metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(4-meth­­oxy­benzyl­ammonium) tetra­bromido­cadmate(II)

aDepartment of Physics, Government Arts College (Autonomous), Kumbakonam 612 002, Tamilnadu, India, and bPrincipal, Kunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur 613 007, Tamilnadu, India
*Correspondence e-mail: thiruvalluvar.a@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 28 May 2018; accepted 30 May 2018; online 5 June 2018)

The asymmetric unit of the organic–inorganic hybrid salt, (C8H12NO)2[CdBr4], consists of two 4-meth­oxy­benzyl­ammonium cations and one [CdBr4]2− anion. The cations and anions are connected by a complex series of N—H⋯Br and C—H⋯Br hydrogen bonds. No ππ stacking inter­actions occur between the benzene rings but two C—H⋯π inter­actions are observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Work on non-linear optical (NLO) crystals is an attractive field of inter­est in current research into applications of laser technology, optical data storage, optical communication, optical switching, optical signal processing, and optical power-limiting processes (Umarani et al., 2017[Umarani, P., Thiruvalluvar, A. & Ramachandra Raja, C. (2017). IUCrData, 2, x171114.]; Mageshwari et al., 2016[Mageshwari, P. S. L., Priya, R., Krishnan, S., Joseph, V. & Das, S. J. (2016). Optics Laser Technol. 85, 66-74.]). Recently, researchers have concentrated on the design of new metal–organic NLO crystals. These materials enhance the desirable NLO response of organic crystals with the high thermal and mechanical properties of inorganic crystals. This new class of materials with remarkable properties are ideal for device fabrication. Incorporating transition metal ions such as Cd2+, Zn2+, Hg2+ with filled electron d shells into organic materials creates more energy sublevels and enhances the optical non-linearity through a charge-transfer mechanism (Yang et al., 2013[Yang, J. T., Luo, S. J., Yi, L. & Laref, A. (2013). Physica B, 408, 175-182.]).

As a part of a continuation of our research work on 4-meth­oxy­benzyl­amine-based crystals, we report here the synthesis and crystal structure of the metal–organic title structure, bis(4-meth­oxy­benzyl­ammonium) tetra­bromido­cadmate(II). As the crystal belongs to the centrosymmetric monoclinic space group P21/n, it can be used in third-harmonic generation for a Nd:YAG laser at a wavelength of 1064 nm (Mageshwari et al., 2016[Mageshwari, P. S. L., Priya, R., Krishnan, S., Joseph, V. & Das, S. J. (2016). Optics Laser Technol. 85, 66-74.]).

The asymmetric unit of the the title compound consists of one tetra­bromido­cadmate anion, [CdBr4]2−, and two 4-meth­oxy­benzyl­ammonium cations, (C8H12NO)+, as shown in Fig. 1[link]. The cadmium cation coordination environment is distorted tetra­hedral. The 4-meth­oxy­benzyl­ammonium cations are sandwiched between the tetra­bromido­cadmate layers (Fig. 2[link]). The crystal packing is stabilized by a complex hydrogen-bonding system, involving the N—H bonds of the positively charged ammonium groups and, to a minor extent, the methyl­ene group as donors, with the bromide ligands of the anions as acceptors (Table 1[link]). The benzene rings of the cations are also linked by weak C—H⋯π inter­actions (Fig. 3[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯Br2 0.97 3.10 3.822 (8) 133
C8—H8B⋯Br1i 0.97 2.98 3.846 (9) 150
N1—H1A⋯Br4ii 0.89 2.62 3.439 (7) 154
N1—H1B⋯Br3iii 0.89 2.63 3.450 (7) 154
N1—H1C⋯Br3 0.89 2.67 3.418 (7) 142
N2—H2A⋯Br4 0.89 2.54 3.380 (8) 157
N2—H2B⋯Br1 0.89 2.64 3.446 (8) 152
N2—H2C⋯Br1iv 0.89 3.13 3.651 (10) 119
N2—H2C⋯Br2iv 0.89 2.67 3.377 (7) 137
C10—H10⋯Cg2v 0.93 2.88 3.682 (9) 145
C14—H14⋯Cg1ii 0.93 2.82 3.621 (8) 146
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+2, -z+1; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
A view of the asymmetric unit of the title compound showing the atom numbering with displacement ellipsoids drawn at the 30% probability level. Dashed lines indicate hydrogen-bonding inter­actions.
[Figure 2]
Figure 2
Packing diagram of the title compound viewed along the b axis, showing the alternate stacking of the organic and inorganic layers. Dashed lines indicate hydrogen bonds.
[Figure 3]
Figure 3
A partial packing diagram showing the C—H⋯π inter­actions (details in Table 1[link]).

Synthesis and crystallization

20 mmol (2.74 g) of 4-meth­oxy­benzyl­amine (Sigma Aldrich 98%), 20 mmol of aqueous hydro­bromic acid (Merck 48%), and 10 mmol (2.72 g) of cadmium (II) bromide (Sigma Aldrich 98%) were mixed in 50 ml of water. The solution was stirred at room temperature for more than 3 h and was then set aside to allow slow evaporation. Transparent crystals suitable for single-crystal X-ray diffraction were collected after two weeks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula (C8H12NO)2[CdBr4]
Mr 708.41
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 16.7564 (13), 7.9403 (6), 17.9303 (13)
β (°) 103.777 (3)
V3) 2317.0 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 7.85
Crystal size (mm) 0.38 × 0.22 × 0.05
 
Data collection
Diffractometer Bruker Kappa APEXII CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.11, 0.67
No. of measured, independent and observed [I > 2σ(I)] reflections 54597, 4087, 2873
Rint 0.151
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.123, 1.06
No. of reflections 4087
No. of parameters 231
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.96, −0.67
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Bis(4-methoxybenzylammonium) tetrabromidocadmate(II) top
Crystal data top
(C8H12NO)2[CdBr4]F(000) = 1352
Mr = 708.41Dx = 2.031 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 16.7564 (13) ÅCell parameters from 8254 reflections
b = 7.9403 (6) Åθ = 3.0–28.3°
c = 17.9303 (13) ŵ = 7.85 mm1
β = 103.777 (3)°T = 296 K
V = 2317.0 (3) Å3Block, colourless
Z = 40.38 × 0.22 × 0.05 mm
Data collection top
Bruker Kappa APEXII CMOS
diffractometer
2873 reflections with I > 2σ(I)
Radiation source: Sealed tubeRint = 0.151
ω and φ scanθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1919
Tmin = 0.11, Tmax = 0.67k = 99
54597 measured reflectionsl = 2121
4087 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.0616P)2 + 2.4383P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.96 e Å3
4087 reflectionsΔρmin = 0.67 e Å3
231 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0028 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3209 (5)0.7778 (8)0.0360 (4)0.0328 (18)
C20.4039 (5)0.8134 (10)0.0565 (4)0.0369 (19)
H20.4249750.8690230.1026330.044*
C30.4564 (5)0.7701 (10)0.0117 (5)0.043 (2)
H30.5118540.7972980.0271820.052*
C40.4263 (5)0.6851 (10)0.0572 (4)0.041 (2)
C50.3421 (5)0.6441 (10)0.0770 (4)0.041 (2)
H50.3206540.5841540.1219050.049*
C60.2918 (5)0.6909 (10)0.0316 (4)0.0368 (19)
H60.2363120.6637560.0463720.044*
C70.5570 (6)0.6793 (14)0.0882 (7)0.075 (3)
H7A0.5637940.7991770.0837230.112*
H7B0.5812990.6384880.1280770.112*
H7C0.5833530.6271000.0403540.112*
C80.2633 (5)0.8351 (10)0.0836 (5)0.043 (2)
H8A0.2849190.9371150.1108470.052*
H8B0.2105100.8620300.0498300.052*
C90.1778 (5)0.7024 (9)0.6772 (4)0.0312 (17)
C100.2372 (5)0.7994 (10)0.7252 (5)0.043 (2)
H100.2235550.8679410.7623960.052*
C110.3170 (5)0.7928 (10)0.7170 (5)0.045 (2)
H110.3570700.8571910.7494810.054*
C120.3383 (5)0.6958 (10)0.6635 (5)0.0368 (19)
C130.2779 (5)0.6029 (10)0.6151 (4)0.0390 (19)
H130.2916330.5379140.5768320.047*
C140.1987 (5)0.6038 (9)0.6218 (4)0.0351 (18)
H140.1592000.5383030.5893200.042*
C150.0719 (6)0.7992 (14)0.7341 (6)0.070 (3)
H15A0.1015210.7713060.7853380.105*
H15B0.0140640.7844140.7296890.105*
H15C0.0826110.9142380.7233090.105*
C160.4257 (5)0.6896 (13)0.6554 (7)0.066 (3)
H16A0.4624670.7067970.7054340.079*
H16B0.4365240.5784520.6376160.079*
Br10.54615 (6)0.74974 (14)0.45961 (6)0.0640 (3)
Br20.39836 (6)0.99964 (10)0.27210 (5)0.0474 (3)
Br30.37040 (5)0.48202 (10)0.28754 (5)0.0444 (3)
Br40.29050 (5)0.81457 (11)0.44107 (5)0.0475 (3)
Cd10.40127 (4)0.75364 (7)0.36670 (3)0.0405 (2)
N10.2515 (5)0.7073 (8)0.1396 (4)0.0504 (19)
H1A0.2235870.6205100.1148730.076*
H1B0.2235460.7522310.1711450.076*
H1C0.3002430.6720390.1666980.076*
N20.4437 (5)0.8145 (12)0.6025 (5)0.075 (3)
H2A0.3978830.8392790.5674720.112*
H2B0.4809160.7736090.5792800.112*
H2C0.4632290.9072950.6283290.112*
O10.4710 (4)0.6390 (8)0.1067 (3)0.0615 (18)
O20.0975 (3)0.6926 (7)0.6813 (3)0.0493 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.036 (4)0.023 (4)0.040 (4)0.003 (3)0.009 (4)0.001 (3)
C20.038 (5)0.041 (4)0.031 (4)0.004 (4)0.006 (4)0.001 (4)
C30.037 (5)0.045 (5)0.045 (5)0.007 (4)0.002 (4)0.003 (4)
C40.051 (5)0.035 (4)0.037 (5)0.008 (4)0.012 (4)0.009 (4)
C50.050 (5)0.037 (5)0.033 (4)0.002 (4)0.004 (4)0.003 (4)
C60.032 (4)0.035 (4)0.040 (5)0.004 (3)0.003 (4)0.001 (4)
C70.053 (7)0.086 (8)0.099 (9)0.002 (6)0.046 (6)0.003 (7)
C80.053 (5)0.039 (5)0.042 (5)0.008 (4)0.019 (4)0.000 (4)
C90.034 (4)0.028 (4)0.032 (4)0.000 (3)0.009 (3)0.006 (3)
C100.054 (6)0.037 (5)0.039 (5)0.001 (4)0.012 (4)0.008 (4)
C110.037 (5)0.039 (5)0.051 (5)0.008 (4)0.002 (4)0.005 (4)
C120.033 (4)0.032 (4)0.047 (5)0.000 (3)0.012 (4)0.007 (4)
C130.046 (5)0.037 (5)0.040 (5)0.000 (4)0.022 (4)0.001 (4)
C140.034 (4)0.038 (5)0.036 (4)0.008 (3)0.011 (4)0.000 (4)
C150.060 (7)0.081 (8)0.087 (8)0.012 (6)0.051 (6)0.017 (6)
C160.039 (6)0.054 (6)0.110 (9)0.001 (4)0.030 (6)0.003 (6)
Br10.0371 (5)0.0957 (8)0.0570 (6)0.0043 (5)0.0072 (4)0.0010 (5)
Br20.0576 (5)0.0397 (5)0.0452 (5)0.0055 (4)0.0127 (4)0.0002 (4)
Br30.0452 (5)0.0311 (4)0.0594 (6)0.0011 (4)0.0175 (4)0.0045 (4)
Br40.0446 (5)0.0487 (5)0.0548 (5)0.0017 (4)0.0229 (4)0.0016 (4)
Cd10.0388 (4)0.0391 (4)0.0457 (4)0.0014 (3)0.0145 (3)0.0048 (3)
N10.063 (5)0.043 (4)0.052 (4)0.006 (4)0.027 (4)0.003 (3)
N20.050 (5)0.119 (7)0.059 (5)0.036 (5)0.022 (4)0.021 (5)
O10.061 (4)0.081 (5)0.050 (4)0.011 (4)0.028 (3)0.006 (3)
O20.038 (3)0.049 (3)0.065 (4)0.007 (3)0.022 (3)0.011 (3)
Geometric parameters (Å, º) top
C1—C61.379 (11)C11—C121.344 (12)
C1—C21.380 (10)C11—H110.9300
C1—C81.503 (11)C12—C131.380 (10)
C2—C31.369 (12)C12—C161.507 (12)
C2—H20.9300C13—C141.360 (10)
C3—C41.392 (11)C13—H130.9300
C3—H30.9300C14—H140.9300
C4—O11.342 (10)C15—O21.412 (11)
C4—C51.409 (11)C15—H15A0.9600
C5—C61.356 (11)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C6—H60.9300C16—N21.452 (13)
C7—O11.435 (11)C16—H16A0.9700
C7—H7A0.9600C16—H16B0.9700
C7—H7B0.9600Br1—Cd12.5968 (11)
C7—H7C0.9600Br2—Cd12.5798 (10)
C8—N11.474 (10)Br3—Cd12.5659 (10)
C8—H8A0.9700Br4—Cd12.5761 (11)
C8—H8B0.9700N1—H1A0.8900
C9—O21.367 (9)N1—H1B0.8900
C9—C141.374 (10)N1—H1C0.8900
C9—C101.385 (11)N2—H2A0.8900
C10—C111.380 (12)N2—H2B0.8900
C10—H100.9300N2—H2C0.8900
C6—C1—C2117.4 (7)C11—C12—C16121.2 (8)
C6—C1—C8120.7 (7)C13—C12—C16120.4 (8)
C2—C1—C8121.9 (7)C14—C13—C12121.7 (8)
C3—C2—C1122.7 (7)C14—C13—H13119.1
C3—C2—H2118.7C12—C13—H13119.1
C1—C2—H2118.7C13—C14—C9119.3 (7)
C2—C3—C4119.6 (8)C13—C14—H14120.3
C2—C3—H3120.2C9—C14—H14120.3
C4—C3—H3120.2O2—C15—H15A109.5
O1—C4—C3125.3 (8)O2—C15—H15B109.5
O1—C4—C5117.0 (7)H15A—C15—H15B109.5
C3—C4—C5117.8 (8)O2—C15—H15C109.5
C6—C5—C4120.8 (7)H15A—C15—H15C109.5
C6—C5—H5119.6H15B—C15—H15C109.5
C4—C5—H5119.6N2—C16—C12113.5 (8)
C5—C6—C1121.7 (7)N2—C16—H16A108.9
C5—C6—H6119.1C12—C16—H16A108.9
C1—C6—H6119.1N2—C16—H16B108.9
O1—C7—H7A109.5C12—C16—H16B108.9
O1—C7—H7B109.5H16A—C16—H16B107.7
H7A—C7—H7B109.5Br3—Cd1—Br4111.65 (4)
O1—C7—H7C109.5Br3—Cd1—Br2107.64 (4)
H7A—C7—H7C109.5Br4—Cd1—Br2107.16 (4)
H7B—C7—H7C109.5Br3—Cd1—Br1112.30 (4)
N1—C8—C1112.8 (6)Br4—Cd1—Br1110.42 (4)
N1—C8—H8A109.0Br2—Cd1—Br1107.41 (4)
C1—C8—H8A109.0C8—N1—H1A109.5
N1—C8—H8B109.0C8—N1—H1B109.5
C1—C8—H8B109.0H1A—N1—H1B109.5
H8A—C8—H8B107.8C8—N1—H1C109.5
O2—C9—C14115.5 (7)H1A—N1—H1C109.5
O2—C9—C10124.7 (7)H1B—N1—H1C109.5
C14—C9—C10119.8 (7)C16—N2—H2A109.5
C11—C10—C9118.9 (8)C16—N2—H2B109.5
C11—C10—H10120.5H2A—N2—H2B109.5
C9—C10—H10120.5C16—N2—H2C109.5
C12—C11—C10121.8 (7)H2A—N2—H2C109.5
C12—C11—H11119.1H2B—N2—H2C109.5
C10—C11—H11119.1C4—O1—C7118.3 (7)
C11—C12—C13118.4 (7)C9—O2—C15117.5 (6)
C6—C1—C2—C31.8 (11)C9—C10—C11—C120.5 (13)
C8—C1—C2—C3176.3 (7)C10—C11—C12—C130.9 (12)
C1—C2—C3—C40.7 (12)C10—C11—C12—C16179.9 (8)
C2—C3—C4—O1178.6 (7)C11—C12—C13—C141.9 (12)
C2—C3—C4—C51.3 (11)C16—C12—C13—C14178.9 (8)
O1—C4—C5—C6177.8 (7)C12—C13—C14—C91.4 (12)
C3—C4—C5—C62.1 (12)O2—C9—C14—C13178.5 (7)
C4—C5—C6—C11.0 (12)C10—C9—C14—C130.1 (11)
C2—C1—C6—C51.0 (11)C11—C12—C16—N290.0 (11)
C8—C1—C6—C5177.2 (7)C13—C12—C16—N289.2 (10)
C6—C1—C8—N188.6 (9)C3—C4—O1—C70.0 (13)
C2—C1—C8—N193.3 (9)C5—C4—O1—C7179.9 (8)
O2—C9—C10—C11177.4 (7)C14—C9—O2—C15176.3 (8)
C14—C9—C10—C111.0 (12)C10—C9—O2—C155.3 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8A···Br20.973.103.822 (8)133
C8—H8B···Br1i0.972.983.846 (9)150
N1—H1A···Br4ii0.892.623.439 (7)154
N1—H1B···Br3iii0.892.633.450 (7)154
N1—H1C···Br30.892.673.418 (7)142
N2—H2A···Br40.892.543.380 (8)157
N2—H2B···Br10.892.643.446 (8)152
N2—H2C···Br1iv0.893.133.651 (10)119
N2—H2C···Br2iv0.892.673.377 (7)137
C10—H10···Cg2v0.932.883.682 (9)145
C14—H14···Cg1ii0.932.823.621 (8)146
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y+2, z+1; (v) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

The authors are thankful to the School of Pure and Applied Physics - MG University, Kottayam, Kerala 686 560, India, for the single-crystal XRD data.

Funding information

Funding for this research was provided by: Council of Scientific and Industrial Research (CSIR), New Delhi, India [grant No. 03(1301)13/EMR II to CR].

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMageshwari, P. S. L., Priya, R., Krishnan, S., Joseph, V. & Das, S. J. (2016). Optics Laser Technol. 85, 66–74.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUmarani, P., Thiruvalluvar, A. & Ramachandra Raja, C. (2017). IUCrData, 2, x171114.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J. T., Luo, S. J., Yi, L. & Laref, A. (2013). Physica B, 408, 175–182.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds