organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

The rel-R,R-enanti­omer of 7-[7-hydroxybi­cyclo[4.2.0]octa-1(6),2,4-trien-7-yl]bi­cyclo­[4.2.0]octa-1(6),2,4-trien-7-ol

aUniversity of Mainz, Institut of Organic Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 25 October 2018; accepted 2 November 2018; online 9 November 2018)

A single crystal of the rel-R,R-enanti­omer of the title compound, C16H14O2, was analyzed. The mol­ecular structure is characterized by nearly planar cyclo­butene rings and a torsion angle of the diol unit of 68.3 (2)°. Strands parallel to the b axis are built from diols connected via hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

A single-crystal of the isomeric mixture of the title compound (Fig. 1[link]) was analysed, consisting of the pure rel-R,R-enanti­omer. The bond lengths of the benzo­cyclo­butene fragments are typical for this unit, both four-membered rings are planar, the sums of bond angles are 359.96° and 359.45° resp. The bond angles at the sp2-carbons are 93.1 (2)° (C9—C16—C11), 93.8 (2)° (C10—C11—C16), 94.3 (2)° (C8—C3—C2), and 93.2 (2)° (C3—C8—C1).

[Figure 1]
Figure 1
Perspective view of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

The dihedral angle between the best planes of the cyclo­butane units is 58.5 (2)° and the central torsion angle of the glycol subunit is 68.2 (3)°. In the crystal, the mol­ecules (symmetry transformed by a a twofold screw axis) form strands along the b-axis direction. Hydrogen bonds (Fig. 2[link], Table 1[link]) parallel to the b-axis [O1—H1⋯O2, 1.92 (4) Å, 170 (3)°] connect mol­ecules with translational symmetry, hydrogen bonds in direction of the c-axis [O2—H2⋯O1, 1.91 (4) Å, 152.0 (4)°] connect two mol­ecules which are symmetry-related by the screw axis.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.87 (4) 1.92 (4) 2.782 (3) 170 (3)
O2—H2⋯O1ii 0.94 (4) 1.91 (4) 2.782 (3) 152 (4)
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
Partial packing diagram, view along the a axis. Hydrogen bonds are drawn with dashed lines.

Synthesis and crystallization

The reductive coupling of aldehydes or ketones with low-valent titanium (McMurry, 1989[McMurry, J. (1989). Chem. Rev. 89, 1513-1524.]) is an important route to stilbenes (Meier, 1992[Meier, H. (1992). Angew. Chem. 104, 1425-1446.]), even to stilbenes with severe geometrical strain (Lenoir, 1989[Lenoir, D. (1989). Synthesis, pp. 883-897.]; Dobryakov et al., 2016[Dobryakov, A. L., Quick, M., Lenoir, D., Detert, H., Ernsting, N. P. & Kovalenko, S. A. (2016). Chem. Phys. Lett. 652, 225-229.]). The reaction proceeds via a pinacol inter­mediate, the geometry of which is decisive for the configuration of the product. The McMurry reaction of benzo­cyclo­butenone (Schiess & Heitzmann, 1977[Schiess, P. & Heitzmann, H. (1977). Angew. Chem. Int. Ed. Engl. 16, 469-470.][Schiess, P. & Heitzmann, H. (1977). Angew. Chem. 89, 485-485.]) results in a mixture of E– and Z-di(benzo­cyclo­butyl­idene) (Schneider et al., 1999[Schneider, S., Brem, B., Jäger, W., Rehaber, H., Lenoir, D. & Frank, R. (1999). Chem. Phys. Lett. 308, 211-217.]) together with a pinacol (40%) of unknown geometry (Oelgemöller et al., 2002[Oelgemöller, M., Brem, B., Frank, R., Schneider, S., Lenoir, D., Hertkorn, N., Origane, Y., Lemmen, P., Lex, J. & Inoue, Y. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 1760-1771.]). H NMR spectroscopy of the crude product mixture showed a 6:4 ratio of the stilbene (ca 1:1 mixture of both isomers) and the diol. A single crystal from the mixture of the diols was investigated.

H NMR (400 MHz; CDCl3): δH = 1.53 (2 H, br s, OH), 3.04 (2 H, d, J = 14.4, 2-H), 3.17 (2 H, br s, 1-H), 3.30 (2 H, d, J = 14.4, 2-H), 7.01–7.18 (8 H, br m, Harom); C NMR (100 MHz; CDCl3) δC = 42.7 (t, 2 × C-2), 82.9 (d, 2 × C-1), 121.4 (d, 2 × Carom), 123.2 (d, 2 × Carom), 127.1 (d, 2 × Carom), 129.5 (d, 2 × Carom), 142.3 (s, 2 × Carom) and 146.8 (s, 2 × Carom). Recrystallization from chloro­form/propanol-2 (v/v = 1:3) yielded colourless crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The absolute configuration could not be determined and was arbitrarily set.

Table 2
Experimental details

Crystal data
Chemical formula C16H14O2
Mr 238.27
Crystal system, space group Monoclinic, P21
Temperature (K) 193
a, b, c (Å) 10.1497 (12), 5.1276 (4), 11.6896 (16)
β (°) 99.541 (10)
V3) 599.95 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.50 × 0.13 × 0.07
 
Data collection
Diffractometer Stoe IPDS 2T
No. of measured, independent and observed [I > 2σ(I)] reflections 4954, 2964, 2371
Rint 0.032
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.097, 1.05
No. of reflections 2964
No. of parameters 171
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.18
Absolute structure Flack x determined using 875 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 1.6 (10)
Computer programs: X-AREA and X-RED (Stoe & Cie, 1996[Stoe & Cie (1996). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 1996); cell refinement: X-AREA (Stoe & Cie, 1996); data reduction: X-RED (Stoe & Cie, 1996); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2017 (Sheldrick, 2015b).

7-[7-Hydroxybicyclo[4.2.0]octa-1(6),2,4-trien-7-yl]bicyclo[4.2.0]octa-1(6),2,4-trien-7-ol top
Crystal data top
C16H14O2F(000) = 252
Mr = 238.27Dx = 1.319 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.1497 (12) ÅCell parameters from 4652 reflections
b = 5.1276 (4) Åθ = 2.0–28.5°
c = 11.6896 (16) ŵ = 0.09 mm1
β = 99.541 (10)°T = 193 K
V = 599.95 (12) Å3Needle, colourless
Z = 20.50 × 0.13 × 0.07 mm
Data collection top
Stoe IPDS 2T
diffractometer
2371 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focusRint = 0.032
Detector resolution: 6.67 pixels mm-1θmax = 28.4°, θmin = 2.0°
rotation method scansh = 1313
4954 measured reflectionsk = 66
2964 independent reflectionsl = 1415
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.031P)2 + 0.2519P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.24 e Å3
2964 reflectionsΔρmin = 0.17 e Å3
171 parametersAbsolute structure: Flack x determined using 875 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 1.6 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydroxyl hydrogen atoms were localized in difference fourier maps and freely refined.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.51056 (18)0.2981 (4)0.41147 (15)0.0237 (4)
H10.471 (3)0.154 (8)0.385 (3)0.044 (10)*
O20.40202 (18)0.8096 (4)0.35005 (17)0.0249 (4)
H20.421 (4)0.750 (8)0.427 (4)0.061 (12)*
C10.5454 (3)0.4489 (5)0.3182 (2)0.0212 (5)
C20.6155 (3)0.2889 (6)0.2297 (2)0.0253 (6)
H2A0.6271090.1011010.2483400.030*
H2B0.5762810.3162580.1472680.030*
C30.7381 (3)0.4546 (5)0.2718 (2)0.0253 (6)
C40.8688 (3)0.4972 (6)0.2584 (3)0.0352 (7)
H40.9099020.4018650.2041450.042*
C50.9363 (3)0.6876 (7)0.3290 (3)0.0387 (8)
H51.0265090.7250040.3225850.046*
C60.8763 (3)0.8265 (7)0.4093 (3)0.0369 (7)
H60.9264130.9559500.4557060.044*
C70.7447 (3)0.7799 (6)0.4230 (2)0.0289 (6)
H70.7032710.8720620.4779080.035*
C80.6785 (3)0.5907 (5)0.3514 (2)0.0225 (6)
C90.4249 (3)0.6156 (5)0.2679 (2)0.0206 (5)
C100.4233 (3)0.7324 (5)0.1430 (2)0.0247 (6)
H10A0.3948670.9170680.1347440.030*
H10B0.5065860.7024900.1111430.030*
C110.3129 (3)0.5373 (5)0.1021 (2)0.0246 (6)
C120.2315 (3)0.4363 (6)0.0055 (3)0.0321 (7)
H120.2377440.4915100.0709530.038*
C130.1395 (3)0.2481 (6)0.0277 (3)0.0327 (7)
H130.0817260.1720580.0357340.039*
C140.1298 (3)0.1684 (6)0.1395 (3)0.0289 (6)
H140.0645110.0421570.1503840.035*
C150.2132 (2)0.2686 (5)0.2363 (2)0.0253 (6)
H150.2075270.2138160.3129480.030*
C160.3047 (3)0.4528 (5)0.2133 (2)0.0227 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0308 (10)0.0192 (9)0.0210 (9)0.0022 (9)0.0038 (7)0.0016 (8)
O20.0318 (10)0.0181 (9)0.0245 (10)0.0027 (9)0.0040 (8)0.0024 (8)
C10.0246 (13)0.0176 (12)0.0217 (13)0.0008 (11)0.0051 (10)0.0004 (11)
C20.0323 (14)0.0225 (13)0.0213 (12)0.0031 (13)0.0047 (10)0.0012 (12)
C30.0280 (14)0.0239 (13)0.0239 (14)0.0040 (12)0.0039 (11)0.0061 (12)
C40.0309 (15)0.0411 (18)0.0357 (17)0.0050 (14)0.0111 (13)0.0094 (14)
C50.0263 (14)0.0472 (19)0.0417 (18)0.0035 (14)0.0028 (13)0.0137 (16)
C60.0313 (15)0.0356 (16)0.0395 (17)0.0075 (15)0.0068 (13)0.0077 (15)
C70.0294 (14)0.0255 (14)0.0294 (14)0.0023 (13)0.0020 (11)0.0007 (13)
C80.0232 (13)0.0202 (13)0.0236 (13)0.0024 (11)0.0020 (11)0.0045 (11)
C90.0230 (13)0.0171 (12)0.0213 (13)0.0005 (10)0.0030 (10)0.0001 (10)
C100.0280 (13)0.0217 (14)0.0241 (13)0.0000 (11)0.0035 (11)0.0039 (11)
C110.0235 (13)0.0227 (14)0.0268 (14)0.0024 (11)0.0022 (11)0.0007 (11)
C120.0334 (16)0.0367 (16)0.0246 (14)0.0015 (14)0.0004 (12)0.0019 (13)
C130.0271 (14)0.0370 (18)0.0308 (15)0.0011 (13)0.0050 (12)0.0093 (14)
C140.0214 (13)0.0277 (15)0.0370 (17)0.0024 (12)0.0027 (12)0.0020 (12)
C150.0235 (12)0.0246 (14)0.0277 (13)0.0027 (12)0.0044 (10)0.0025 (12)
C160.0226 (12)0.0208 (13)0.0244 (13)0.0019 (11)0.0029 (10)0.0012 (11)
Geometric parameters (Å, º) top
O1—C11.429 (3)C7—C81.380 (4)
O1—H10.87 (4)C7—H70.9500
O2—C91.428 (3)C9—C161.527 (4)
O2—H20.94 (4)C9—C101.576 (4)
C1—C81.527 (4)C10—C111.519 (4)
C1—C91.528 (3)C10—H10A0.9900
C1—C21.579 (4)C10—H10B0.9900
C2—C31.519 (4)C11—C121.384 (4)
C2—H2A0.9900C11—C161.386 (4)
C2—H2B0.9900C12—C131.397 (4)
C3—C41.379 (4)C12—H120.9500
C3—C81.380 (4)C13—C141.388 (4)
C4—C51.385 (5)C13—H130.9500
C4—H40.9500C14—C151.393 (4)
C5—C61.397 (5)C14—H140.9500
C5—H50.9500C15—C161.382 (4)
C6—C71.391 (4)C15—H150.9500
C6—H60.9500
C1—O1—H1110 (2)C7—C8—C1144.2 (3)
C9—O2—H2113 (2)O2—C9—C16117.0 (2)
O1—C1—C8112.6 (2)O2—C9—C1109.9 (2)
O1—C1—C9108.2 (2)C16—C9—C1112.82 (19)
C8—C1—C9116.7 (2)O2—C9—C10112.4 (2)
O1—C1—C2114.5 (2)C16—C9—C1086.32 (19)
C8—C1—C286.47 (19)C1—C9—C10117.0 (2)
C9—C1—C2117.3 (2)C11—C10—C986.26 (19)
C3—C2—C186.04 (19)C11—C10—H10A114.3
C3—C2—H2A114.3C9—C10—H10A114.3
C1—C2—H2A114.3C11—C10—H10B114.3
C3—C2—H2B114.3C9—C10—H10B114.3
C1—C2—H2B114.3H10A—C10—H10B111.4
H2A—C2—H2B111.5C12—C11—C16121.8 (3)
C4—C3—C8122.3 (3)C12—C11—C10144.3 (3)
C4—C3—C2143.4 (3)C16—C11—C1093.8 (2)
C8—C3—C294.3 (2)C11—C12—C13115.7 (3)
C3—C4—C5115.7 (3)C11—C12—H12122.1
C3—C4—H4122.1C13—C12—H12122.1
C5—C4—H4122.1C14—C13—C12122.2 (3)
C4—C5—C6122.1 (3)C14—C13—H13118.9
C4—C5—H5118.9C12—C13—H13118.9
C6—C5—H5118.9C13—C14—C15121.8 (3)
C7—C6—C5121.6 (3)C13—C14—H14119.1
C7—C6—H6119.2C15—C14—H14119.1
C5—C6—H6119.2C16—C15—C14115.6 (3)
C8—C7—C6115.6 (3)C16—C15—H15122.2
C8—C7—H7122.2C14—C15—H15122.2
C6—C7—H7122.2C15—C16—C11122.9 (3)
C3—C8—C7122.7 (3)C15—C16—C9143.9 (3)
C3—C8—C193.2 (2)C11—C16—C993.1 (2)
O1—C1—C2—C3114.5 (2)C2—C1—C9—C1667.0 (3)
C8—C1—C2—C31.30 (18)O1—C1—C9—C10162.1 (2)
C9—C1—C2—C3117.1 (2)C8—C1—C9—C1069.7 (3)
C1—C2—C3—C4179.5 (4)C2—C1—C9—C1030.8 (3)
C1—C2—C3—C81.4 (2)O2—C9—C10—C11122.9 (2)
C8—C3—C4—C50.7 (4)C16—C9—C10—C115.15 (19)
C2—C3—C4—C5178.4 (3)C1—C9—C10—C11108.6 (2)
C3—C4—C5—C60.4 (5)C9—C10—C11—C12174.8 (4)
C4—C5—C6—C70.2 (5)C9—C10—C11—C165.7 (2)
C5—C6—C7—C80.7 (4)C16—C11—C12—C131.1 (4)
C4—C3—C8—C70.3 (4)C10—C11—C12—C13178.3 (4)
C2—C3—C8—C7179.0 (3)C11—C12—C13—C140.4 (4)
C4—C3—C8—C1179.9 (3)C12—C13—C14—C151.2 (5)
C2—C3—C8—C11.5 (2)C13—C14—C15—C160.5 (4)
C6—C7—C8—C30.4 (4)C14—C15—C16—C111.0 (4)
C6—C7—C8—C1178.9 (3)C14—C15—C16—C9172.8 (3)
O1—C1—C8—C3116.5 (2)C12—C11—C16—C151.8 (4)
C9—C1—C8—C3117.4 (2)C10—C11—C16—C15177.8 (3)
C2—C1—C8—C31.4 (2)C12—C11—C16—C9174.5 (3)
O1—C1—C8—C764.1 (5)C10—C11—C16—C95.9 (2)
C9—C1—C8—C761.9 (5)O2—C9—C16—C1566.3 (5)
C2—C1—C8—C7179.2 (4)C1—C9—C16—C1562.7 (5)
O1—C1—C9—O268.3 (2)C10—C9—C16—C15179.6 (4)
C8—C1—C9—O259.9 (3)O2—C9—C16—C11118.9 (2)
C2—C1—C9—O2160.4 (2)C1—C9—C16—C11112.1 (2)
O1—C1—C9—C1664.3 (3)C10—C9—C16—C115.6 (2)
C8—C1—C9—C16167.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.87 (4)1.92 (4)2.782 (3)170 (3)
O2—H2···O1ii0.94 (4)1.91 (4)2.782 (3)152 (4)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1.
 

Acknowledgements

The authors are grateful to Professor Dr D. Lenoir for a sample of benzo­cyclo­butenone.

References

First citationDobryakov, A. L., Quick, M., Lenoir, D., Detert, H., Ernsting, N. P. & Kovalenko, S. A. (2016). Chem. Phys. Lett. 652, 225–229.  CrossRef Google Scholar
First citationLenoir, D. (1989). Synthesis, pp. 883–897.  CrossRef Google Scholar
First citationMcMurry, J. (1989). Chem. Rev. 89, 1513–1524.  CrossRef Google Scholar
First citationMeier, H. (1992). Angew. Chem. 104, 1425–1446.  CrossRef Google Scholar
First citationOelgemöller, M., Brem, B., Frank, R., Schneider, S., Lenoir, D., Hertkorn, N., Origane, Y., Lemmen, P., Lex, J. & Inoue, Y. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 1760–1771.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchiess, P. & Heitzmann, H. (1977). Angew. Chem. 89, 485–485.  CrossRef Google Scholar
First citationSchiess, P. & Heitzmann, H. (1977). Angew. Chem. Int. Ed. Engl. 16, 469–470.  CrossRef Google Scholar
First citationSchneider, S., Brem, B., Jäger, W., Rehaber, H., Lenoir, D. & Frank, R. (1999). Chem. Phys. Lett. 308, 211–217.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1996). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds