organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-[2-(3-Nitro­phen­yl)hydrazin-1-yl­idene]pentane-2,4-dione

CROSSMARK_Color_square_no_text.svg

aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: edwin.weber@chemie.tu-freiberg.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 August 2018; accepted 20 September 2018; online 28 September 2018)

The title compound, C11H11N3O4, crystallizes with three independent but conformationally similar mol­ecules in the asymmetric unit. The plane through the pentane-2,4-dione moiety of the mol­ecule is inclined at angles of 10.1 (1), 10.6 (1) and 17.4 (1)° with regard to the respective arene ring. In the crystal, the mol­ecules are connected via Carene—H⋯Onitro and Carene—H⋯O=C inter­actions into supra­molecular sheets. Mol­ecules of consecutive sheets are linked by Cmeth­yl—H⋯O bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Aryl­hydrazones of β-diketones have recently become inter­esting objects of scientific study with regard to complex formation (Marten et al., 2005[Marten, J., Seichter, W. & Weber, E. (2005). Z. Anorg. Allg. Chem. 631, 869-877.]) and hydrogen bonding, exerting an active influence both on the spectroscopic and electrochemical as well as the structural properties of the β-ketone derivative (Marten et al., 2007[Marten, J., Seichter, W., Weber, E. & Böhme, U. (2007). J. Phys. Org. Chem. 20, 716-731.], 2011[Marten, J., Seichter, W. & Weber, E. (2011). Z. Kristallogr. 226, 786-792.]; Sethukumar et al., 2010[Sethukumar, A. & Prakasam, B. A. (2010). J. Mol. Struct. 963, 250-257.]), including the research question of resonance-assisted hydrogen bonding (RAHB) (Gilli et al., 1989[Gilli, G., Bellucci, F., Ferretti, V. & Bertolasi, V. (1989). J. Am. Chem. Soc. 111, 1023-1028.]; Alkorta et al., 2004[Alkorta, I., Elguero, J., Mó, O., Yáñez, M. & Del Bene, J. E. (2004). Mol. Phys. 102, 2563-2574.]). The title compound belongs to this category of promising mol­ecules and its crystal structure is reported here.

The asymmetric unit contains three independent but conformationally similar mol­ecules (Fig. 1[link]). Each mol­ecule features an intra­molecular N—H⋯O inter­action (Table 1[link]) that yields a six-membered hydrogen-bonded ring. In the crystal structure, the mol­ecules exist in an EZE configuration which – in this order – represents the alignment of the non-H-bridged O2x—C4x fragment, the hydrogen-bonded O1x—C2x fragment, and the aryl group with respect to the N1x=C3x double bond (x = -,A,B) (Gómez-Sánchez et al., 1987[Gómez-Sánchez, A., Martín, M. de Gracia García, Borrachero, P. & Bellanato, J. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 301-306.]). This geometry agrees with that found in the solid-state structures of other compounds of this kind (Bertolasi et al. 1994[Bertolasi, V., Nanni, L., Gilli, P., Ferretti, V. & Gilli, G. (1994). New J. Chem. 18, 251-261.]; Marten et al. 2005[Marten, J., Seichter, W. & Weber, E. (2005). Z. Anorg. Allg. Chem. 631, 869-877.], 2007[Marten, J., Seichter, W., Weber, E. & Böhme, U. (2007). J. Phys. Org. Chem. 20, 716-731.]). The mol­ecules deviate slightly from planarity, showing tilt angles of 9.0 (2), 6.6 (2) and 9.7 (1)° between the mean planes of the hydrogen-bonded ring and the arene ring. The mol­ecules exhibit a highly distorted geometry along the pentane-2,4-dione fragment, which can be seen from the enlarged torsion angles of the atomic sequences N1x—C3x—C2x—O1x and C2x—C3x—C4x—O2x being −10.0 (2) and −5.1 (2)° for mol­ecule A, −10.0 (2) and −5.1 (2)° for mol­ecule B and 18.5 (2) and 9.7 (2)° for mol­ecule C. The six-membered hydrogen-bonded rings, however, are less affected by the distortion. The largest atomic distances from the mean plane are found to be 0.076 (1) and −0.102 (1) Å for atoms O1B and C2B of mol­ecule C. In addition, the nitro groups are tilted slightly with respect to the benzene ring, showing inclination angles of 11.9 (1), 10.7 (1) and 7.8 (1)° for mol­ecules A, B and C, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11B—H11B⋯O1Ai 0.95 2.63 3.4824 (15) 150
C9B—H9B⋯O3Aii 0.95 2.53 3.4837 (16) 178
N2B—H2B⋯O1B 0.90 (1) 1.90 (1) 2.5952 (13) 133 (1)
C11A—H11A⋯O1Bi 0.95 2.53 3.4347 (15) 158
C9A—H9A⋯O3Bii 0.95 2.59 3.5227 (15) 168
C5A—H5A2⋯N1i 0.98 2.65 3.5230 (16) 149
C5A—H5A1⋯O1Aiii 0.98 2.51 3.4424 (15) 158
C1A—H1A2⋯O4i 0.98 2.49 3.4674 (16) 173
N2A—H2A⋯O1A 0.90 (1) 1.91 (1) 2.5873 (13) 131 (1)
C11—H11⋯O1iv 0.95 2.52 3.4114 (14) 156
C9—H9⋯O3v 0.95 2.63 3.5450 (15) 163
C5—H5B⋯N1Ai 0.98 2.69 3.5445 (16) 146
C1—H1B⋯O4Ai 0.98 2.47 3.4237 (18) 165
N2—H2⋯O1 0.89 (1) 1.89 (1) 2.5834 (12) 134 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+2; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z; (v) -x+1, -y+2, -z+1.
[Figure 1]
Figure 1
Perspective view of the mol­ecular structure of the title compound with the atom labelling. Displacement ellipsoids of non-H atoms are shown at the 50% probability level.

In the crystal (Fig. 2[link]), the mol­ecules are connected by means of Carene—H⋯Onitro and Carene—H⋯O=C inter­actions (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. IUCr Monographs on Crystallography, Vol. 9, ch. 3. Oxford University Press.]) giving rise to sheets that extend parallel to the bc plane. In the stacking direction of these two-dimensional-supra­molecular aggregates, the mol­ecules are linked by Cmeth­yl—H⋯ Onitro hydrogen bonds (Table 1[link], Fig. 3[link]). Moreover, the crystal is stabilized by ππ stacking inter­actions between the aromatic rings and the six-membered hydrogen-bonded rings with centroid–centroid distances of 4.1043 (8)–4.4867 (8) Å.

[Figure 2]
Figure 2
Structure of the mol­ecular sheets including the mode of inter­molecular bonding in the crystal of the title compound. Dashed lines represent hydrogen bonds. Particular ring systems of inter­molecular inter­actions are specified by colour highlighting. Specification of the ring pattern corresponds to the graph-set notation introduced by M. C. Etter (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).
[Figure 3]
Figure 3
Packing diagram of the title compound viewed along the c axis. The inter­molecular contacts are shown as dashed lines.

Synthesis and crystallization

The title compound was prepared from pentane-2,4-dione and 3-nitro­phenyl­diazo­nium chloride (diazotization of 3-nitro­aniline) via a Japp–Klingemann route (Phillips, 1959[Phillips, R. R. (1959). Org. React. 10, 143-178.]) following a described protocol (Sethukumar et al., 2010[Sethukumar, A. & Prakasam, B. A. (2010). J. Mol. Struct. 963, 250-257.]) to yield yellow crystals (78%, m.p. 412 K) and spectroscopic data correspond to the literature (Bülow & Schlotterbeck, 1902[Bülow, C. & Schlotterbeck, F. (1902). Ber. Dtsch. Chem. Ges. 35, 2187-2191.]; Sethukumar et al., 2010[Sethukumar, A. & Prakasam, B. A. (2010). J. Mol. Struct. 963, 250-257.]). Crystals were grown by the slow evaporation technique using ethanol as solvent.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H11N3O4
Mr 249.23
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 93
a, b, c (Å) 10.1251 (5), 11.1335 (6), 15.9006 (8)
α, β, γ (°) 102.745 (3), 101.100 (3), 101.520 (3)
V3) 1659.74 (15)
Z 6
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.28 × 0.20 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD area detector
No. of measured, independent and observed [I > 2σ(I)] reflections 49810, 8881, 6440
Rint 0.033
(sin θ/λ)max−1) 0.684
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.127, 1.00
No. of reflections 8881
No. of parameters 505
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.30
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

3-[2-(3-Nitrophenyl)hydrazin-1-ylidene]pentane-2,4-dione top
Crystal data top
C11H11N3O4Z = 6
Mr = 249.23F(000) = 780
Triclinic, P1Dx = 1.496 Mg m3
a = 10.1251 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.1335 (6) ÅCell parameters from 9958 reflections
c = 15.9006 (8) Åθ = 2.5–38.8°
α = 102.745 (3)°µ = 0.12 mm1
β = 101.100 (3)°T = 93 K
γ = 101.520 (3)°Irregular, yellow
V = 1659.74 (15) Å30.28 × 0.20 × 0.10 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
Rint = 0.033
φ and ω scansθmax = 29.1°, θmin = 2.0°
49810 measured reflectionsh = 1313
8881 independent reflectionsk = 1515
6440 reflections with I > 2σ(I)l = 2121
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0697P)2 + 0.3903P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
8881 reflectionsΔρmax = 0.44 e Å3
505 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The non-hydrogen atoms were refined anisotropically. The hydrogen atoms were positioned geometrically and refined isotropically using the riding model with C—H = 0.98 Å and Uiso(H) = 1.5 Ueq(C) for methyl and C—H = 0.95 Å and Uiso(H) = 1.2 Ueq(C) for aryl.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50272 (9)0.37266 (8)0.01900 (6)0.01728 (18)
O20.51679 (11)0.09300 (8)0.15551 (6)0.0236 (2)
O30.43473 (10)0.84492 (9)0.50143 (6)0.0226 (2)
O40.46928 (9)0.65656 (9)0.48900 (6)0.0202 (2)
N10.49937 (10)0.40849 (9)0.19988 (6)0.01255 (19)
N20.49547 (10)0.50955 (9)0.17125 (6)0.0129 (2)
H20.4964 (19)0.5041 (16)0.1147 (7)0.039 (5)*
N30.45970 (10)0.74844 (10)0.45984 (7)0.0151 (2)
C10.55504 (17)0.17248 (13)0.00493 (9)0.0269 (3)
H1A0.47300.10000.01460.040*
H1B0.63030.15250.04390.040*
H1C0.58530.18970.04710.040*
C20.51931 (12)0.28713 (11)0.05460 (8)0.0146 (2)
C30.50838 (12)0.30180 (11)0.14792 (7)0.0124 (2)
C40.51293 (12)0.19961 (11)0.19419 (8)0.0141 (2)
C50.51082 (13)0.23092 (12)0.29086 (8)0.0166 (2)
H5A0.42000.24480.29660.025*
H5B0.58390.30830.32380.025*
H5C0.52720.16010.31520.025*
C60.49515 (11)0.62290 (11)0.23101 (7)0.0118 (2)
C70.47929 (11)0.62682 (11)0.31640 (8)0.0126 (2)
H70.46980.55280.33750.015*
C80.47793 (12)0.74318 (11)0.36949 (7)0.0128 (2)
C90.49204 (12)0.85409 (11)0.34252 (8)0.0146 (2)
H90.49030.93200.38100.017*
C100.50894 (12)0.84719 (11)0.25684 (8)0.0155 (2)
H100.51890.92140.23600.019*
C110.51135 (12)0.73260 (11)0.20173 (8)0.0149 (2)
H110.52410.72900.14370.018*
O1A0.16277 (9)0.55721 (8)0.38561 (6)0.01764 (19)
O2A0.18248 (10)0.28004 (8)0.52201 (6)0.0236 (2)
O3A0.18275 (12)1.04571 (10)0.88501 (6)0.0330 (3)
O4A0.14636 (10)0.84097 (9)0.85760 (6)0.0255 (2)
N1A0.16065 (10)0.59407 (9)0.56645 (7)0.0140 (2)
N2A0.15028 (11)0.69368 (9)0.53691 (7)0.0141 (2)
H2A0.1507 (17)0.6910 (16)0.4802 (7)0.034 (5)*
N3A0.16103 (11)0.93940 (11)0.83415 (7)0.0200 (2)
C1A0.22945 (14)0.36347 (12)0.37409 (8)0.0185 (3)
H1A10.15260.28680.35750.028*
H1A20.31040.35070.41280.028*
H1A30.25380.38020.32030.028*
C2A0.18617 (12)0.47422 (11)0.42247 (8)0.0144 (2)
C3A0.17495 (12)0.48892 (11)0.51580 (8)0.0140 (2)
C4A0.17907 (12)0.38607 (11)0.56176 (8)0.0157 (2)
C5A0.17481 (13)0.41559 (12)0.65827 (8)0.0187 (3)
H5A10.08440.43110.66350.028*
H5A20.24900.49150.69240.028*
H5A30.18820.34330.68160.028*
C6A0.14666 (12)0.80636 (11)0.59629 (8)0.0135 (2)
C7A0.15249 (12)0.81389 (11)0.68543 (8)0.0146 (2)
H7A0.15600.74240.70840.018*
C8A0.15295 (12)0.93022 (12)0.73937 (8)0.0150 (2)
C9A0.14790 (12)1.03754 (12)0.70965 (8)0.0170 (2)
H9A0.15031.11610.74910.020*
C10A0.13916 (13)1.02583 (12)0.61947 (8)0.0175 (2)
H10A0.13421.09710.59650.021*
C11A0.13772 (12)0.91090 (12)0.56317 (8)0.0161 (2)
H11A0.13060.90350.50170.019*
O1B0.85907 (9)0.19177 (8)0.65642 (6)0.01866 (19)
O2B0.85133 (10)0.09374 (8)0.78295 (6)0.0206 (2)
O3B0.78511 (11)0.66059 (9)1.13961 (6)0.0259 (2)
O4B0.80431 (10)0.46675 (9)1.12265 (6)0.0220 (2)
N1B0.85135 (10)0.22594 (9)0.83719 (7)0.0140 (2)
N2B0.85919 (11)0.33023 (9)0.81086 (7)0.0145 (2)
H2B0.8644 (18)0.3274 (16)0.7549 (7)0.036 (5)*
N3B0.80267 (10)0.56166 (10)1.09587 (7)0.0169 (2)
C1B0.76785 (13)0.03138 (11)0.61996 (8)0.0179 (2)
H1B10.72210.02230.56230.027*
H1B20.69960.08210.64280.027*
H1B30.84230.07410.61260.027*
C2B0.82836 (12)0.09774 (11)0.68436 (8)0.0142 (2)
C3B0.84300 (12)0.11612 (11)0.78164 (8)0.0137 (2)
C4B0.84416 (12)0.01022 (11)0.82453 (8)0.0150 (2)
C5B0.83783 (14)0.03443 (12)0.92040 (8)0.0205 (3)
H5B10.85250.03890.94200.031*
H5B20.74640.04740.92540.031*
H5B30.91050.11060.95610.031*
C6B0.85292 (12)0.44227 (11)0.86994 (8)0.0137 (2)
C7B0.82885 (12)0.44323 (11)0.95337 (8)0.0140 (2)
H7B0.81650.36820.97320.017*
C8B0.82363 (12)0.55825 (11)1.00622 (8)0.0142 (2)
C9B0.83941 (12)0.66991 (12)0.98035 (8)0.0172 (2)
H9B0.83340.74651.01830.021*
C10B0.86433 (13)0.66630 (12)0.89682 (8)0.0185 (2)
H10B0.87600.74150.87710.022*
C11B0.87222 (12)0.55351 (11)0.84220 (8)0.0164 (2)
H11B0.89080.55200.78570.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0288 (5)0.0129 (4)0.0130 (4)0.0094 (4)0.0057 (3)0.0050 (3)
O20.0433 (6)0.0108 (4)0.0197 (5)0.0105 (4)0.0104 (4)0.0045 (4)
O30.0317 (5)0.0184 (5)0.0173 (4)0.0075 (4)0.0106 (4)0.0012 (4)
O40.0275 (5)0.0209 (5)0.0151 (4)0.0076 (4)0.0063 (4)0.0084 (4)
N10.0153 (4)0.0093 (5)0.0139 (5)0.0043 (4)0.0036 (4)0.0039 (4)
N20.0203 (5)0.0089 (5)0.0111 (5)0.0057 (4)0.0051 (4)0.0029 (4)
N30.0167 (5)0.0152 (5)0.0118 (5)0.0025 (4)0.0036 (4)0.0017 (4)
C10.0519 (9)0.0226 (7)0.0144 (6)0.0233 (7)0.0110 (6)0.0066 (5)
C20.0192 (5)0.0114 (6)0.0121 (5)0.0048 (4)0.0022 (4)0.0017 (4)
C30.0168 (5)0.0096 (5)0.0110 (5)0.0044 (4)0.0029 (4)0.0024 (4)
C40.0158 (5)0.0121 (6)0.0150 (5)0.0038 (4)0.0039 (4)0.0045 (4)
C50.0242 (6)0.0134 (6)0.0151 (5)0.0066 (5)0.0070 (5)0.0060 (5)
C60.0139 (5)0.0100 (5)0.0115 (5)0.0050 (4)0.0032 (4)0.0014 (4)
C70.0155 (5)0.0100 (5)0.0134 (5)0.0041 (4)0.0043 (4)0.0041 (4)
C80.0146 (5)0.0134 (6)0.0102 (5)0.0043 (4)0.0033 (4)0.0021 (4)
C90.0165 (5)0.0109 (6)0.0155 (5)0.0050 (4)0.0042 (4)0.0005 (4)
C100.0211 (6)0.0104 (6)0.0177 (6)0.0063 (5)0.0063 (5)0.0064 (5)
C110.0201 (6)0.0139 (6)0.0131 (5)0.0068 (5)0.0052 (4)0.0054 (5)
O1A0.0258 (5)0.0146 (4)0.0151 (4)0.0090 (4)0.0052 (3)0.0055 (3)
O2A0.0384 (5)0.0135 (5)0.0212 (5)0.0094 (4)0.0083 (4)0.0057 (4)
O3A0.0567 (7)0.0226 (5)0.0168 (5)0.0114 (5)0.0098 (5)0.0025 (4)
O4A0.0373 (6)0.0265 (5)0.0191 (5)0.0129 (4)0.0111 (4)0.0112 (4)
N1A0.0154 (5)0.0103 (5)0.0165 (5)0.0029 (4)0.0036 (4)0.0042 (4)
N2A0.0209 (5)0.0100 (5)0.0125 (5)0.0054 (4)0.0057 (4)0.0027 (4)
N3A0.0256 (6)0.0206 (6)0.0151 (5)0.0086 (4)0.0059 (4)0.0038 (4)
C1A0.0274 (6)0.0150 (6)0.0162 (6)0.0103 (5)0.0075 (5)0.0038 (5)
C2A0.0157 (5)0.0121 (6)0.0143 (5)0.0030 (4)0.0024 (4)0.0030 (4)
C3A0.0156 (5)0.0110 (6)0.0153 (5)0.0031 (4)0.0031 (4)0.0038 (4)
C4A0.0162 (5)0.0138 (6)0.0167 (6)0.0035 (4)0.0028 (4)0.0049 (5)
C5A0.0238 (6)0.0186 (6)0.0156 (6)0.0062 (5)0.0050 (5)0.0078 (5)
C6A0.0153 (5)0.0107 (6)0.0139 (5)0.0034 (4)0.0047 (4)0.0008 (4)
C7A0.0172 (5)0.0136 (6)0.0152 (5)0.0055 (4)0.0051 (4)0.0060 (5)
C8A0.0163 (5)0.0171 (6)0.0127 (5)0.0054 (5)0.0055 (4)0.0033 (5)
C9A0.0187 (6)0.0138 (6)0.0180 (6)0.0050 (5)0.0056 (5)0.0013 (5)
C10A0.0216 (6)0.0129 (6)0.0207 (6)0.0063 (5)0.0066 (5)0.0070 (5)
C11A0.0207 (6)0.0156 (6)0.0139 (5)0.0060 (5)0.0057 (4)0.0051 (5)
O1B0.0287 (5)0.0128 (4)0.0163 (4)0.0058 (4)0.0083 (4)0.0049 (3)
O2B0.0322 (5)0.0133 (4)0.0183 (4)0.0105 (4)0.0074 (4)0.0031 (4)
O3B0.0384 (6)0.0204 (5)0.0207 (5)0.0114 (4)0.0138 (4)0.0000 (4)
O4B0.0302 (5)0.0202 (5)0.0191 (4)0.0082 (4)0.0088 (4)0.0081 (4)
N1B0.0164 (5)0.0105 (5)0.0159 (5)0.0053 (4)0.0035 (4)0.0038 (4)
N2B0.0219 (5)0.0103 (5)0.0121 (5)0.0057 (4)0.0054 (4)0.0020 (4)
N3B0.0178 (5)0.0163 (5)0.0154 (5)0.0043 (4)0.0047 (4)0.0013 (4)
C1B0.0236 (6)0.0139 (6)0.0148 (6)0.0022 (5)0.0063 (5)0.0025 (5)
C2B0.0161 (5)0.0126 (6)0.0154 (5)0.0057 (4)0.0055 (4)0.0033 (5)
C3B0.0164 (5)0.0111 (6)0.0146 (5)0.0054 (4)0.0043 (4)0.0031 (4)
C4B0.0159 (5)0.0131 (6)0.0165 (6)0.0048 (4)0.0040 (4)0.0043 (5)
C5B0.0326 (7)0.0166 (6)0.0154 (6)0.0090 (5)0.0082 (5)0.0063 (5)
C6B0.0148 (5)0.0109 (6)0.0143 (5)0.0044 (4)0.0026 (4)0.0012 (4)
C7B0.0158 (5)0.0113 (6)0.0152 (5)0.0043 (4)0.0034 (4)0.0038 (5)
C8B0.0146 (5)0.0151 (6)0.0128 (5)0.0040 (4)0.0039 (4)0.0028 (4)
C9B0.0199 (6)0.0112 (6)0.0188 (6)0.0049 (5)0.0052 (5)0.0005 (5)
C10B0.0242 (6)0.0121 (6)0.0209 (6)0.0052 (5)0.0072 (5)0.0057 (5)
C11B0.0208 (6)0.0146 (6)0.0147 (5)0.0056 (5)0.0050 (5)0.0045 (5)
Geometric parameters (Å, º) top
O1—C21.2331 (14)C4A—C5A1.5078 (16)
O2—C41.2224 (14)C5A—H5A10.9800
O3—N31.2307 (13)C5A—H5A20.9800
O4—N31.2258 (13)C5A—H5A30.9800
N1—N21.3082 (13)C6A—C7A1.3904 (16)
N1—C31.3194 (14)C6A—C11A1.3907 (16)
N2—C61.4033 (14)C7A—C8A1.3853 (16)
N2—H20.890 (9)C7A—H7A0.9500
N3—C81.4733 (14)C8A—C9A1.3848 (17)
C1—C21.4945 (16)C9A—C10A1.3947 (17)
C1—H1A0.9800C9A—H9A0.9500
C1—H1B0.9800C10A—C11A1.3860 (17)
C1—H1C0.9800C10A—H10A0.9500
C2—C31.4848 (15)C11A—H11A0.9500
C3—C41.4882 (16)O1B—C2B1.2323 (14)
C4—C51.5047 (16)O2B—C4B1.2234 (14)
C5—H5A0.9800O3B—N3B1.2314 (13)
C5—H5B0.9800O4B—N3B1.2251 (13)
C5—H5C0.9800N1B—N2B1.3116 (14)
C6—C71.3899 (15)N1B—C3B1.3174 (15)
C6—C111.3913 (16)N2B—C6B1.4071 (15)
C7—C81.3857 (16)N2B—H2B0.896 (9)
C7—H70.9500N3B—C8B1.4746 (15)
C8—C91.3841 (16)C1B—C2B1.4992 (16)
C9—C101.3929 (16)C1B—H1B10.9800
C9—H90.9500C1B—H1B20.9800
C10—C111.3869 (16)C1B—H1B30.9800
C10—H100.9500C2B—C3B1.4887 (16)
C11—H110.9500C3B—C4B1.4875 (16)
O1A—C2A1.2355 (14)C4B—C5B1.5044 (16)
O2A—C4A1.2205 (15)C5B—H5B10.9800
O3A—N3A1.2281 (14)C5B—H5B20.9800
O4A—N3A1.2242 (14)C5B—H5B30.9800
N1A—N2A1.3109 (14)C6B—C7B1.3924 (16)
N1A—C3A1.3179 (15)C6B—C11B1.3943 (16)
N2A—C6A1.4056 (14)C7B—C8B1.3850 (16)
N2A—H2A0.897 (9)C7B—H7B0.9500
N3A—C8A1.4730 (15)C8B—C9B1.3827 (17)
C1A—C2A1.4937 (16)C9B—C10B1.3924 (17)
C1A—H1A10.9800C9B—H9B0.9500
C1A—H1A20.9800C10B—C11B1.3867 (17)
C1A—H1A30.9800C10B—H10B0.9500
C2A—C3A1.4855 (16)C11B—H11B0.9500
C3A—C4A1.4912 (16)
N2—N1—C3121.67 (10)C4A—C5A—H5A2109.5
N1—N2—C6119.22 (9)H5A1—C5A—H5A2109.5
N1—N2—H2118.1 (11)C4A—C5A—H5A3109.5
C6—N2—H2122.6 (11)H5A1—C5A—H5A3109.5
O4—N3—O3123.81 (10)H5A2—C5A—H5A3109.5
O4—N3—C8118.34 (9)C7A—C6A—C11A120.79 (11)
O3—N3—C8117.84 (10)C7A—C6A—N2A121.34 (10)
C2—C1—H1A109.5C11A—C6A—N2A117.87 (10)
C2—C1—H1B109.5C8A—C7A—C6A117.09 (11)
H1A—C1—H1B109.5C8A—C7A—H7A121.5
C2—C1—H1C109.5C6A—C7A—H7A121.5
H1A—C1—H1C109.5C9A—C8A—C7A123.98 (11)
H1B—C1—H1C109.5C9A—C8A—N3A118.61 (10)
O1—C2—C3119.25 (10)C7A—C8A—N3A117.40 (11)
O1—C2—C1119.96 (11)C8A—C9A—C10A117.38 (11)
C3—C2—C1120.74 (10)C8A—C9A—H9A121.3
N1—C3—C2123.61 (10)C10A—C9A—H9A121.3
N1—C3—C4112.75 (10)C11A—C10A—C9A120.42 (11)
C2—C3—C4123.59 (10)C11A—C10A—H10A119.8
O2—C4—C3121.77 (11)C9A—C10A—H10A119.8
O2—C4—C5120.44 (11)C10A—C11A—C6A120.29 (11)
C3—C4—C5117.78 (10)C10A—C11A—H11A119.9
C4—C5—H5A109.5C6A—C11A—H11A119.9
C4—C5—H5B109.5N2B—N1B—C3B121.30 (10)
H5A—C5—H5B109.5N1B—N2B—C6B119.20 (10)
C4—C5—H5C109.5N1B—N2B—H2B119.1 (11)
H5A—C5—H5C109.5C6B—N2B—H2B121.6 (11)
H5B—C5—H5C109.5O4B—N3B—O3B123.88 (11)
C7—C6—C11120.66 (10)O4B—N3B—C8B118.42 (10)
C7—C6—N2121.85 (10)O3B—N3B—C8B117.70 (10)
C11—C6—N2117.49 (10)C2B—C1B—H1B1109.5
C8—C7—C6117.19 (11)C2B—C1B—H1B2109.5
C8—C7—H7121.4H1B1—C1B—H1B2109.5
C6—C7—H7121.4C2B—C1B—H1B3109.5
C9—C8—C7123.93 (11)H1B1—C1B—H1B3109.5
C9—C8—N3118.30 (10)H1B2—C1B—H1B3109.5
C7—C8—N3117.77 (10)O1B—C2B—C3B118.94 (10)
C8—C9—C10117.47 (10)O1B—C2B—C1B119.82 (11)
C8—C9—H9121.3C3B—C2B—C1B121.11 (10)
C10—C9—H9121.3N1B—C3B—C4B113.72 (10)
C11—C10—C9120.38 (11)N1B—C3B—C2B123.48 (10)
C11—C10—H10119.8C4B—C3B—C2B122.76 (10)
C9—C10—H10119.8O2B—C4B—C3B120.68 (11)
C10—C11—C6120.37 (11)O2B—C4B—C5B120.87 (11)
C10—C11—H11119.8C3B—C4B—C5B118.45 (10)
C6—C11—H11119.8C4B—C5B—H5B1109.5
N2A—N1A—C3A122.15 (10)C4B—C5B—H5B2109.5
N1A—N2A—C6A119.27 (10)H5B1—C5B—H5B2109.5
N1A—N2A—H2A120.0 (11)C4B—C5B—H5B3109.5
C6A—N2A—H2A120.6 (11)H5B1—C5B—H5B3109.5
O4A—N3A—O3A123.94 (11)H5B2—C5B—H5B3109.5
O4A—N3A—C8A118.19 (10)C7B—C6B—C11B120.72 (11)
O3A—N3A—C8A117.87 (11)C7B—C6B—N2B121.67 (11)
C2A—C1A—H1A1109.5C11B—C6B—N2B117.61 (10)
C2A—C1A—H1A2109.5C8B—C7B—C6B117.14 (11)
H1A1—C1A—H1A2109.5C8B—C7B—H7B121.4
C2A—C1A—H1A3109.5C6B—C7B—H7B121.4
H1A1—C1A—H1A3109.5C9B—C8B—C7B123.82 (11)
H1A2—C1A—H1A3109.5C9B—C8B—N3B118.40 (10)
O1A—C2A—C3A118.99 (10)C7B—C8B—N3B117.77 (10)
O1A—C2A—C1A119.89 (10)C8B—C9B—C10B117.76 (11)
C3A—C2A—C1A121.09 (10)C8B—C9B—H9B121.1
N1A—C3A—C2A123.52 (11)C10B—C9B—H9B121.1
N1A—C3A—C4A113.14 (10)C11B—C10B—C9B120.33 (12)
C2A—C3A—C4A123.34 (10)C11B—C10B—H10B119.8
O2A—C4A—C3A121.08 (11)C9B—C10B—H10B119.8
O2A—C4A—C5A120.79 (11)C10B—C11B—C6B120.20 (11)
C3A—C4A—C5A118.11 (10)C10B—C11B—H11B119.9
C4A—C5A—H5A1109.5C6B—C11B—H11B119.9
C3—N1—N2—C6175.82 (10)N2A—C6A—C7A—C8A177.91 (10)
N2—N1—C3—C21.98 (17)C6A—C7A—C8A—C9A0.05 (18)
N2—N1—C3—C4179.36 (10)C6A—C7A—C8A—N3A179.19 (10)
O1—C2—C3—N19.03 (18)O4A—N3A—C8A—C9A170.20 (11)
C1—C2—C3—N1168.77 (12)O3A—N3A—C8A—C9A10.12 (17)
O1—C2—C3—C4173.88 (11)O4A—N3A—C8A—C7A10.52 (16)
C1—C2—C3—C48.32 (18)O3A—N3A—C8A—C7A169.16 (11)
N1—C3—C4—O2177.63 (11)C7A—C8A—C9A—C10A1.27 (18)
C2—C3—C4—O25.00 (18)N3A—C8A—C9A—C10A179.50 (11)
N1—C3—C4—C51.62 (15)C8A—C9A—C10A—C11A0.89 (18)
C2—C3—C4—C5175.76 (10)C9A—C10A—C11A—C6A0.77 (18)
N1—N2—C6—C79.15 (16)C7A—C6A—C11A—C10A2.16 (18)
N1—N2—C6—C11170.88 (10)N2A—C6A—C11A—C10A177.53 (11)
C11—C6—C7—C81.12 (17)C3B—N1B—N2B—C6B173.25 (10)
N2—C6—C7—C8178.86 (10)N2B—N1B—C3B—C4B176.26 (10)
C6—C7—C8—C90.34 (17)N2B—N1B—C3B—C2B5.93 (17)
C6—C7—C8—N3179.37 (10)O1B—C2B—C3B—N1B18.51 (17)
O4—N3—C8—C9168.61 (10)C1B—C2B—C3B—N1B157.16 (11)
O3—N3—C8—C911.87 (15)O1B—C2B—C3B—C4B163.87 (11)
O4—N3—C8—C711.66 (15)C1B—C2B—C3B—C4B20.45 (16)
O3—N3—C8—C7167.86 (10)N1B—C3B—C4B—O2B172.49 (11)
C7—C8—C9—C100.19 (17)C2B—C3B—C4B—O2B9.68 (17)
N3—C8—C9—C10179.90 (10)N1B—C3B—C4B—C5B6.87 (15)
C8—C9—C10—C110.04 (17)C2B—C3B—C4B—C5B170.96 (11)
C9—C10—C11—C60.82 (18)N1B—N2B—C6B—C7B4.58 (17)
C7—C6—C11—C101.38 (17)N1B—N2B—C6B—C11B175.21 (10)
N2—C6—C11—C10178.60 (10)C11B—C6B—C7B—C8B0.68 (17)
C3A—N1A—N2A—C6A174.84 (10)N2B—C6B—C7B—C8B179.55 (10)
N2A—N1A—C3A—C2A2.44 (17)C6B—C7B—C8B—C9B0.68 (18)
N2A—N1A—C3A—C4A177.70 (10)C6B—C7B—C8B—N3B178.10 (10)
O1A—C2A—C3A—N1A9.99 (18)O4B—N3B—C8B—C9B171.93 (11)
C1A—C2A—C3A—N1A168.04 (11)O3B—N3B—C8B—C9B7.75 (16)
O1A—C2A—C3A—C4A170.15 (11)O4B—N3B—C8B—C7B6.92 (16)
C1A—C2A—C3A—C4A11.81 (17)O3B—N3B—C8B—C7B173.40 (11)
N1A—C3A—C4A—O2A175.02 (11)C7B—C8B—C9B—C10B1.14 (18)
C2A—C3A—C4A—O2A5.11 (18)N3B—C8B—C9B—C10B177.64 (11)
N1A—C3A—C4A—C5A3.29 (15)C8B—C9B—C10B—C11B0.23 (18)
C2A—C3A—C4A—C5A176.58 (11)C9B—C10B—C11B—C6B1.08 (19)
N1A—N2A—C6A—C7A0.64 (16)C7B—C6B—C11B—C10B1.55 (18)
N1A—N2A—C6A—C11A179.05 (10)N2B—C6B—C11B—C10B178.67 (11)
C11A—C6A—C7A—C8A1.77 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11B—H11B···O1Ai0.952.633.4824 (15)150
C9B—H9B···O3Aii0.952.533.4837 (16)178
N2B—H2B···O1B0.90 (1)1.90 (1)2.5952 (13)133 (1)
C11A—H11A···O1Bi0.952.533.4347 (15)158
C9A—H9A···O3Bii0.952.593.5227 (15)168
C5A—H5A2···N1i0.982.653.5230 (16)149
C5A—H5A1···O1Aiii0.982.513.4424 (15)158
C1A—H1A2···O4i0.982.493.4674 (16)173
N2A—H2A···O1A0.90 (1)1.91 (1)2.5873 (13)131 (1)
C11—H11···O1iv0.952.523.4114 (14)156
C9—H9···O3v0.952.633.5450 (15)163
C5—H5B···N1Ai0.982.693.5445 (16)146
C1—H1B···O4Ai0.982.473.4237 (18)165
N2—H2···O10.89 (1)1.89 (1)2.5834 (12)134 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+2; (iii) x, y+1, z+1; (iv) x+1, y+1, z; (v) x+1, y+2, z+1.
 

Funding information

We acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG Priority Program 1362 `Porous Metal-Organic Frameworks').

References

First citationAlkorta, I., Elguero, J., Mó, O., Yáñez, M. & Del Bene, J. E. (2004). Mol. Phys. 102, 2563–2574.  CrossRef Google Scholar
First citationBertolasi, V., Nanni, L., Gilli, P., Ferretti, V. & Gilli, G. (1994). New J. Chem. 18, 251–261.  Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBülow, C. & Schlotterbeck, F. (1902). Ber. Dtsch. Chem. Ges. 35, 2187–2191.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. IUCr Monographs on Crystallography, Vol. 9, ch. 3. Oxford University Press.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGilli, G., Bellucci, F., Ferretti, V. & Bertolasi, V. (1989). J. Am. Chem. Soc. 111, 1023–1028.  CrossRef CAS Web of Science Google Scholar
First citationGómez-Sánchez, A., Martín, M. de Gracia García, Borrachero, P. & Bellanato, J. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 301–306.  Google Scholar
First citationMarten, J., Seichter, W. & Weber, E. (2005). Z. Anorg. Allg. Chem. 631, 869–877.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarten, J., Seichter, W. & Weber, E. (2011). Z. Kristallogr. 226, 786–792.  CrossRef Google Scholar
First citationMarten, J., Seichter, W., Weber, E. & Böhme, U. (2007). J. Phys. Org. Chem. 20, 716–731.  Web of Science CSD CrossRef CAS Google Scholar
First citationPhillips, R. R. (1959). Org. React. 10, 143–178.  Google Scholar
First citationSethukumar, A. & Prakasam, B. A. (2010). J. Mol. Struct. 963, 250–257.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds