organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Phenyl-5a,6,7,8,9,9a-hexa­hydro-1H-1,5-benzodiazepin-2(5H)-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Heterocyclique URAC 21, Av. Ibn Battouta, BP 1014, Faculte des Sciences, Universite Mohammed V, Rabat, Morocco, bLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, cNational Center of Energy Sciences and Nuclear Techniques, Rabat, Morocco, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: y.ramli@um5s.net.ma

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 11 July 2018; accepted 12 July 2018; online 17 July 2018)

In the title compound, C15H18N2O, the cyclo­hexyl portion is disordered over two alternate chair conformations in a 0.911 (2):0.089 (2) ratio. In the crystal, inversion-related pairwise N—H⋯O hydrogen bonds form dimers, which are connected into (100) layers by additional N—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Benzodiazepines a nowadays well known for their therapeutic virtues. These heterocylic compounds are commonly used as anti-inflammatory (Bhat & Kumar, 2016[Bhat, I. & Kumar, A. (2016). Asian J. Pharm. Clin. Res. 9, 63-66.]), anti­oxidant (Patil et al., 2015[Patil, R. B., Sawant, S. D., Reddy, K. V. & Shirsat, M. (2015). Res. J. Pharm. Biol. Chem. Sci. 6, 381-391.]) and anti­cancer (Chen et al., 2014[Chen, Y., Le, V., Xu, X., Shao, X., Liu, J. & Li, Z. (2014). Bioorg. Med. Chem. Lett. 24, 3948-3951.]) agents. As part of our studies in this area, we report here the synthesis and structure of a new 1,5-benzodiazepine derivative.

The cyclo­hexyl ring (C1–C6) in the title mol­ecule (Fig. 1[link]) is disordered over two alternate chair conformations in a 0.911 (2):0.089 (2) ratio. The major component has puckering parameters Q = 0.561 (2) Å, θ = 173.1 (2)° and φ = 321.1 (19)°. A puckering analysis of the major conformation of the seven-membered ring yielded the parameters Q(2) = 0.4234 (19) Å, Q(3) = 0.3884 (18) Å, φ(2) = 123.91 (2)° and φ(3) = 40.0 (3)°, with a total puckering amplitude of 0.574 (2) Å.

[Figure 1]
Figure 1
The title mol­ecule, shown with 50% probability displacement ellipsoids. Only the major conformation is shown.

In the crystal, inversion-related pairwise N2—H2⋯O1i hydrogen bonds form dimers which are connected into (100) layers by N1—H1B⋯O1ii hydrogen bonds (Table 1[link] and Fig. 2[link]). These layers have the phenyl rings protruding from both surfaces.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1i 0.88 2.32 3.096 (2) 148
N2—H2⋯O1ii 0.88 2.04 2.8936 (19) 162
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+2.
[Figure 2]
Figure 2
Packing viewed along the a-axis direction. N—H⋯O hydrogen bonds are depicted by dashed lines.

Synthesis and crystallization

To a stirred boiling solution of 0.1 mol (11.4 g) of 1,2-di­amino­cyclo­hexane in 60 ml p-xylene, 0.12 mol (23.06 g) of ethyl benzoyl­acetate in 10 ml p-xylene was added dropwise and refluxed for 2 h. The reaction mixture was left at room temperature for 24 h. The precipitated solid was collected by filtration and recrystallized from dry ethanol solution to give colourless blocks (m.p. 230–232°C).

Refinement

Crystal and refinement details are presented in Table 2[link]. The cyclo­hexyl ring and its attached N atoms are disordered over two chair conformations in a 91:9 ratio. The minor component of the disorder was restrained to have a comparable geometry to that of the major one and the attached H atoms on both were included as riding contributions in idealized positions. The final model was refined as a two-component twin.

Table 2
Experimental details

Crystal data
Chemical formula C15H18N2O
Mr 242.31
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.4283 (18), 9.2294 (15), 12.3632 (19)
β (°) 96.890 (2)
V3) 1294.6 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.30 × 0.27 × 0.19
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.])
Tmin, Tmax 0.98, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 44744, 44744, 25002
Rint 0.046
(sin θ/λ)max−1) 0.686
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.152, 0.93
No. of reflections 44744
No. of parameters 207
No. of restraints 18
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.24
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3, SADABS, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and SHELXTL (Bruker, 2016[Bruker (2016). APEX3, SADABS, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Bruker, 2016).

4-Phenyl-5a,6,7,8,9,9a-hexahydro-1H-1,5-benzodiazepin-2(5H)-one top
Crystal data top
C15H18N2OF(000) = 520
Mr = 242.31Dx = 1.243 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.4283 (18) ÅCell parameters from 9967 reflections
b = 9.2294 (15) Åθ = 2.8–29.2°
c = 12.3632 (19) ŵ = 0.08 mm1
β = 96.890 (2)°T = 100 K
V = 1294.6 (4) Å3Block, colourless
Z = 40.30 × 0.27 × 0.19 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
44744 independent reflections
Radiation source: fine-focus sealed tube25002 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 8.3333 pixels mm-1θmax = 29.2°, θmin = 1.8°
ω and φ scansh = 1515
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 1212
Tmin = 0.98, Tmax = 0.99l = 1616
44744 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: mixed
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.0804P)2]
where P = (Fo2 + 2Fc2)/3
44744 reflections(Δ/σ)max < 0.001
207 parametersΔρmax = 0.32 e Å3
18 restraintsΔρmin = 0.24 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5 deg. in omega, colllected at phi = 0.00, 90.00 and 180.00 deg. and 2 sets of 800 frames, each of width 0.45 deg in phi, collected at omega = -30.00 and 210.00 deg. The scan time was 30 sec/frame. Analysis of 1323 reflections having I/σ(I) > 12 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the monoclinic system and to be twinned by a 180° rotation about b. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The cyclohexyl ring and its attached nitrogen atoms are disordered over two chair conformations in a 91:9 ratio. The minor component of the disorder was restrained to have a comparable geometry to that of the major one and the attached hydrogens on both were included as riding contributions in idealized positions. The final model was refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.35039 (10)0.54728 (14)0.97683 (10)0.0323 (4)
N10.35229 (12)0.69692 (17)0.63902 (12)0.0309 (4)0.911 (2)
H1B0.3363910.7422920.5763780.037*0.911 (2)
N20.48216 (12)0.58638 (16)0.85897 (12)0.0291 (4)0.911 (2)
H20.5304110.5285230.8995410.035*0.911 (2)
C10.53237 (16)0.6625 (2)0.77215 (16)0.0264 (5)0.911 (2)
H10.5275600.7692740.7846320.032*0.911 (2)
C20.66216 (17)0.6171 (3)0.78221 (19)0.0338 (7)0.911 (2)
H2A0.7022630.6513350.8530230.041*0.911 (2)
H2B0.6668750.5100040.7816100.041*0.911 (2)
C30.72628 (18)0.6767 (3)0.69142 (18)0.0359 (6)0.911 (2)
H3A0.8091780.6432560.7010730.043*0.911 (2)
H3B0.7261740.7839390.6938330.043*0.911 (2)
C40.66544 (18)0.6250 (3)0.58212 (19)0.0367 (6)0.911 (2)
H4A0.6680780.5179460.5787090.044*0.911 (2)
H4B0.7068720.6641640.5225740.044*0.911 (2)
C50.53792 (17)0.6761 (2)0.56791 (17)0.0303 (6)0.911 (2)
H5A0.4986090.6396230.4974630.036*0.911 (2)
H5B0.5366580.7833140.5649290.036*0.911 (2)
C60.46797 (16)0.6259 (2)0.65916 (16)0.0259 (5)0.911 (2)
H60.4566770.5186210.6536140.031*0.911 (2)
N1A0.35229 (12)0.69692 (17)0.63902 (12)0.0309 (4)0.089 (2)
H1C0.3319210.6839200.5687690.037*0.089 (2)
N2A0.48216 (12)0.58638 (16)0.85897 (12)0.0291 (4)0.089 (2)
H2C0.5383850.5839690.9142030.035*0.089 (2)
C1A0.5210 (11)0.5822 (19)0.7504 (9)0.0264 (5)0.089 (2)
H1A0.4891340.4926520.7120030.032*0.089 (2)
C2A0.6553 (12)0.573 (3)0.7681 (15)0.0338 (7)0.089 (2)
H2AA0.6858970.6528670.8168380.041*0.089 (2)
H2AB0.6782650.4805450.8054090.041*0.089 (2)
C3A0.7129 (15)0.581 (2)0.6642 (16)0.0359 (6)0.089 (2)
H3AA0.6885960.4967890.6173890.043*0.089 (2)
H3AB0.7996590.5781990.6819970.043*0.089 (2)
C4A0.6773 (13)0.720 (2)0.6032 (18)0.0367 (6)0.089 (2)
H4AA0.7127700.7232510.5339810.044*0.089 (2)
H4AB0.7064480.8049720.6476780.044*0.089 (2)
C5A0.5437 (12)0.727 (3)0.5796 (14)0.0303 (6)0.089 (2)
H5AA0.5167530.6467470.5292690.036*0.089 (2)
H5AB0.5212170.8190290.5420150.036*0.089 (2)
C6A0.4795 (8)0.7153 (18)0.6810 (11)0.0259 (5)0.089 (2)
H6A0.4913020.8058110.7254320.031*0.089 (2)
C70.26759 (14)0.69980 (19)0.70681 (15)0.0251 (4)
C80.27531 (16)0.65248 (19)0.81167 (15)0.0264 (4)
C90.37109 (15)0.59344 (19)0.88495 (15)0.0255 (4)
C100.15212 (15)0.7588 (2)0.65637 (16)0.0284 (4)
H100.1482 (17)0.650 (2)0.5102 (16)0.039 (6)*
C110.10522 (17)0.7196 (2)0.55146 (18)0.0376 (5)
H110.0345 (19)0.738 (2)0.4304 (18)0.052 (6)*
C120.00385 (18)0.7731 (3)0.5068 (2)0.0456 (6)
H120.1426 (19)0.906 (2)0.5324 (17)0.047 (6)*
C130.06599 (18)0.8668 (3)0.5657 (2)0.0447 (6)
H130.0647 (19)0.971 (2)0.7134 (17)0.048 (6)*
C140.02046 (18)0.9060 (2)0.6693 (2)0.0426 (6)
H140.2059 (16)0.6540 (19)0.8426 (14)0.028 (5)*
C150.08779 (16)0.8525 (2)0.71489 (18)0.0346 (5)
H150.1212 (17)0.881 (2)0.7891 (17)0.038 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0263 (7)0.0473 (9)0.0239 (8)0.0017 (6)0.0055 (5)0.0068 (6)
N10.0225 (8)0.0477 (10)0.0230 (9)0.0055 (7)0.0040 (7)0.0068 (7)
N20.0214 (8)0.0412 (10)0.0253 (9)0.0048 (6)0.0052 (6)0.0079 (7)
C10.0227 (10)0.0308 (12)0.0265 (12)0.0013 (8)0.0063 (8)0.0017 (9)
C20.0228 (10)0.0436 (17)0.0351 (13)0.0008 (9)0.0038 (9)0.0074 (11)
C30.0234 (10)0.0419 (15)0.0433 (15)0.0004 (9)0.0080 (10)0.0096 (11)
C40.0312 (11)0.0425 (14)0.0391 (14)0.0049 (10)0.0156 (10)0.0048 (11)
C50.0284 (10)0.0371 (15)0.0265 (12)0.0026 (9)0.0087 (8)0.0015 (10)
C60.0222 (10)0.0296 (12)0.0264 (12)0.0024 (8)0.0049 (8)0.0009 (9)
N1A0.0225 (8)0.0477 (10)0.0230 (9)0.0055 (7)0.0040 (7)0.0068 (7)
N2A0.0214 (8)0.0412 (10)0.0253 (9)0.0048 (6)0.0052 (6)0.0079 (7)
C1A0.0227 (10)0.0308 (12)0.0265 (12)0.0013 (8)0.0063 (8)0.0017 (9)
C2A0.0228 (10)0.0436 (17)0.0351 (13)0.0008 (9)0.0038 (9)0.0074 (11)
C3A0.0234 (10)0.0419 (15)0.0433 (15)0.0004 (9)0.0080 (10)0.0096 (11)
C4A0.0312 (11)0.0425 (14)0.0391 (14)0.0049 (10)0.0156 (10)0.0048 (11)
C5A0.0284 (10)0.0371 (15)0.0265 (12)0.0026 (9)0.0087 (8)0.0015 (10)
C6A0.0222 (10)0.0296 (12)0.0264 (12)0.0024 (8)0.0049 (8)0.0009 (9)
C70.0200 (8)0.0286 (10)0.0269 (11)0.0008 (7)0.0036 (7)0.0002 (8)
C80.0195 (9)0.0338 (11)0.0269 (11)0.0004 (7)0.0062 (8)0.0020 (8)
C90.0224 (9)0.0303 (10)0.0241 (10)0.0008 (7)0.0048 (7)0.0018 (8)
C100.0206 (9)0.0361 (11)0.0287 (11)0.0005 (7)0.0041 (8)0.0078 (8)
C110.0279 (10)0.0523 (14)0.0326 (13)0.0006 (9)0.0032 (9)0.0050 (10)
C120.0295 (11)0.0690 (16)0.0362 (14)0.0041 (10)0.0042 (10)0.0123 (11)
C130.0202 (10)0.0603 (15)0.0533 (16)0.0024 (9)0.0036 (10)0.0244 (12)
C140.0281 (11)0.0490 (14)0.0525 (16)0.0097 (9)0.0117 (10)0.0143 (11)
C150.0261 (10)0.0423 (12)0.0359 (13)0.0037 (8)0.0054 (9)0.0068 (9)
Geometric parameters (Å, º) top
O1—C91.262 (2)C1A—C6A1.541 (10)
N1—C71.354 (2)C1A—H1A1.0000
N1—C61.470 (2)C2A—C3A1.514 (10)
N1—H1B0.8800C2A—H2AA0.9900
N2—C91.348 (2)C2A—H2AB0.9900
N2—C11.457 (2)C3A—C4A1.519 (10)
N2—H20.8800C3A—H3AA0.9900
C1—C21.532 (3)C3A—H3AB0.9900
C1—C61.536 (3)C4A—C5A1.521 (10)
C1—H11.0000C4A—H4AA0.9900
C2—C31.515 (3)C4A—H4AB0.9900
C2—H2A0.9900C5A—C6A1.529 (10)
C2—H2B0.9900C5A—H5AA0.9900
C3—C41.520 (3)C5A—H5AB0.9900
C3—H3A0.9900C6A—H6A1.0000
C3—H3B0.9900C7—C81.361 (2)
C4—C51.522 (3)C7—C101.493 (2)
C4—H4A0.9900C8—C91.441 (2)
C4—H4B0.9900C8—H140.922 (18)
C5—C61.531 (3)C10—C111.391 (3)
C5—H5A0.9900C10—C151.392 (3)
C5—H5B0.9900C11—C121.392 (3)
C6—H61.0000C11—H100.99 (2)
N1A—C71.354 (2)C12—C131.381 (3)
N1A—C6A1.494 (9)C12—H111.02 (2)
N1A—H1C0.8800C13—C141.372 (3)
N2A—C91.348 (2)C13—H120.99 (2)
N2A—C1A1.464 (9)C14—C151.388 (3)
N2A—H2C0.8800C14—H130.99 (2)
C1A—C2A1.526 (10)C15—H150.99 (2)
C7—N1—C6126.79 (15)C1A—C2A—H2AB108.7
C7—N1—H1B116.6H2AA—C2A—H2AB107.6
C6—N1—H1B116.6C2A—C3A—C4A110.2 (12)
C9—N2—C1128.15 (15)C2A—C3A—H3AA109.6
C9—N2—H2115.9C4A—C3A—H3AA109.6
C1—N2—H2115.9C2A—C3A—H3AB109.6
N2—C1—C2105.75 (16)C4A—C3A—H3AB109.6
N2—C1—C6112.07 (16)H3AA—C3A—H3AB108.1
C2—C1—C6111.55 (16)C3A—C4A—C5A109.3 (12)
N2—C1—H1109.1C3A—C4A—H4AA109.8
C2—C1—H1109.1C5A—C4A—H4AA109.8
C6—C1—H1109.1C3A—C4A—H4AB109.8
C3—C2—C1112.96 (18)C5A—C4A—H4AB109.8
C3—C2—H2A109.0H4AA—C4A—H4AB108.3
C1—C2—H2A109.0C4A—C5A—C6A114.2 (11)
C3—C2—H2B109.0C4A—C5A—H5AA108.7
C1—C2—H2B109.0C6A—C5A—H5AA108.7
H2A—C2—H2B107.8C4A—C5A—H5AB108.7
C2—C3—C4109.52 (18)C6A—C5A—H5AB108.7
C2—C3—H3A109.8H5AA—C5A—H5AB107.6
C4—C3—H3A109.8N1A—C6A—C5A105.4 (9)
C2—C3—H3B109.8N1A—C6A—C1A108.9 (10)
C4—C3—H3B109.8C5A—C6A—C1A111.4 (11)
H3A—C3—H3B108.2N1A—C6A—H6A110.3
C3—C4—C5109.57 (18)C5A—C6A—H6A110.3
C3—C4—H4A109.8C1A—C6A—H6A110.3
C5—C4—H4A109.8N1A—C7—C8127.86 (16)
C3—C4—H4B109.8N1—C7—C8127.86 (16)
C5—C4—H4B109.8N1A—C7—C10114.21 (15)
H4A—C4—H4B108.2N1—C7—C10114.21 (15)
C4—C5—C6113.50 (18)C8—C7—C10117.90 (15)
C4—C5—H5A108.9C7—C8—C9132.66 (17)
C6—C5—H5A108.9C7—C8—H14115.5 (11)
C4—C5—H5B108.9C9—C8—H14111.8 (11)
C6—C5—H5B108.9O1—C9—N2A118.81 (16)
H5A—C5—H5B107.7O1—C9—N2118.81 (16)
N1—C6—C5106.19 (15)O1—C9—C8118.89 (16)
N1—C6—C1112.28 (15)N2A—C9—C8122.30 (16)
C5—C6—C1111.59 (16)N2—C9—C8122.30 (16)
N1—C6—H6108.9C11—C10—C15118.54 (18)
C5—C6—H6108.9C11—C10—C7121.13 (17)
C1—C6—H6108.9C15—C10—C7120.31 (18)
C7—N1A—C6A121.4 (6)C10—C11—C12120.3 (2)
C7—N1A—H1C119.3C10—C11—H10119.4 (11)
C6A—N1A—H1C119.3C12—C11—H10120.2 (11)
C9—N2A—C1A128.1 (5)C13—C12—C11120.4 (2)
C9—N2A—H2C115.9C13—C12—H11123.1 (12)
C1A—N2A—H2C115.9C11—C12—H11116.5 (12)
N2A—C1A—C2A106.3 (9)C14—C13—C12119.7 (2)
N2A—C1A—C6A112.5 (10)C14—C13—H12120.5 (12)
C2A—C1A—C6A111.2 (11)C12—C13—H12119.8 (12)
N2A—C1A—H1A108.9C13—C14—C15120.4 (2)
C2A—C1A—H1A108.9C13—C14—H13120.9 (12)
C6A—C1A—H1A108.9C15—C14—H13118.7 (13)
C3A—C2A—C1A114.1 (12)C14—C15—C10120.7 (2)
C3A—C2A—H2AA108.7C14—C15—H15120.5 (11)
C1A—C2A—H2AA108.7C10—C15—H15118.8 (11)
C3A—C2A—H2AB108.7
C9—N2—C1—C2178.49 (18)C2A—C1A—C6A—C5A47.7 (17)
C9—N2—C1—C659.8 (3)C6A—N1A—C7—C833.3 (8)
N2—C1—C2—C3175.09 (18)C6A—N1A—C7—C10148.6 (7)
C6—C1—C2—C353.0 (3)C6—N1—C7—C87.9 (3)
C1—C2—C3—C458.6 (3)C6—N1—C7—C10170.20 (17)
C2—C3—C4—C559.2 (2)N1A—C7—C8—C93.5 (3)
C3—C4—C5—C657.0 (2)N1—C7—C8—C93.5 (3)
C7—N1—C6—C5170.40 (17)C10—C7—C8—C9178.47 (19)
C7—N1—C6—C148.2 (2)C1A—N2A—C9—O1155.9 (9)
C4—C5—C6—N1174.11 (17)C1A—N2A—C9—C824.4 (9)
C4—C5—C6—C151.5 (2)C1—N2—C9—O1163.67 (18)
N2—C1—C6—N174.5 (2)C1—N2—C9—C816.0 (3)
C2—C1—C6—N1167.09 (16)C7—C8—C9—O1174.44 (19)
N2—C1—C6—C5166.35 (16)C7—C8—C9—N2A5.9 (3)
C2—C1—C6—C548.0 (2)C7—C8—C9—N25.9 (3)
C9—N2A—C1A—C2A179.4 (11)N1A—C7—C10—C1143.1 (2)
C9—N2A—C1A—C6A58.6 (15)N1—C7—C10—C1143.1 (2)
N2A—C1A—C2A—C3A174.7 (17)C8—C7—C10—C11135.20 (19)
C6A—C1A—C2A—C3A52 (2)N1A—C7—C10—C15138.29 (18)
C1A—C2A—C3A—C4A57 (2)N1—C7—C10—C15138.29 (18)
C2A—C3A—C4A—C5A57 (2)C8—C7—C10—C1543.4 (2)
C3A—C4A—C5A—C6A57 (2)C15—C10—C11—C120.2 (3)
C7—N1A—C6A—C5A172.4 (10)C7—C10—C11—C12178.49 (18)
C7—N1A—C6A—C1A67.9 (12)C10—C11—C12—C130.7 (3)
C4A—C5A—C6A—N1A170.1 (15)C11—C12—C13—C140.7 (3)
C4A—C5A—C6A—C1A52 (2)C12—C13—C14—C150.3 (3)
N2A—C1A—C6A—N1A77.3 (15)C13—C14—C15—C100.3 (3)
C2A—C1A—C6A—N1A163.6 (13)C11—C10—C15—C140.3 (3)
N2A—C1A—C6A—C5A166.9 (13)C7—C10—C15—C14178.97 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.882.323.096 (2)148
N2—H2···O1ii0.882.042.8936 (19)162
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+2.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBhat, I. & Kumar, A. (2016). Asian J. Pharm. Clin. Res. 9, 63–66.  Google Scholar
First citationBruker (2016). APEX3, SADABS, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y., Le, V., Xu, X., Shao, X., Liu, J. & Li, Z. (2014). Bioorg. Med. Chem. Lett. 24, 3948–3951.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPatil, R. B., Sawant, S. D., Reddy, K. V. & Shirsat, M. (2015). Res. J. Pharm. Biol. Chem. Sci. 6, 381–391.  CAS Google Scholar
First citationSheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds