organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­thio­bis­­(formamidinium) bis­­(hydrogen sulfate)

aLaboratoire de Chimie des Matériaux et Biotechnologie des Produits Naturels, E.Ma.Me.P.S, Université Moulay Ismail, Faculté des Sciences, Meknès, Morocco, and bCenter of Nuclear Studies of Maamora (CENM) (CNESTEN), POB 1382, 10001 Kenitra, Morocco
*Correspondence e-mail: hafid.zouihri@gmail.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 31 October 2018; accepted 31 October 2018; online 16 November 2018)

The crystal structure of the title salt, di­thio­bis­(formamidinium) bis­(hydrogen sulfate), C2H8N4S22+·2HSO4, is built up from di­thio­bis­(formamidinium) cations and hydrogensulfate anions. The anion is an almost regular tetra­hedron. In the crystal, the anions and cations are linked by O—H⋯O and N—H⋯O hydrogen bonds, generating a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The asymmetric unit of the title compound comprises one di­thio­bis­(formamidinium) cation and two hydrogensulfate anions (Fig. 1[link]). The bond distances and angles in the organic cations show no significant differences from those in a related compound involving the same organic groups (Zouihri, 2012[Zouihri, H. (2012). Acta Cryst. E68, o257.]). In the sulfate anion, the S—O bond lengths range from 1.436 (2) to 1.540 (2) Å. It is worth noting that the S3—O3 and S4—O7 distances are the longest because O4 and O7 are bonded to an H atom. The construction of the three-dimensional architecture (Fig. 2[link]) is consolidated by O—H⋯O and N—H⋯O hydrogen bonds (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O6i 0.83 (2) 2.33 (3) 2.860 (3) 123 (3)
N3—H3A⋯O5 0.86 (2) 2.24 (2) 3.032 (3) 153 (3)
N3—H3A⋯O7ii 0.86 (2) 2.48 (3) 3.048 (3) 125 (3)
N1—H1A⋯O4 0.85 (2) 2.03 (2) 2.866 (3) 170 (3)
N1—H1B⋯O4iii 0.85 (2) 2.14 (3) 2.813 (3) 136 (3)
N3—H3B⋯O2iv 0.85 (2) 2.02 (2) 2.861 (3) 173 (3)
N2—H2A⋯O5v 0.85 (2) 2.03 (2) 2.868 (3) 169 (3)
N2—H2B⋯O1 0.86 (2) 2.10 (2) 2.955 (3) 172 (3)
O3—H3⋯O1vi 0.84 (2) 1.79 (2) 2.628 (2) 175 (5)
N4—H4B⋯O6 0.86 (2) 1.97 (2) 2.815 (3) 168 (4)
O7—H7⋯O8vii 0.85 (2) 1.76 (2) 2.602 (3) 168 (5)
N4—H4A⋯O6i 0.83 (2) 2.33 (3) 2.860 (3) 123 (3)
N3—H3A⋯O5 0.86 (2) 2.24 (2) 3.032 (3) 153 (3)
N3—H3A⋯O7ii 0.86 (2) 2.48 (3) 3.048 (3) 125 (3)
N1—H1A⋯O4 0.85 (2) 2.03 (2) 2.866 (3) 170 (3)
N1—H1B⋯O4iii 0.85 (2) 2.14 (3) 2.813 (3) 136 (3)
N3—H3B⋯O2iv 0.85 (2) 2.02 (2) 2.861 (3) 173 (3)
N2—H2A⋯O5v 0.85 (2) 2.03 (2) 2.868 (3) 169 (3)
N2—H2B⋯O1 0.86 (2) 2.10 (2) 2.955 (3) 172 (3)
O3—H3⋯O1vi 0.84 (2) 1.79 (2) 2.628 (2) 175 (5)
N4—H4B⋯O6 0.86 (2) 1.97 (2) 2.815 (3) 168 (4)
O7—H7⋯O8vii 0.85 (2) 1.76 (2) 2.602 (3) 168 (5)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+1; (iv) -x+2, -y+1, -z+1; (v) x, y-1, z; (vi) -x, -y, -z+1; (vii) -x+1, -y+2, -z.
[Figure 1]
Figure 1
Mol­ecular view of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Packing of the title compound. HSO4 anions are drawn as tetra­hedra.

Synthesis and crystallization

Equimolar solutions of thio­urea dissolved in methanol and aqueous sulfuric acid were mixed together and stirred for about 1 h. Crystals of the title compound were formed as the solvent evaporated over a few days at room temperature. They were filtered off, dried and repeatedly recrystallized as colourless prisms to enhance the purity of the product.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C2H8N4S22+·2HO4S
Mr 346.38
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 5.1371 (2), 9.5237 (4), 12.9884 (6)
α, β, γ (°) 106.521 (2), 96.067 (2), 95.618 (2)
V3) 600.32 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.83
Crystal size (mm) 0.21 × 0.17 × 0.12
 
Data collection
Diffractometer Bruker X8 APEXII CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.844, 0.905
No. of measured, independent and observed [I > 2σ(I)] reflections 14082, 2892, 2625
Rint 0.031
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.100, 1.11
No. of reflections 2892
No. of parameters 203
No. of restraints 10
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.34, −0.53
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Dithiobis(formamidinium) bis(hydrogen sulfate) top
Crystal data top
C2H8N4S22+·2HO4SZ = 2
Mr = 346.38F(000) = 356
Triclinic, P1Dx = 1.916 Mg m3
a = 5.1371 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5237 (4) ÅCell parameters from 278 reflections
c = 12.9884 (6) Åθ = 1.2–31.2°
α = 106.521 (2)°µ = 0.83 mm1
β = 96.067 (2)°T = 293 K
γ = 95.618 (2)°Prism, colourless
V = 600.32 (4) Å30.21 × 0.17 × 0.12 mm
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
2892 independent reflections
Radiation source: fine-focus sealed tube2625 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and φ scansθmax = 28.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 66
Tmin = 0.844, Tmax = 0.905k = 1212
14082 measured reflectionsl = 1717
Refinement top
Refinement on F210 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036All H-atom parameters refined
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0418P)2 + 0.7302P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2892 reflectionsΔρmax = 0.34 e Å3
203 parametersΔρmin = 0.53 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were located from a difference map and were allowed to refine with O—H and N—H restrained to 0.86 (2) Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S30.22662 (11)0.20042 (6)0.54402 (4)0.02342 (14)
S40.65664 (11)0.82235 (6)0.03004 (5)0.02686 (14)
S10.98932 (13)0.25348 (7)0.22595 (5)0.03335 (16)
S21.16936 (12)0.46501 (7)0.28680 (5)0.03345 (16)
O30.0718 (3)0.19092 (19)0.55064 (15)0.0307 (4)
O60.6665 (5)0.6659 (2)0.01074 (18)0.0465 (5)
O10.2632 (4)0.07584 (18)0.45047 (15)0.0346 (4)
O40.2952 (4)0.33873 (18)0.52202 (16)0.0368 (4)
N20.6532 (5)0.1055 (2)0.30371 (18)0.0327 (5)
O50.8279 (4)0.8898 (2)0.13095 (16)0.0428 (5)
O20.3620 (4)0.1912 (2)0.64396 (17)0.0461 (5)
N31.1645 (5)0.6848 (3)0.20735 (19)0.0372 (5)
N10.6973 (4)0.3550 (2)0.38724 (18)0.0298 (4)
O70.3693 (4)0.8386 (3)0.0499 (2)0.0522 (6)
N40.8166 (5)0.5039 (3)0.1312 (2)0.0454 (6)
O80.7077 (5)0.8946 (3)0.05202 (18)0.0538 (6)
C21.0307 (5)0.5578 (3)0.19805 (19)0.0283 (5)
C10.7569 (5)0.2408 (2)0.31604 (18)0.0250 (4)
H4A0.744 (6)0.418 (2)0.117 (3)0.047 (10)*
H3A1.112 (6)0.743 (3)0.173 (2)0.039 (8)*
H1A0.585 (5)0.340 (3)0.427 (2)0.027 (7)*
H1B0.767 (6)0.442 (2)0.394 (3)0.041 (9)*
H3B1.303 (5)0.715 (4)0.254 (2)0.051 (10)*
H2A0.710 (6)0.036 (3)0.259 (2)0.040 (8)*
H2B0.530 (5)0.091 (4)0.341 (2)0.042 (9)*
H30.139 (9)0.108 (3)0.553 (4)0.087 (15)*
H4B0.749 (8)0.553 (4)0.091 (3)0.073 (13)*
H70.329 (9)0.925 (3)0.057 (4)0.081 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S30.0233 (3)0.0185 (2)0.0279 (3)0.00014 (18)0.0047 (2)0.0066 (2)
S40.0270 (3)0.0264 (3)0.0278 (3)0.0039 (2)0.0031 (2)0.0091 (2)
S10.0396 (3)0.0294 (3)0.0326 (3)0.0053 (2)0.0146 (3)0.0081 (2)
S20.0308 (3)0.0365 (3)0.0343 (3)0.0032 (2)0.0046 (2)0.0182 (3)
O30.0252 (8)0.0272 (8)0.0410 (10)0.0020 (7)0.0101 (7)0.0110 (7)
O60.0561 (13)0.0266 (9)0.0483 (12)0.0042 (8)0.0073 (10)0.0035 (8)
O10.0395 (10)0.0209 (8)0.0425 (10)0.0032 (7)0.0172 (8)0.0040 (7)
O40.0423 (10)0.0188 (8)0.0522 (11)0.0004 (7)0.0196 (9)0.0120 (7)
N20.0431 (12)0.0221 (10)0.0320 (11)0.0024 (9)0.0103 (9)0.0057 (8)
O50.0462 (11)0.0388 (10)0.0338 (10)0.0094 (9)0.0043 (8)0.0021 (8)
O20.0399 (11)0.0582 (13)0.0386 (11)0.0044 (9)0.0085 (8)0.0207 (10)
N30.0403 (13)0.0347 (11)0.0361 (12)0.0055 (9)0.0085 (10)0.0183 (10)
N10.0386 (12)0.0211 (9)0.0327 (11)0.0069 (8)0.0135 (9)0.0086 (8)
O70.0286 (10)0.0588 (14)0.0850 (17)0.0120 (9)0.0161 (10)0.0416 (13)
N40.0394 (13)0.0433 (14)0.0488 (15)0.0068 (11)0.0173 (11)0.0188 (12)
O80.0746 (16)0.0570 (13)0.0477 (12)0.0240 (12)0.0308 (11)0.0312 (11)
C20.0271 (11)0.0331 (12)0.0252 (11)0.0022 (9)0.0011 (9)0.0109 (9)
C10.0286 (11)0.0246 (10)0.0239 (10)0.0065 (8)0.0028 (8)0.0100 (8)
Geometric parameters (Å, º) top
S3—O21.436 (2)N2—H2A0.846 (18)
S3—O41.4441 (17)N2—H2B0.861 (18)
S3—O11.4803 (18)N3—C21.299 (3)
S3—O31.5397 (18)N3—H3A0.858 (18)
S4—O51.4393 (19)N3—H3B0.849 (18)
S4—O61.440 (2)N1—C11.298 (3)
S4—O81.456 (2)N1—H1A0.847 (17)
S4—O71.540 (2)N1—H1B0.845 (18)
S1—C11.777 (2)O7—H70.851 (19)
S1—S22.0282 (9)N4—C21.289 (3)
S2—C21.774 (2)N4—H4A0.828 (18)
O3—H30.840 (19)N4—H4B0.859 (19)
N2—C11.304 (3)
O2—S3—O4114.18 (13)H2A—N2—H2B123 (3)
O2—S3—O1111.76 (13)C2—N3—H3A123 (2)
O4—S3—O1109.77 (11)C2—N3—H3B119 (2)
O2—S3—O3108.85 (12)H3A—N3—H3B118 (3)
O4—S3—O3104.91 (11)C1—N1—H1A117.7 (19)
O1—S3—O3106.89 (10)C1—N1—H1B122 (2)
O5—S4—O6112.33 (12)H1A—N1—H1B121 (3)
O5—S4—O8112.41 (15)S4—O7—H7114 (3)
O6—S4—O8110.66 (14)C2—N4—H4A124 (2)
O5—S4—O7108.55 (14)C2—N4—H4B121 (3)
O6—S4—O7105.97 (14)H4A—N4—H4B114 (4)
O8—S4—O7106.52 (13)N4—C2—N3123.5 (2)
C1—S1—S2103.40 (8)N4—C2—S2122.9 (2)
C2—S2—S1104.56 (9)N3—C2—S2113.63 (18)
S3—O3—H3113 (3)N1—C1—N2123.5 (2)
C1—N2—H2A118 (2)N1—C1—S1123.21 (18)
C1—N2—H2B119 (2)N2—C1—S1113.31 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O6i0.83 (2)2.33 (3)2.860 (3)123 (3)
N3—H3A···O50.86 (2)2.24 (2)3.032 (3)153 (3)
N3—H3A···O7ii0.86 (2)2.48 (3)3.048 (3)125 (3)
N1—H1A···O40.85 (2)2.03 (2)2.866 (3)170 (3)
N1—H1B···O4iii0.85 (2)2.14 (3)2.813 (3)136 (3)
N3—H3B···O2iv0.85 (2)2.02 (2)2.861 (3)173 (3)
N2—H2A···O5v0.85 (2)2.03 (2)2.868 (3)169 (3)
N2—H2B···O10.86 (2)2.10 (2)2.955 (3)172 (3)
O3—H3···O1vi0.84 (2)1.79 (2)2.628 (2)175 (5)
N4—H4B···O60.86 (2)1.97 (2)2.815 (3)168 (4)
O7—H7···O8vii0.85 (2)1.76 (2)2.602 (3)168 (5)
N4—H4A···O6i0.83 (2)2.33 (3)2.860 (3)123 (3)
N3—H3A···O50.86 (2)2.24 (2)3.032 (3)153 (3)
N3—H3A···O7ii0.86 (2)2.48 (3)3.048 (3)125 (3)
N1—H1A···O40.85 (2)2.03 (2)2.866 (3)170 (3)
N1—H1B···O4iii0.85 (2)2.14 (3)2.813 (3)136 (3)
N3—H3B···O2iv0.85 (2)2.02 (2)2.861 (3)173 (3)
N2—H2A···O5v0.85 (2)2.03 (2)2.868 (3)169 (3)
N2—H2B···O10.86 (2)2.10 (2)2.955 (3)172 (3)
O3—H3···O1vi0.84 (2)1.79 (2)2.628 (2)175 (5)
N4—H4B···O60.86 (2)1.97 (2)2.815 (3)168 (4)
O7—H7···O8vii0.85 (2)1.76 (2)2.602 (3)168 (5)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x+2, y+1, z+1; (v) x, y1, z; (vi) x, y, z+1; (vii) x+1, y+2, z.
 

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZouihri, H. (2012). Acta Cryst. E68, o257.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds