organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Homopropargyl alcohol 5,5-di­phenyl­pent-2-yne-1,5-diol

aEscuela de Química, Universidad de Costa Rica, 2060, San José, Costa Rica, and bCentro de Electroquímica y Energía Química (CELEQ), Universidad de Costa, Rica, 2060 San José, Costa Rica
*Correspondence e-mail: jorge.cabezas@ucr.ac.cr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 19 October 2018; accepted 15 November 2018; online 22 November 2018)

In the title compound, C17H16O2, the central carbon atom has a distorted tetra­hedral geometry [spread of angles = 105.71 (8)–112.75 (9)°] for its bonds to a homopropargylic but-2-yn-1-ol moiety, a hy­droxy group and two phenyl substituents. In the crystal, O—H⋯O hydrogen-bonding inter­actions link the mol­ecules into [001] chains and C—H⋯π(ring) contacts consolidate the packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Poly-functional homopropargylic alcohols are very useful inter­mediates in the synthesis of a variety of organic compounds (Kim et al., 2017[Kim, J., Jeong, W. & Rhee, Y. H. (2017). Org. Lett. 19, 242-245.]; Foley & Leighton, 2015[Foley, C. N. & Leighton, J. L. (2015). Org. Lett. 17, 5858-5861.]; Francais et al., 2010[Francais, A., Leyva, A., Etxebarria-Jardi, G. & Ley, S. V. (2010). Org. Lett. 12, 340-343.]; Hosseyni et al., 2016[Hosseyni, S., Wojtas, L., Li, M. & Shi, X. (2016). J. Am. Chem. Soc. 138, 3994-3997.]). Their preparation usually involves multi-step synthesis (Midland et al., 1984[Midland, M. M., Tramontano, A., Kazubski, A., Graham, R. S., Tsai, D. J. S. & Cardin, D. B. (1984). Tetrahedron, 40, 1371-1380.]). The crystal structure of 5,5-diphenyl-2-pentyn-1,5-diol is reported herein.

The crystal structure of the title compound features a distorted tetra­hedral geometry for the central carbon atom (C7) for which the bonding sphere is made of a homopropargylic 2-butyn-1-ol fragment, a hy­droxy group and two phenyl groups (Fig. 1[link]). The central carbon atom has angles that deviate from the ideal value (109.4°), mainly because of the bulky phenyl groups attached to it. The dihedral angle between the rings is 80.79 (6)°. The bond length of the carbon-[carbon triple bond (C15≡C16) is 1.190 (2) Å, with the C14—C15—C16 angle being 174.11 (12)°.

[Figure 1]
Figure 1
The title mol­ecule with 50% probability ellipsoids.

In the crystal, O—H⋯O hydrogen-bonding inter­actions are observed between mol­ecules whose acceptor atoms are in a different asymmetric unit, forming a ring with an R(8) graph-set motif (Table 1[link] and Fig. 2[link]) as a component of [001] chains. The packing is consolidated by C—H⋯π inter­actions (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.86 1.91 2.7493 (12) 164
O2—H2′⋯O1ii 0.86 1.87 2.7056 (12) 164
C5—H5⋯Cg2iii 0.95 2.80 3.7122 (13) 160
C17—H17ACg1i 0.99 3.00 3.6172 (13) 122
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y, z-1; (iii) x+1, y, z.
[Figure 2]
Figure 2
The crystal packing of the title compound. O–H⋯O hydrogen bonds and the C–H⋯π(ring) inter­actions are shown, respectively, as black, green and red dashed lines.

Synthesis and crystallization

This highly substituted homopropargyl alcohol was synthesized, in a one-pot reaction, by the sequential treatment of propargyl bromide, with n-BuLi and TMEDA at −78°C, followed by reaction with benzo­phenone. The reaction inter­mediate thus obtained, was treated with paraformaldehyde overnight (Fig. 3[link]), according to the literature procedure (Cabezas et al., 2001[Cabezas, J. A., Pereira, A. & Amey, A. (2001). Tetrahedron Lett. 42, 6819-6822.]). The volatile by-product obtained (2-butyn-1-ol) was removed by Kugelrohr distillation and the residue was purified by column chromatography (ether:hexa­ne) and the product obtained was recrystallized from a mixed ethyl ether:hexa­nes (1:1) solvent mixture to give colourless block-like crystals.

[Figure 3]
Figure 3
A synthetic scheme for the preparation of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H16O2
Mr 252.30
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 7.9772 (3), 22.8528 (8), 7.3075 (3)
β (°) 92.791 (1)
V3) 1330.59 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.50 × 0.34 × 0.25
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.727, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 65030, 3060, 2668
Rint 0.050
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.104, 1.03
No. of reflections 3060
No. of parameters 176
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.25
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: APEX3 (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

5,5-Diphenylpent-2-yne-1,5-diol top
Crystal data top
C17H16O2F(000) = 536
Mr = 252.30Dx = 1.259 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.9772 (3) ÅCell parameters from 117 reflections
b = 22.8528 (8) Åθ = 3.6–23.1°
c = 7.3075 (3) ŵ = 0.08 mm1
β = 92.791 (1)°T = 100 K
V = 1330.59 (9) Å3Block, colourless
Z = 40.50 × 0.34 × 0.25 mm
Data collection top
Bruker D8 Venture
diffractometer
3060 independent reflections
Radiation source: Incoatec Microsource2668 reflections with I > 2σ(I)
Mirrors monochromatorRint = 0.050
Detector resolution: 10.4167 pixels mm-1θmax = 27.5°, θmin = 2.6°
ω scansh = 810
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 2929
Tmin = 0.727, Tmax = 0.746l = 99
65030 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.053P)2 + 0.6384P]
where P = (Fo2 + 2Fc2)/3
3060 reflections(Δ/σ)max = 0.001
176 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27538 (10)0.54181 (3)0.43375 (11)0.01258 (19)
H10.345 (2)0.5263 (5)0.3615 (17)0.019*
O20.46943 (11)0.51425 (4)0.26458 (12)0.0171 (2)
H2'0.4133 (13)0.5299 (7)0.355 (2)0.026*
C10.34385 (14)0.63310 (5)0.28443 (15)0.0115 (2)
C20.33084 (15)0.66221 (5)0.11643 (17)0.0159 (2)
H20.23160.65830.04020.019*
C30.46201 (17)0.69690 (6)0.05955 (18)0.0206 (3)
H30.45150.71660.05490.025*
C40.60738 (17)0.70284 (5)0.16880 (18)0.0202 (3)
H40.69680.72640.12940.024*
C50.62206 (15)0.67418 (5)0.33639 (18)0.0178 (3)
H50.7220.6780.41160.021*
C60.49087 (15)0.63986 (5)0.39436 (16)0.0149 (2)
H60.50130.62080.50990.018*
C70.20382 (14)0.59370 (5)0.35016 (15)0.0104 (2)
C80.10203 (14)0.62267 (5)0.49755 (15)0.0117 (2)
C90.01385 (15)0.58905 (5)0.58940 (17)0.0159 (2)
H90.02770.54880.55930.019*
C100.10905 (16)0.61360 (6)0.72402 (17)0.0196 (3)
H100.18690.59020.78570.024*
C110.09031 (16)0.67244 (6)0.76825 (17)0.0201 (3)
H110.15530.68930.86010.024*
C120.02357 (16)0.70637 (6)0.67798 (17)0.0192 (3)
H120.03640.74660.70790.023*
C130.11950 (15)0.68163 (5)0.54327 (16)0.0150 (2)
H130.19740.70520.48220.018*
C140.08274 (14)0.57347 (5)0.19017 (15)0.0127 (2)
H14A0.00680.54880.23910.015*
H14B0.02910.60810.13090.015*
C150.17153 (14)0.54009 (5)0.05346 (16)0.0127 (2)
C160.25424 (14)0.51196 (5)0.04534 (16)0.0138 (2)
C170.36115 (15)0.47781 (5)0.16380 (16)0.0153 (2)
H17A0.430.45020.08750.018*
H17B0.28920.45450.25070.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0132 (4)0.0123 (4)0.0125 (4)0.0038 (3)0.0025 (3)0.0022 (3)
O20.0142 (4)0.0248 (5)0.0124 (4)0.0041 (3)0.0021 (3)0.0033 (3)
C10.0112 (5)0.0105 (5)0.0130 (5)0.0007 (4)0.0032 (4)0.0014 (4)
C20.0163 (6)0.0165 (5)0.0149 (6)0.0008 (4)0.0010 (4)0.0016 (4)
C30.0261 (7)0.0181 (6)0.0183 (6)0.0035 (5)0.0070 (5)0.0029 (5)
C40.0191 (6)0.0173 (6)0.0252 (7)0.0058 (5)0.0109 (5)0.0044 (5)
C50.0122 (5)0.0179 (6)0.0234 (6)0.0019 (4)0.0021 (5)0.0071 (5)
C60.0147 (5)0.0148 (5)0.0152 (6)0.0004 (4)0.0006 (4)0.0018 (4)
C70.0101 (5)0.0108 (5)0.0102 (5)0.0009 (4)0.0008 (4)0.0013 (4)
C80.0107 (5)0.0150 (5)0.0095 (5)0.0031 (4)0.0004 (4)0.0004 (4)
C90.0174 (6)0.0148 (5)0.0160 (6)0.0029 (4)0.0043 (4)0.0030 (4)
C100.0201 (6)0.0240 (6)0.0154 (6)0.0057 (5)0.0067 (5)0.0054 (5)
C110.0211 (6)0.0272 (6)0.0122 (5)0.0094 (5)0.0034 (5)0.0015 (5)
C120.0212 (6)0.0183 (6)0.0180 (6)0.0042 (5)0.0004 (5)0.0057 (5)
C130.0139 (5)0.0160 (5)0.0151 (6)0.0010 (4)0.0005 (4)0.0014 (4)
C140.0103 (5)0.0156 (5)0.0122 (5)0.0006 (4)0.0009 (4)0.0013 (4)
C150.0108 (5)0.0153 (5)0.0118 (5)0.0017 (4)0.0016 (4)0.0000 (4)
C160.0116 (5)0.0170 (5)0.0126 (5)0.0015 (4)0.0015 (4)0.0002 (4)
C170.0134 (5)0.0173 (5)0.0151 (6)0.0006 (4)0.0009 (4)0.0029 (4)
Geometric parameters (Å, º) top
O1—C71.4391 (13)C8—C131.3936 (16)
O1—H10.860 (17)C8—C91.3985 (16)
O2—C171.4296 (14)C9—C101.3900 (16)
O2—H2'0.857 (18)C9—H90.95
C1—C21.3957 (16)C10—C111.3892 (19)
C1—C61.3974 (16)C10—H100.95
C1—C71.5302 (15)C11—C121.3856 (19)
C2—C31.3923 (17)C11—H110.95
C2—H20.95C12—C131.3956 (16)
C3—C41.3822 (19)C12—H120.95
C3—H30.95C13—H130.95
C4—C51.3888 (19)C14—C151.4665 (15)
C4—H40.95C14—H14A0.99
C5—C61.3903 (16)C14—H14B0.99
C5—H50.95C15—C161.1900 (17)
C6—H60.95C16—C171.4690 (16)
C7—C81.5307 (15)C17—H17A0.99
C7—C141.5503 (15)C17—H17B0.99
C7—O1—H1109.5C10—C9—C8120.97 (11)
C17—O2—H2'109.5C10—C9—H9119.5
C2—C1—C6118.51 (11)C8—C9—H9119.5
C2—C1—C7122.17 (10)C11—C10—C9119.94 (12)
C6—C1—C7119.32 (10)C11—C10—H10120.0
C3—C2—C1120.61 (12)C9—C10—H10120.0
C3—C2—H2119.7C12—C11—C10119.77 (11)
C1—C2—H2119.7C12—C11—H11120.1
C4—C3—C2120.34 (12)C10—C11—H11120.1
C4—C3—H3119.8C11—C12—C13120.25 (11)
C2—C3—H3119.8C11—C12—H12119.9
C3—C4—C5119.69 (11)C13—C12—H12119.9
C3—C4—H4120.2C8—C13—C12120.59 (11)
C5—C4—H4120.2C8—C13—H13119.7
C4—C5—C6120.15 (12)C12—C13—H13119.7
C4—C5—H5119.9C15—C14—C7111.41 (9)
C6—C5—H5119.9C15—C14—H14A109.3
C5—C6—C1120.69 (11)C7—C14—H14A109.3
C5—C6—H6119.7C15—C14—H14B109.3
C1—C6—H6119.7C7—C14—H14B109.3
O1—C7—C1109.72 (9)H14A—C14—H14B108.0
O1—C7—C8105.71 (8)C16—C15—C14174.11 (12)
C1—C7—C8112.75 (9)C15—C16—C17178.17 (13)
O1—C7—C14107.11 (9)O2—C17—C16112.13 (10)
C1—C7—C14112.10 (9)O2—C17—H17A109.2
C8—C7—C14109.10 (9)C16—C17—H17A109.2
C13—C8—C9118.48 (11)O2—C17—H17B109.2
C13—C8—C7122.46 (10)C16—C17—H17B109.2
C9—C8—C7119.06 (10)H17A—C17—H17B107.9
C6—C1—C2—C30.37 (17)C14—C7—C8—C13115.62 (12)
C7—C1—C2—C3178.85 (11)O1—C7—C8—C950.95 (13)
C1—C2—C3—C40.18 (19)C1—C7—C8—C9170.83 (10)
C2—C3—C4—C50.24 (19)C14—C7—C8—C963.93 (13)
C3—C4—C5—C60.26 (18)C13—C8—C9—C100.35 (18)
C4—C5—C6—C10.83 (18)C7—C8—C9—C10179.92 (11)
C2—C1—C6—C50.88 (17)C8—C9—C10—C110.34 (19)
C7—C1—C6—C5178.37 (10)C9—C10—C11—C120.10 (19)
C2—C1—C7—O1138.56 (11)C10—C11—C12—C130.11 (19)
C6—C1—C7—O140.66 (13)C9—C8—C13—C120.13 (17)
C2—C1—C7—C8103.91 (12)C7—C8—C13—C12179.69 (10)
C6—C1—C7—C876.87 (13)C11—C12—C13—C80.09 (18)
C2—C1—C7—C1419.69 (14)O1—C7—C14—C1560.24 (11)
C6—C1—C7—C14159.53 (10)C1—C7—C14—C1560.16 (12)
O1—C7—C8—C13129.49 (11)C8—C7—C14—C15174.22 (9)
C1—C7—C8—C139.62 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.861.912.7493 (12)164
O2—H2···O1ii0.861.872.7056 (12)164
C5—H5···Cg2iii0.952.803.7122 (13)160
C17—H17A···Cg1i0.993.003.6172 (13)122
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z1; (iii) x+1, y, z.
 

Funding information

We thank the Sistema de Estudios de Posgrado (SEP), Universidad de Costa Rica (UCR) for a stipend to CAU, and the Vicerrectoría de Investigación (UCR) for financial support.

References

First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCabezas, J. A., Pereira, A. & Amey, A. (2001). Tetrahedron Lett. 42, 6819–6822.  CrossRef Google Scholar
First citationFoley, C. N. & Leighton, J. L. (2015). Org. Lett. 17, 5858–5861.  CrossRef Google Scholar
First citationFrancais, A., Leyva, A., Etxebarria-Jardi, G. & Ley, S. V. (2010). Org. Lett. 12, 340–343.  CrossRef Google Scholar
First citationHosseyni, S., Wojtas, L., Li, M. & Shi, X. (2016). J. Am. Chem. Soc. 138, 3994–3997.  CrossRef Google Scholar
First citationKim, J., Jeong, W. & Rhee, Y. H. (2017). Org. Lett. 19, 242–245.  CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMidland, M. M., Tramontano, A., Kazubski, A., Graham, R. S., Tsai, D. J. S. & Cardin, D. B. (1984). Tetrahedron, 40, 1371–1380.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds