IUCrData

ISSN 2414-3146

Received 15 August 2018 Accepted 18 September 2018

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

Keywords: crystal structure; two-dimensional layer structure; C— $H \cdots N$ hydrogen bonds; C— $H \cdots O$ hydrogen bonds.

CCDC reference: 1868352

Structural data: full structural data are available from iucrdata.iucr.org

(*Z*)-2-(4-Nitrophenyl)-3-[4-(pyridin-4-ylmethoxy)-phenyl]acrylonitrile

Qingpeng Rao,^a Zepeng Wang,^a Mingdi Yang^b and Zhichao Wu^{a,c}*

^aDepartment of Chemistry, Anhui University, Hefei 230601, People's Republic of China, ^bCollege of Chemistry and Chemical Engineering, Anhui University, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei, 230601, People's Republic of China, and ^cKey Laboratory of Functional Inorganic Materials Chemistry, Hefei 230601, People's Republic of China. *Correspondence e-mail: wu_zhichao63@sina.com

The title compound, $C_{21}H_{15}N_3O_3$, features an essentially planar molecule (r.m.s. deviation for all non-H atoms = 0.090 Å). An intramolecular $C-H\cdots N$ hydrogen bond occurs. In the crystal, the molecules are connected by $C-H\cdots N$ and $C-H\cdots O$ hydrogen bonds into layers parallel to (102).

Structure description

We are interested in the title compound as it is a potential aggregation-induced emission (AIE) material (Liu & Fujiki, 2016). The molecule (Fig. 1) is almost planar (r.m.s. deviation for all non-H atoms = 0.090 Å). An intramolecular $C-H \cdots N$ hydrogen bond occurs (Table 1).

In the crystal, the molecules are connected by $C-H\cdots O$ and $C-H\cdots N$ hydrogen bonds into layers parallel to (102) (Table 1, Fig. 2).

Synthesis and crystallization

Firstly, 1.24 g (4.90 mmol) of 4-(bromomethyl)pyridine hydrobromide and 0.50 g (4.10 mmol) of 4-hydroxybenzaldehyde were added to a flask equipped with 50 ml acetonitrile. And then anhydrous potassium carbonate (3.24 g, 23.44 mmol) and 18-crown-6 (1 g) were added and refluxed at 353 K overnight. Subsequently, the mixture was filtered and the solvent was removed under reduced pressure. Finally, the white product was obtained by column chromatography with petroleum petroleum ether/ethyl acetate (2:1, ν/ν). Then, the white product (0.20 g, 0.94 mmol) of the previous step and 0.15 g (0.95 mmol) of 2-(4-nitrophenyl)acetonitrile were dissolved in 20 ml ethanol into a flask equipped with a magnetic stirrer for 5 h. Subsequently, the yellow solid was filtered.

Figure 1

The structure of title molecule, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular hydrogen bond is indicated by a dashed line.

Yellow crystals suitable for X-ray analysis were obtained by recrystallization from ethanol solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

This work was supported by the Undergraduate Research Training Program of Anhui University (KYXL2017019).

Figure 2

 $C-H\cdots N$ and $C-H\cdots O$ hydrogen bonds connect the molecules into layers parallel to (102).

Table 1	
Hydrogen-bond geometry (Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
C15−H15···N2	0.93	2.58	3.417 (2)	149
$C1-H1\cdots N3^{i}$	0.93	2.97	3.468 (2)	115
$C16-H16A\cdots N2^{ii}$	0.97	2.83	3.261 (2)	107
C4−H4···O2 ⁱⁱⁱ	0.93	2.63	3.502 (3)	156
$C18-H18\cdots O1^{iv}$	0.93	2.47	3.362 (2)	162
$C18-H18\cdots O1^{W}$	0.93	2.47	3.362 (2)	162

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{3}{2}$; (ii) -x, -y + 1, -z + 2; (iii) -x + 2, -y + 1, -z + 1; (iv) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$.

Table 2	
Experimental details	

Crystal data	
Chemical formula	$C_{21}H_{15}N_3O_3$
M _r	357.36
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.1759 (15), 23.521 (4),
	7.4038 (11)
β (°)	95.674 (2)
$V(A^3)$	1763.4 (5)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.09
Crystal size (mm)	$0.21 \times 0.20 \times 0.19$
Data collection	
Diffractometer	Bruker SMART CCD area
	detector
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	12823, 3270, 2621
R _{int}	0.021
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.606
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.113, 1.01
No. of reflections	3270
No. of parameters	244
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} ~ {\rm \AA}^{-3})$	0.15, -0.18

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

References

- Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Liu, B. & Fujiki, M. (2016). *_Aggregation-Induced Emission: Materials and Applications*, Vol. 1, edited by M. Fujiki, B. Liu and B. Z. Tang, ch. 1. ACS Symposium Series. Washington, DC: American Chemical Society.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

full crystallographic data

IUCrData (2018). **3**, x181328 [https://doi.org/10.1107/S2414314618013287]

(Z)-2-(4-Nitrophenyl)-3-[4-(pyridin-4-ylmethoxy)phenyl]acrylonitrile

F(000) = 744

 $\theta = 2.2 - 27.0^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

Block, yellow

 $0.21 \times 0.20 \times 0.19 \text{ mm}$

 $\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$

2621 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.021$

 $h = -12 \rightarrow 12$

 $k = -28 \rightarrow 28$

 $l = -8 \rightarrow 8$

 $D_{\rm x} = 1.346 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4694 reflections

Qingpeng Rao, Zepeng Wang, Mingdi Yang and Zhichao Wu

(Z)-2-(4-Nitrophenyl)-3-[4-(pyridin-4-ylmethoxy)phenyl]acrylonitrile

Crystal data

 $\begin{array}{l} C_{21}H_{15}N_{3}O_{3}\\ M_{r} = 357.36\\ \text{Monoclinic, } P2_{1}/c\\ a = 10.1759 \ (15) \ \text{\AA}\\ b = 23.521 \ (4) \ \text{\AA}\\ c = 7.4038 \ (11) \ \text{\AA}\\ \beta = 95.674 \ (2)^{\circ}\\ V = 1763.4 \ (5) \ \text{\AA}^{3}\\ Z = 4 \end{array}$

Data collection

Bruker SMART CCD area detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans 12823 measured reflections 3270 independent reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from
$wR(F^2) = 0.113$	neighbouring sites
S = 1.01	H-atom parameters constrained
3270 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0544P)^2 + 0.3275P]$
244 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. All H atoms were placed in geometrically calculated positions and refined using a riding model with C–H distances of 0.93 Å for all H atoms bound to $C(sp^2)$ atoms and 0.97 Å for H atoms bound to secondary $C(sp^3)$ atoms. Isotropic displacement parameters for H atoms were calculated as $U_{iso}(H) = 1.2U_{eo}(C)$.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.90163 (15)	0.59837 (8)	0.5910(2)	0.0760 (5)
N2	0.26154 (15)	0.56478 (6)	0.8779 (2)	0.0798 (5)
N3	-0.40049 (15)	0.17881 (7)	1.0732 (2)	0.0745 (4)
O1	0.90200 (15)	0.65022 (7)	0.5838 (2)	0.1062 (5)
O2	0.99589 (15)	0.56935 (8)	0.5654 (3)	0.1137 (6)
O3	-0.00447 (10)	0.29351 (4)	0.96989 (17)	0.0635 (3)
C1	0.55913 (15)	0.57655 (6)	0.7070 (2)	0.0533 (4)
H1	0.4858	0.5987	0.7251	0.064*
C2	0.67248 (17)	0.60273 (7)	0.6613 (2)	0.0613 (4)
H2	0.6758	0.6420	0.6486	0.074*
C3	0.77981 (15)	0.57002 (7)	0.6351 (2)	0.0567 (4)
C4	0.77684 (15)	0.51182 (7)	0.6501 (2)	0.0604 (4)
H4	0.8504	0.4902	0.6296	0.072*
C5	0.66288 (14)	0.48595 (6)	0.6962 (2)	0.0539 (4)
Н5	0.6602	0.4466	0.7070	0.065*
C6	0.55184 (13)	0.51786 (6)	0.72667 (18)	0.0428 (3)
C7	0.42900 (13)	0.49128 (6)	0.78063 (18)	0.0417 (3)
C8	0.33306 (14)	0.53124 (6)	0.8334 (2)	0.0521 (4)
C9	0.40641 (13)	0.43488 (6)	0.78435 (18)	0.0440 (3)
H9	0.4751	0.4128	0.7487	0.053*
C10	0.29350 (13)	0.40227 (6)	0.83428 (18)	0.0440 (3)
C11	0.30583 (15)	0.34322 (6)	0.8376 (2)	0.0597 (4)
H11	0.3842	0.3270	0.8077	0.072*
C12	0.20650 (16)	0.30814 (6)	0.8833 (3)	0.0661 (5)
H12	0.2181	0.2689	0.8843	0.079*
C13	0.08860 (14)	0.33152 (6)	0.9280 (2)	0.0500 (4)
C14	0.07328 (14)	0.38986 (6)	0.9266 (2)	0.0530 (4)
H14	-0.0051	0.4059	0.9573	0.064*
C15	0.17420 (14)	0.42453 (6)	0.8797 (2)	0.0525 (4)
H15	0.1622	0.4637	0.8785	0.063*
C16	-0.12520 (14)	0.31518 (6)	1.0222 (2)	0.0525 (4)
H16A	-0.1632	0.3419	0.9317	0.063*
H16B	-0.1095	0.3350	1.1372	0.063*
C17	-0.21847 (13)	0.26665 (6)	1.03973 (19)	0.0446 (3)
C18	-0.18182 (15)	0.21070 (6)	1.0301 (2)	0.0548 (4)
H18	-0.0952	0.2010	1.0136	0.066*
C19	-0.27535 (18)	0.16909 (7)	1.0453 (3)	0.0700 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

data reports

H10	-0 2491	0 1314	1 0354	0 084*
C20	-0.43400(16)	0 23323 (8)	1.0554	0.064
H20	-0.5211	0.2417	1.0994	0.080*
C21	-0.34893(15)	0.27792 (7)	1.0658 (2)	0.0560 (4)
H21	-0.3785	0.3152	1.0724	0.067*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
N1	0.0579 (10)	0.0991 (13)	0.0716 (10)	-0.0312 (9)	0.0090 (7)	0.0036 (9)
N2	0.0692 (9)	0.0503 (8)	0.1253 (14)	0.0098 (7)	0.0371 (9)	0.0006 (8)
N3	0.0680 (9)	0.0672 (10)	0.0908 (11)	-0.0271 (7)	0.0199 (8)	-0.0032 (8)
01	0.0915 (11)	0.0937 (11)	0.1359 (14)	-0.0495 (9)	0.0244 (9)	0.0119 (10)
O2	0.0546 (8)	0.1344 (14)	0.1563 (16)	-0.0212 (9)	0.0321 (9)	0.0062 (11)
O3	0.0458 (6)	0.0438 (6)	0.1057 (9)	-0.0047 (4)	0.0305 (6)	-0.0001 (5)
C1	0.0515 (8)	0.0476 (8)	0.0617 (10)	-0.0046 (6)	0.0106 (7)	0.0026 (7)
C2	0.0654 (10)	0.0525 (9)	0.0668 (10)	-0.0167 (8)	0.0099 (8)	0.0045 (7)
C3	0.0476 (8)	0.0713 (11)	0.0513 (9)	-0.0220 (7)	0.0049 (7)	0.0020 (7)
C4	0.0432 (8)	0.0721 (11)	0.0672 (10)	-0.0046 (7)	0.0123 (7)	-0.0011 (8)
C5	0.0475 (8)	0.0493 (8)	0.0667 (10)	-0.0040 (6)	0.0144 (7)	0.0000 (7)
C6	0.0425 (7)	0.0458 (8)	0.0404 (7)	-0.0051 (6)	0.0050 (6)	-0.0008 (6)
C7	0.0398 (7)	0.0436 (7)	0.0422 (7)	-0.0010 (5)	0.0074 (6)	-0.0003 (6)
C8	0.0483 (8)	0.0433 (8)	0.0666 (10)	-0.0030 (6)	0.0148 (7)	0.0022 (7)
C9	0.0400 (7)	0.0446 (7)	0.0488 (8)	-0.0003 (5)	0.0107 (6)	-0.0017 (6)
C10	0.0421 (7)	0.0422 (7)	0.0489 (8)	-0.0028 (6)	0.0099 (6)	-0.0018 (6)
C11	0.0456 (8)	0.0458 (8)	0.0916 (12)	0.0018 (6)	0.0262 (8)	-0.0022 (8)
C12	0.0531 (9)	0.0386 (8)	0.1111 (15)	0.0001 (7)	0.0309 (9)	-0.0004 (8)
C13	0.0418 (7)	0.0450 (8)	0.0650 (9)	-0.0070 (6)	0.0148 (7)	-0.0010 (7)
C14	0.0400 (7)	0.0461 (8)	0.0754 (10)	-0.0004 (6)	0.0186 (7)	-0.0046 (7)
C15	0.0475 (8)	0.0391 (7)	0.0730 (10)	-0.0023 (6)	0.0167 (7)	-0.0030 (7)
C16	0.0434 (8)	0.0466 (8)	0.0698 (10)	-0.0037 (6)	0.0174 (7)	-0.0061 (7)
C17	0.0428 (7)	0.0472 (8)	0.0449 (8)	-0.0078 (6)	0.0094 (6)	-0.0032 (6)
C18	0.0506 (8)	0.0499 (9)	0.0660 (10)	-0.0030 (7)	0.0161 (7)	-0.0026 (7)
C19	0.0784 (12)	0.0450 (9)	0.0894 (13)	-0.0119 (8)	0.0220 (10)	-0.0038 (8)
C20	0.0449 (9)	0.0792 (12)	0.0780 (12)	-0.0130 (8)	0.0167 (8)	0.0004 (9)
C21	0.0486 (8)	0.0541 (9)	0.0671 (10)	-0.0020 (7)	0.0144 (7)	-0.0011 (7)

Geometric parameters (Å, °)

O3—C13	1.3603 (17)	C17—C18	1.372 (2)	
O3—C16	1.4188 (17)	C17—C21	1.386 (2)	
С7—С9	1.3472 (19)	C17—C16	1.4983 (19)	
С7—С8	1.4370 (19)	C11—C12	1.373 (2)	
С7—С6	1.4873 (18)	C11—H11	0.9300	
C6—C1	1.391 (2)	C18—C19	1.378 (2)	
C6—C5	1.393 (2)	C18—H18	0.9300	
C10-C15	1.3935 (19)	C16—H16A	0.9700	
C10-C11	1.395 (2)	C16—H16B	0.9700	

С10—С9	1.4590 (18)	C2C1	1.379 (2)
С9—Н9	0.9300	С2—Н2	0.9300
C14—C13	1.381 (2)	С12—Н12	0.9300
C14—C15	1.3822 (19)	C4—H4	0.9300
C14—H14	0.9300	C1—H1	0.9300
C5—C4	1.382 (2)	N1—O2	1.208 (2)
С5—Н5	0.9300	N1-01	1.221 (2)
C8—N2	1.1436 (19)	N3—C20	1.328 (2)
C3—C2	1.366 (2)	N3—C19	1.330 (2)
C3—C4	1.374 (2)	C21—C20	1.374 (2)
C3—N1	1,4723 (19)	C21—H21	0.9300
C15—H15	0.9300	C20—H20	0.9300
C13 - C12	1 389 (2)	C19—H19	0.9300
015 012	1.507 (2)		0.9500
C13—O3—C16	117.86(11)	C17—C18—C19	118.93 (15)
C9—C7—C8	121.11 (12)	C17—C18—H18	120.5
C9—C7—C6	124.69 (12)	C19—C18—H18	120.5
C8-C7-C6	114 19 (11)	03-016-017	108 85 (11)
C1 - C6 - C5	117 73 (13)	03—C16—H16A	109.9
C1 - C6 - C7	120.02 (13)	C17 - C16 - H16A	109.9
$C_{1} = C_{0} = C_{1}$	120.02(13) 122.25(12)	O_3 — C_16 —H16B	109.9
$C_{15} = C_{10} = C_{11}$	122.23(12) 116.68(12)	C17_C16_H16B	109.9
$C_{15} = C_{10} = C_{11}$	126 10 (13)	HIGA CIG HIGB	109.9
$C_{11} = C_{10} = C_{2}$	120.19(13) 117.14(12)	C_{3} C_{2} C_{1}	108.5 118.02(15)
$C_{11} = C_{10} = C_{9}$	117.14(12) 121.52(12)	C_{3}	110.92 (13)
$C_{7} = C_{9} = C_{10}$	131.35 (12)	$C_3 - C_2 - H_2$	120.5
$C_{1} = C_{2} = H_{2}$	114.2	CI = C2 = H2	120.3
C10 - C9 - H9	114.2	CII = CI2 = CI3	119.07 (14)
	120.13 (13)	CII—CI2—HI2	120.2
C13—C14—H14	119.9	C13—C12—H12	120.2
С15—С14—Н14	119.9	C3—C4—C5	118.97 (15)
C4—C5—C6	121.10 (14)	C3—C4—H4	120.5
C4—C5—H5	119.5	C5—C4—H4	120.5
C6—C5—H5	119.5	C2C1C6	121.56 (15)
N2—C8—C7	176.74 (17)	C2—C1—H1	119.2
C2—C3—C4	121.71 (14)	C6—C1—H1	119.2
C2—C3—N1	118.63 (16)	O2—N1—O1	123.50 (16)
C4—C3—N1	119.66 (16)	O2—N1—C3	118.56 (18)
C14—C15—C10	121.71 (13)	O1—N1—C3	117.94 (17)
C14—C15—H15	119.1	C20—N3—C19	115.30 (14)
C10—C15—H15	119.1	C20—C21—C17	119.06 (15)
O3—C13—C14	125.04 (13)	C20—C21—H21	120.5
O3—C13—C12	115.55 (13)	C17—C21—H21	120.5
C14—C13—C12	119.41 (13)	N3—C20—C21	124.52 (16)
C18—C17—C21	117.38 (13)	N3—C20—H20	117.7
C18—C17—C16	123.27 (13)	C21—C20—H20	117.7
C21—C17—C16	119.34 (13)	N3—C19—C18	124.79 (16)
C12—C11—C10	122.39 (13)	N3—C19—H19	117.6
C12—C11—H11	118.8	C18—C19—H19	117.6

C10—C11—H11	118.8		
C9—C7—C6—C1	172.46 (14)	C18—C17—C16—O3	8.2 (2)
C8—C7—C6—C1	-8.53 (19)	C21—C17—C16—O3	-171.38 (13)
C9—C7—C6—C5	-8.3 (2)	C4—C3—C2—C1	1.1 (2)
C8—C7—C6—C5	170.74 (14)	N1—C3—C2—C1	-178.40 (14)
C8—C7—C9—C10	0.6 (2)	C10-C11-C12-C13	0.1 (3)
C6—C7—C9—C10	179.53 (13)	O3—C13—C12—C11	179.45 (16)
C15—C10—C9—C7	5.0 (3)	C14—C13—C12—C11	-0.3 (3)
C11—C10—C9—C7	-174.82 (16)	C2—C3—C4—C5	-1.2 (3)
C1—C6—C5—C4	0.7 (2)	N1—C3—C4—C5	178.31 (14)
C7—C6—C5—C4	-178.54 (14)	C6—C5—C4—C3	0.2 (2)
C9—C7—C8—N2	152 (3)	C3—C2—C1—C6	-0.1 (2)
C6—C7—C8—N2	-27 (3)	C5-C6-C1-C2	-0.8 (2)
C13—C14—C15—C10	-0.5 (2)	C7—C6—C1—C2	178.46 (13)
C11—C10—C15—C14	0.3 (2)	C2-C3-N1-O2	-178.99 (17)
C9-C10-C15-C14	-179.48 (14)	C4—C3—N1—O2	1.5 (2)
C16—O3—C13—C14	-2.2 (2)	C2-C3-N1-O1	1.5 (2)
C16—O3—C13—C12	178.05 (15)	C4—C3—N1—O1	-177.97 (17)
C15—C14—C13—O3	-179.23 (15)	C18—C17—C21—C20	0.4 (2)
C15—C14—C13—C12	0.5 (3)	C16—C17—C21—C20	179.94 (15)
C15—C10—C11—C12	-0.1 (3)	C19—N3—C20—C21	-0.8 (3)
C9-C10-C11-C12	179.69 (16)	C17—C21—C20—N3	-0.2 (3)
C21—C17—C18—C19	0.4 (2)	C20-N3-C19-C18	1.7 (3)
C16—C17—C18—C19	-179.10 (15)	C17—C18—C19—N3	-1.6 (3)
C13—O3—C16—C17	173.17 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C15—H15…N2	0.93	2.58	3.417 (2)	149
C1—H1···N3 ⁱ	0.93	2.97	3.468 (2)	115
C16—H16A…N2 ⁱⁱ	0.97	2.83	3.261 (2)	107
C4—H4···O2 ⁱⁱⁱ	0.93	2.63	3.502 (3)	156
C18—H18…O1 ^{iv}	0.93	2.47	3.362 (2)	162

Symmetry codes: (i) -x, y+1/2, -z+3/2; (ii) -x, -y+1, -z+2; (iii) -x+2, -y+1, -z+1; (iv) -x+1, y-1/2, -z+3/2.