organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Methyl-4-thio­carbamoylpyridin-1-ium iodide

aDepartment of Chemistry, Lagos State University, Ojo, Lagos, Nigeria, and bDepartment of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K3M4, Canada
*Correspondence e-mail: boere@uleth.ca

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 4 September 2018; accepted 22 October 2018; online 6 November 2018)

In the title compound, C7H9N2S+·I, the thio­amide moiety is twisted out of the aromatic plane by 38.98 (4)° and forms N—H⋯I hydrogen bonds. In the crystal, hydrogen-bonded centrosymmetric dimers [C7H9N2S+·I]2 are linked via additional short contacts from an aromatic CH group to the iodide anion into ribbons parallel to the (010) plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Methyl­ation at the pyridine nitro­gen was used as a protecting group in synthetic attempts to prepare the corresponding 3,5-dipyridyl-1,2,4-di­thia­zolium salts. In the title compound (I), the cation and anion are linked pairwise in a centrosymmetric hydrogen-bonded dimer (N1, I1, N1i and I1i; see Table 1[link] for symmetry code, and Fig. 1[link]). The pyridine ring is planar (r.m.s. deviation = 0.0054 Å), as is the thio­amide functional group (r.m.s. deviation = 0.0020 Å), and the two planes make a dihedral angle of 38.98 (4)°. The N1/I1/N1i/I1i plane makes a dihedral angle of 26.67 (2)° with the thio­amide moiety, and the H1A and H1B hydrogen atoms deviate from this plane by −0.39 (2) and 0.12 (2) Å, respectively. The cation structure is closely related to that of the protonated analogue, C6H7N2S+·I (Shotonwa & Boeré, 2014[Shotonwa, I. O. & Boeré, R. T. (2014). Acta Cryst. E70, o340-o341.]) and all comparable intra­molecular distances are indistinguishable within standard uncertainties [Cambridge Structural Database (CSD) Version 5.39, with updates to November 2017 (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), refcode: TODDAT].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯I1 0.83 (2) 2.79 (2) 3.6037 (16) 166 (2)
N1—H1A⋯I1i 0.86 (2) 2.93 (2) 3.6367 (16) 141 (2)
C5—H5⋯I1ii 0.95 2.96 3.8642 (17) 160
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the ion pair with the labelling scheme and 50% displacement ellipsoids.

In the crystal (Fig. 2[link]), the only significant inter­molecular contacts are non-classical hydrogen bonds between H5 and I1ii, with a separation 0.22 Å shorter than the sum of van der Waals radii (Table 1[link], entry 3). These link the dimers of ion pairs into ribbons parallel to the (010) plane.

[Figure 2]
Figure 2
Packing viewed along the b-axis direction with classical and non-classical hydrogen bonds to the iodide anion shown as dashed lines.

Synthesis and crystallization

The title salt was prepared by a modification of a literature method for related compounds (Kosower, 1955[Kosower, E. M. (1955). J. Am. Chem. Soc. 77, 3883-3885.]): methyl iodide (0.57 g, 4 mmol) was added dropwise to 4-pyridine-thio­amide (0.50 g, 4 mmol) in 5.00 ml of dry CH3CN, with a colour change from yellow to deep orange. The mixture was stirred for 30 min. at room temperature, followed by reflux for 10 min., cooled, filtered and washed three times with cold CH3CN. Recrystallization from boiling 99% ethanol afforded 0.21 g (35% yield) of (I) [CAS registry 749784–54-1]. The crystals are hygroscopic and were stored in a well sealed flask. 1H NMR, (D2O, δ/p.p.m.): 8.84 (d, 2H Ar, J = 6.9 Hz), 8.23 (d, 2H Ar, J = 6.9 Hz), 4.38 (s, 3H, N—CH3). mp = 219.3–220.9°C (lit. 220°C; Christ et al., 1974[Christ, W., Rakow, D. & Strauss, S. (1974). J. Heterocycl. Chem. 11, 397-399.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C7H9N2S+·I
Mr 280.12
Crystal system, space group Monoclinic, C2/c
Temperature (K) 173
a, b, c (Å) 19.6249 (16), 7.2198 (6), 14.9117 (12)
β (°) 108.592 (1)
V3) 2002.5 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 3.35
Crystal size (mm) 0.27 × 0.15 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD area-detector diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.610, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 13927, 2294, 2121
Rint 0.018
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.014, 0.032, 1.07
No. of reflections 2294
No. of parameters 107
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.27
Computer programs: APEX2 and SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Mercury CSD (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1-Methyl-4-thiocarbamoylpyridin-1-ium iodide top
Crystal data top
C7H9N2S+·IDx = 1.858 Mg m3
Mr = 280.12Melting point: 493 K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.6249 (16) ÅCell parameters from 13927 reflections
b = 7.2198 (6) Åθ = 2.2–27.5°
c = 14.9117 (12) ŵ = 3.35 mm1
β = 108.592 (1)°T = 173 K
V = 2002.5 (3) Å3Prism, clear orange
Z = 80.27 × 0.15 × 0.08 mm
F(000) = 1072
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2294 independent reflections
Radiation source: sealed tube2121 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 8 pixels mm-1θmax = 27.5°, θmin = 2.2°
ω and φ scansh = 2525
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 99
Tmin = 0.610, Tmax = 0.746l = 1919
13927 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.014Hydrogen site location: mixed
wR(F2) = 0.032H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0118P)2 + 2.1492P]
where P = (Fo2 + 2Fc2)/3
2294 reflections(Δ/σ)max = 0.001
107 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.27 e Å3
Special details top

Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups, All N(H,H) groups At 1.5 times of: All C(H,H,H) groups 2.a Aromatic/amide H refined with riding coordinates: C5(H5), C3(H3), C4(H4), C6(H6) 2.b Idealised Me refined as rotating group: C7(H7A,H7B,H7C)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.11514 (2)0.17323 (2)0.42525 (2)0.02707 (4)
S10.14565 (2)0.31395 (7)0.75400 (3)0.03144 (10)
N10.23622 (9)0.2254 (2)0.66302 (11)0.0301 (3)
H1A0.2776 (12)0.196 (3)0.6589 (15)0.036*
H1B0.2037 (12)0.228 (3)0.6114 (16)0.036*
N20.40862 (7)0.20871 (19)0.98789 (10)0.0241 (3)
C50.41537 (9)0.2872 (2)0.90990 (12)0.0269 (4)
H50.4610710.3308080.9100060.032*
C30.28424 (9)0.1655 (2)0.91256 (12)0.0235 (3)
H30.2389450.1240220.9150430.028*
C40.34445 (9)0.1489 (2)0.99079 (12)0.0256 (3)
H40.3406820.0950141.0471300.031*
C70.47204 (10)0.1918 (3)1.07418 (13)0.0333 (4)
H7A0.5160620.2088921.0575070.050*
H7B0.4724320.0686421.1020070.050*
H7C0.4695490.2865721.1200680.050*
C60.35692 (9)0.3056 (2)0.82953 (12)0.0263 (4)
H60.3622640.3603460.7742270.032*
C20.28980 (8)0.2431 (2)0.82991 (11)0.0207 (3)
C10.22502 (8)0.2579 (2)0.74402 (12)0.0227 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02370 (6)0.03292 (7)0.02592 (6)0.00189 (5)0.00981 (4)0.00090 (5)
S10.01959 (19)0.0456 (3)0.0283 (2)0.00281 (19)0.00643 (16)0.0004 (2)
N10.0238 (7)0.0447 (10)0.0210 (7)0.0019 (7)0.0058 (6)0.0001 (7)
N20.0204 (7)0.0245 (8)0.0247 (7)0.0037 (6)0.0032 (5)0.0017 (6)
C50.0213 (8)0.0293 (9)0.0301 (9)0.0016 (7)0.0081 (7)0.0004 (7)
C30.0202 (7)0.0248 (9)0.0267 (8)0.0003 (7)0.0090 (6)0.0009 (7)
C40.0254 (8)0.0273 (9)0.0250 (8)0.0028 (7)0.0094 (7)0.0025 (7)
C70.0250 (9)0.0398 (11)0.0279 (9)0.0039 (8)0.0018 (7)0.0002 (8)
C60.0243 (8)0.0307 (10)0.0249 (8)0.0020 (7)0.0093 (7)0.0014 (7)
C20.0207 (8)0.0197 (8)0.0221 (8)0.0013 (6)0.0074 (6)0.0028 (6)
C10.0219 (8)0.0205 (8)0.0251 (8)0.0021 (6)0.0068 (6)0.0012 (6)
Geometric parameters (Å, º) top
S1—C11.6615 (17)C3—C21.389 (2)
N1—C11.316 (2)C3—H30.9500
N1—H1A0.86 (2)C4—H40.9500
N1—H1B0.83 (2)C7—H7A0.9800
N2—C51.338 (2)C7—H7B0.9800
N2—C41.345 (2)C7—H7C0.9800
N2—C71.483 (2)C6—C21.394 (2)
C5—C61.376 (2)C6—H60.9500
C5—H50.9500C2—C11.493 (2)
C3—C41.376 (2)
C1—N1—H1A123.2 (14)N2—C7—H7A109.5
C1—N1—H1B123.0 (15)N2—C7—H7B109.5
H1A—N1—H1B114 (2)H7A—C7—H7B109.5
C5—N2—C4121.14 (14)N2—C7—H7C109.5
C5—N2—C7120.07 (15)H7A—C7—H7C109.5
C4—N2—C7118.76 (15)H7B—C7—H7C109.5
N2—C5—C6120.80 (16)C5—C6—C2119.45 (16)
N2—C5—H5119.6C5—C6—H6120.3
C6—C5—H5119.6C2—C6—H6120.3
C4—C3—C2119.89 (15)C3—C2—C6118.39 (15)
C4—C3—H3120.1C3—C2—C1120.23 (14)
C2—C3—H3120.1C6—C2—C1121.37 (15)
N2—C4—C3120.31 (15)N1—C1—C2115.41 (14)
N2—C4—H4119.8N1—C1—S1124.14 (13)
C3—C4—H4119.8C2—C1—S1120.44 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···I10.83 (2)2.79 (2)3.6037 (16)166 (2)
N1—H1A···I1i0.86 (2)2.93 (2)3.6367 (16)141 (2)
C5—H5···I1ii0.952.963.8642 (17)160
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+1/2.
 

Funding information

The Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged for Discovery Grants (RTB). The APEXII diffractometer was purchased with the help of the NSERC and the University of Lethbridge.

References

First citationBruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChrist, W., Rakow, D. & Strauss, S. (1974). J. Heterocycl. Chem. 11, 397–399.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKosower, E. M. (1955). J. Am. Chem. Soc. 77, 3883–3885.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShotonwa, I. O. & Boeré, R. T. (2014). Acta Cryst. E70, o340–o341.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds