—C9—C10—C110.9 (2)
C7—C1—C6—C5178.67 (12)C9—C10—C11—C120.0 (2)
C6—C1—C7—O120.69 (16)C10—C11—C12—C131.0 (2)
C2—C1—C7—O1160.98 (12)C9—C8—C13—C120.1 (2)
C6—C1—C7—C898.64 (14)C7—C8—C13—C12176.63 (12)
C2—C1—C7—C879.68 (15)C11—C12—C13—C81.0 (2)
C6—C1—C7—C14137.91 (12)O1—C7—C14—C1559.66 (14)
C2—C1—C7—C1443.77 (16)C1—C7—C14—C15175.60 (11)
O1—C7—C8—C1321.86 (17)C8—C7—C14—C1562.99 (15)
C1—C7—C8—C1394.40 (14)
 

Funding information

We thank the Sistema de Estudios de Posgrado (SEP), Universidad de Costa Rica (UCR) for a stipend to CAU, and the Vicerrectoría de Investigación (UCR) for financial support.

References

First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCabezas, J. A., Pereira, A. & Amey, A. (2001). Tetrahedron Lett. 42, 6819–6822.  CrossRef Google Scholar
First citationFoley, C. N. & Leighton, J. L. (2015). Org. Lett. 17, 5858–5861.  CrossRef Google Scholar
First citationFrancais, A., Leyva, A., Etxebarria-Jardi, G. & Ley, S. V. (2010). Org. Lett. 12, 340–343.  CrossRef Google Scholar
First citationGao, P., Li, H. X., Hao, X. H., Jin, D. P., Chen, D. Q., Yan, X. B., Wu, X. X., Song, X. R., Liu, X. Y. & Liang, Y. M. (2014). Org. Lett. 16, 6298–6301.  CrossRef Google Scholar
First citationHosseyni, S., Wojtas, L., Li, M. & Shi, X. (2016). J. Am. Chem. Soc. 138, 3994–3997.  CrossRef Google Scholar
First citationKim, J., Jeong, W. & Rhee, Y. H. (2017). Org. Lett. 19, 242–245.  CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNicolaou, K. C., Skokotas, G., Furuya, S., Suemune, H. & Nicolaou, D. C. (1990). Angew. Chem. Int. Ed. Engl. 29, 1064–1067.  CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTrost, B. M. & Rhee, Y. H. (2003). J. Am. Chem. Soc. 125, 7482–7483.  CrossRef Google Scholar
First citationYadav, J. S. & Maiti, A. (2002). Tetrahedron, 58, 4955–4961.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds