metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Dicarbon­yl{[(E,E)-(2,3,4,5-η)-6-meth­­oxy-6-oxo-2,4-hexa­dien­yl]tri­phenyl­phospho­nium}(tri­phenyl­phosphane-κP)iron(1+) hexa­fluorido­phosphate

aDepartment of Chemistry, Marquette University, P. O. Box 1881, Milwaukee, WI 53201-1881, USA
*Correspondence e-mail: william.donaldson@marquette.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 11 June 2018; accepted 20 June 2018; online 26 June 2018)

In the title compound, [Fe(C25H24O2P)(C18H15P)(CO)2]PF6, the Fe atom adopts a square-based pyramidal coordination geometry with the carbonyl groups and the two C=C bonds of the diene defining the basal sites and the phosphane ligand the apical position. The diene ligand has an E,E geometry, with the phospho­nium fragment pointed away from the Fe atom. The crystal structure displays C—H⋯F and C—H⋯O hydrogen bonding. The PF6 anion is rotationally disordered over four orientations.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Acyclic (dien­yl)iron cations and acyclic (diene)iron complexes have been utilized in organic synthesis as the coordination to iron serves as a protecting group for the diene against oxidation, reduction and cyclo­addition (Cox & Ley, 1998[Cox, L. R. & Ley, S. V. (1998). Chem. Rev. 27, 301-314.]; Donaldson, 2000[Donaldson, W. A. (2000). Curr. Org. Chem. 4, 837-868.]; Donaldson & Chaudhury, 2009[Donaldson, W. A. & Chaudhury, S. (2009). Eur. J. Org. Chem. pp. 3831-3843.]; Grée, 1989[Grée, R. (1989). Synthesis, pp. 341-355.]; Iwata & Takemoto, 1996[Iwata, C. & Takemoto, Y. (1996). Chem. Commun. pp. 2497-2504.]). The reaction of acyclic tricarbon­yl(dien­yl)iron cations with phosphines results in the formation of iron-complexed dienyl­phospho­nium salts (McArdle & Sherlock, 1978[McArdle, P. & Sherlock, H. (1978). J. Chem. Soc. Dalton Trans. pp. 1678-1682.]; Salzer & Hafner, 1983[Salzer, A. & Hafner, A. (1983). Helv. Chim. Acta, 66, 1774-1785.]). It was eventually demonstrated that this reaction proceeds via kinetic nucleophilic attack on the cisoid form of the cation, and that this C—P bond formation is reversible in certain cases (Donaldson et al., 1994[Donaldson, W. A., Shang, L. & Rogers, R. D. (1994). Organometallics, 13, 6-7.], 1995[Donaldson, W. A., Shang, L., Ramaswamy, M., Droste, C. A., Tao, C. & Bennett, D. W. (1995). Organometallics, 14, 5119-5126.]). These dienyl­phospho­nium salts have been utilized in Wittig-type olefination reactions (Hafner et al. 1983[Hafner, A., Bieri, J. H., Prewo, R., von Philipsborn, W. & Salzer, A. (1983). Angew. Chem. Int. Ed. Engl. 22, 713-715.]). To our knowledge, there is only one report of the reaction of a dicarbon­yl(tri­phenyl­phosphine)-ligated (penta­dien­yl)iron cation with tri­phenyl­phosphine (Chaudhury et al., 2007[Chaudhury, S., Li, S., Bennett, D. W., Siddiquee, T., Haworth, D. T. & Donaldson, W. A. (2007). Organometallics, 26, 5295-5303.]). In a continuation of this work, we present here the synthesis and crystal structure of a 2E,4E-dienyl­phospho­nium salt complexed to an Fe(CO)2PPh3 fragment with hexa­fluorido­phosphate counter-ions.

The title compound (Fig. 1[link]) consists of a (trans,trans-dien­yl)phospho­nium ligand coordinated to iron, with the phospho­nium group orientated distal to the metal atom. The complex exhibits the typical square-based pyramidal structure of (diene)Fe(CO)2L complexes, with the tri­phenyl­phosphine ligand oriented in the axial position. Crystal structures of other acyclic (diene)Fe(CO)2L complexes exhibit both axial (Howell et al., 1994[Howell, J. A. S., Squibb, A. D., Bell, A. G., McArdle, P., Cunningham, D., Goldschmidt, Z., Gottlieb, H. E., Hezroni-Langerman, D. & Gree, R. (1994). Organometallics, 13, 4336-4351.]; Zutin et al., 2001[Zutin, K., Nogueira, V. M., Mauro, A. E., Melnikov, P. & Iluykhin, A. (2001). Polyhedron, 20, 1011-1016.]) and basal (Howell et al., 1996[Howell, J. A. S., Bell, A. G., O'Leary, P. J., Stephenson, G. R., Hastings, M., Howard, P. W., Owen, D. A., Whitehead, A. J., McArdle, P. & Cunningham, D. (1996). Organometallics, 15, 4247-4257.]) phosphine orientations. The crystal structure (Fig. 2[link]) exhibits several inter­actions between phenyl hydrogen atoms and fluorine atoms of the PF6 anion which are within the range of C—H⋯F hydrogen bonds (2.40–2.56 Å). C—H⋯F and C—H⋯O hydrogen-bond geometries are summarized in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26⋯F1 0.95 2.43 3.1353 (15) 131
C28—H28⋯F5Bi 0.95 2.49 3.322 (8) 146
C28—H28⋯F5Ci 0.95 2.55 3.320 (15) 139
C32—H32⋯O4ii 0.95 2.56 3.3659 (16) 143
C34—H34⋯F1 0.95 2.41 3.1349 (16) 133
C40—H40⋯F2iii 0.95 2.40 3.2586 (16) 150
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
A view of title compound showing 50% displacement ellipsoids and H atoms omitted for clarity.
[Figure 2]
Figure 2
Packing diagram of the title compound.

Synthesis and crystallization

To a solution of dicarbon­yl(1-meth­oxy­carbonyl­penta­dien­yl)(tri­phenyl­phosphine)iron(1+) hexa­fluoro­phosphate (100 mg, 0.155 mmol) in CH2Cl2 (20 ml) was added tri­phenyl­phosphine (61 mg, 0.23 mmol). The reaction mixture was stirred for 24 h, and the solvent evaporated. The residue was taken up in a minimal amount of CH2Cl2 and diethyl ether was slowly added until the mixture became cloudy. After standing for 24 h, the yellow blocks of the title compound that had formed were collected (121 mg, 86%).

Refinement

The crystal data, data collection and structure refinement details are summarized in Table 2[link]. The PF6 anion is rotationally disordered over four sets of sites (occupancy ratio 0.43/0.37/0.13/0.07).

Table 2
Experimental details

Crystal data
Chemical formula [Fe(C25H24O2P)(C18H15P)(CO)2]PF6
Mr 906.52
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 9.10074 (14), 17.7897 (3), 24.9408 (3)
β (°) 97.7826 (14)
V3) 4000.72 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.57
Crystal size (mm) 0.23 × 0.12 × 0.1
 
Data collection
Diffractometer Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.830, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 79564, 14181, 11299
Rint 0.032
(sin θ/λ)max−1) 0.763
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.095, 1.10
No. of reflections 14181
No. of parameters 573
No. of restraints 60
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.00, −0.68
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Dicarbonyl{[(E,E)-(2,3,4,5-η)-6-methoxy-6-oxo-2,4-hexadienyl]triphenylphosphonium}(triphenylphosphane-κP)iron(1+) hexafluoridophosphate top
Crystal data top
[Fe(C25H24O2P)(C18H15P)(CO)2]PF6F(000) = 1864
Mr = 906.52Dx = 1.505 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.10074 (14) ÅCell parameters from 37568 reflections
b = 17.7897 (3) Åθ = 3.3–32.8°
c = 24.9408 (3) ŵ = 0.57 mm1
β = 97.7826 (14)°T = 100 K
V = 4000.72 (10) Å3Block, yellow
Z = 40.23 × 0.12 × 0.1 mm
Data collection top
Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
diffractometer
14181 independent reflections
Radiation source: SuperNova (Mo) X-ray Source11299 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 10.3756 pixels mm-1θmax = 32.8°, θmin = 3.3°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 2627
Tmin = 0.830, Tmax = 1.000l = 3637
79564 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.8274P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.002
14181 reflectionsΔρmax = 1.00 e Å3
573 parametersΔρmin = 0.68 e Å3
60 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.50960 (2)0.18533 (2)0.15093 (2)0.01166 (4)
P10.53777 (3)0.28527 (2)0.09909 (2)0.01150 (6)
P20.67576 (3)0.28331 (2)0.33137 (2)0.01235 (6)
O10.33714 (11)0.08143 (6)0.07598 (4)0.0254 (2)
O20.22620 (11)0.23511 (7)0.18090 (4)0.0293 (2)
O30.85441 (11)0.12133 (6)0.07077 (4)0.0243 (2)
O40.67251 (10)0.04156 (5)0.08681 (4)0.02058 (18)
C10.40987 (13)0.12215 (7)0.10423 (5)0.0166 (2)
C20.33740 (14)0.21459 (8)0.17000 (5)0.0180 (2)
C30.76111 (13)0.10278 (7)0.09825 (5)0.0175 (2)
C40.72672 (13)0.14296 (7)0.14662 (5)0.0155 (2)
H40.7993 (18)0.1815 (9)0.1577 (7)0.019*
C50.65260 (13)0.10463 (7)0.18571 (5)0.0156 (2)
H50.6340 (17)0.0511 (10)0.1824 (6)0.019*
C60.60214 (13)0.14789 (7)0.22669 (5)0.0152 (2)
H60.5415 (17)0.1248 (9)0.2520 (7)0.018*
C70.62429 (13)0.22720 (7)0.22568 (4)0.0141 (2)
H70.7171 (17)0.2484 (9)0.2157 (6)0.017*
C80.55786 (13)0.27530 (7)0.26610 (4)0.0149 (2)
H8A0.4611760.2536170.2720320.018*
H8B0.5390800.3262340.2507040.018*
C90.60530 (12)0.27239 (7)0.03350 (4)0.0139 (2)
C100.58330 (13)0.20434 (7)0.00597 (5)0.0165 (2)
H100.5367510.1638670.0219540.020*
C110.62896 (14)0.19495 (8)0.04491 (5)0.0198 (2)
H110.6133470.1482600.0632920.024*
C120.69673 (14)0.25342 (8)0.06849 (5)0.0213 (3)
H120.7290580.2467730.1028390.026*
C130.71752 (15)0.32195 (9)0.04192 (5)0.0225 (3)
H130.7632080.3623450.0583080.027*
C140.67164 (14)0.33170 (8)0.00870 (5)0.0188 (2)
H140.6854510.3788800.0265110.023*
C150.36613 (13)0.33712 (7)0.07575 (5)0.0145 (2)
C160.24015 (14)0.29442 (8)0.05757 (5)0.0187 (2)
H160.2462330.2411130.0584280.022*
C170.10591 (14)0.32883 (8)0.03823 (5)0.0223 (3)
H170.0214980.2991320.0256360.027*
C180.09603 (15)0.40663 (9)0.03743 (5)0.0244 (3)
H180.0042210.4303870.0250190.029*
C190.22024 (16)0.44958 (8)0.05477 (6)0.0251 (3)
H190.2131550.5028590.0540870.030*
C200.35557 (14)0.41551 (7)0.07322 (5)0.0194 (2)
H200.4407030.4455520.0840790.023*
C210.66857 (13)0.35214 (7)0.13420 (4)0.0137 (2)
C220.82075 (13)0.34249 (7)0.13237 (5)0.0169 (2)
H220.8537140.3052260.1094560.020*
C230.92369 (14)0.38739 (8)0.16407 (5)0.0199 (2)
H231.0266430.3807420.1626080.024*
C240.87633 (15)0.44197 (8)0.19791 (5)0.0208 (2)
H240.9468400.4728710.2191500.025*
C250.72615 (15)0.45121 (7)0.20057 (5)0.0193 (2)
H250.6939070.4883150.2237660.023*
C260.62226 (14)0.40605 (7)0.16923 (5)0.0162 (2)
H260.5196330.4119470.1716850.019*
C270.85540 (12)0.31824 (7)0.32212 (5)0.0135 (2)
C280.95012 (13)0.27317 (7)0.29597 (5)0.0169 (2)
H280.9210310.2238130.2844880.020*
C291.08716 (14)0.30144 (8)0.28702 (5)0.0200 (2)
H291.1514000.2715160.2688460.024*
C301.13055 (14)0.37306 (8)0.30446 (5)0.0210 (2)
H301.2237400.3921790.2976670.025*
C311.03898 (13)0.41695 (8)0.33172 (5)0.0191 (2)
H311.0707340.4653720.3445170.023*
C320.90055 (13)0.39010 (7)0.34036 (5)0.0154 (2)
H320.8369440.4204000.3585470.018*
C330.58470 (13)0.34724 (7)0.37171 (5)0.0162 (2)
C340.53274 (14)0.41623 (8)0.34941 (5)0.0214 (3)
H340.5498940.4297340.3139300.026*
C350.45616 (15)0.46475 (9)0.37934 (7)0.0306 (3)
H350.4205630.5115100.3644340.037*
C360.43204 (16)0.44459 (10)0.43098 (7)0.0351 (4)
H360.3789660.4776990.4512700.042*
C370.48378 (17)0.37715 (10)0.45355 (6)0.0325 (4)
H370.4664930.3643370.4891450.039*
C380.56163 (15)0.32762 (8)0.42411 (5)0.0233 (3)
H380.5982220.2813390.4395620.028*
C390.69439 (13)0.19343 (7)0.36416 (5)0.0155 (2)
C400.56826 (14)0.14868 (8)0.36508 (5)0.0186 (2)
H400.4742810.1656160.3481740.022*
C410.58142 (15)0.07944 (8)0.39086 (5)0.0217 (3)
H410.4962830.0487080.3914450.026*
C420.71826 (17)0.05501 (8)0.41571 (5)0.0246 (3)
H420.7266330.0071790.4327880.029*
C430.84305 (16)0.09954 (8)0.41593 (6)0.0258 (3)
H430.9361550.0827060.4337130.031*
C440.83189 (15)0.16903 (8)0.39007 (5)0.0211 (2)
H440.9173030.1997240.3900290.025*
C450.68939 (16)0.00183 (9)0.03779 (5)0.0250 (3)
H45A0.6652960.0354750.0067370.038*
H45B0.6223360.0415200.0339380.038*
H45C0.7920580.0155540.0393080.038*
F10.39357 (10)0.47983 (5)0.23666 (4)0.0312 (2)
F20.25298 (11)0.64373 (5)0.21053 (5)0.0403 (2)
P30.32448 (4)0.56186 (2)0.22344 (2)0.02096 (7)0.37
F30.2106 (4)0.54962 (16)0.26530 (16)0.0271 (7)*0.37
F40.2034 (4)0.52417 (17)0.17613 (14)0.0287 (8)*0.37
F50.4294 (4)0.5771 (2)0.17871 (16)0.0364 (9)*0.37
F60.4418 (4)0.5997 (2)0.26859 (16)0.0354 (9)*0.37
P3A0.32448 (4)0.56186 (2)0.22344 (2)0.02096 (7)0.43
F3A0.1811 (3)0.52250 (14)0.19014 (15)0.0259 (6)*0.43
F4A0.4034 (4)0.56212 (17)0.16926 (12)0.0268 (6)*0.43
F5A0.4666 (3)0.59915 (16)0.25598 (15)0.0280 (6)*0.43
F6A0.2465 (4)0.55559 (16)0.27815 (12)0.0266 (6)*0.43
P3B0.32448 (4)0.56186 (2)0.22344 (2)0.02096 (7)0.13
F3B0.1640 (6)0.5296 (4)0.2111 (4)0.0215 (14)*0.13
F4B0.3488 (11)0.5597 (4)0.1627 (3)0.0243 (16)*0.13
F5B0.4940 (8)0.5955 (4)0.2370 (4)0.0305 (18)*0.13
F6B0.3016 (11)0.5704 (5)0.2882 (3)0.0288 (16)*0.13
P3C0.32448 (4)0.56186 (2)0.22344 (2)0.02096 (7)0.07
F3C0.1707 (12)0.5445 (8)0.2403 (7)0.026 (3)*0.07
F4C0.268 (2)0.5397 (9)0.1629 (5)0.038 (3)*0.07
F5C0.4811 (14)0.5899 (9)0.2041 (7)0.036 (3)*0.07
F6C0.3860 (18)0.5892 (9)0.2862 (5)0.034 (3)*0.07
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01364 (8)0.01179 (8)0.00994 (7)0.00023 (6)0.00305 (5)0.00066 (6)
P10.01232 (12)0.01155 (13)0.01090 (12)0.00070 (10)0.00255 (9)0.00062 (10)
P20.01393 (13)0.01307 (13)0.01041 (12)0.00088 (10)0.00300 (9)0.00133 (10)
O10.0278 (5)0.0223 (5)0.0254 (5)0.0058 (4)0.0005 (4)0.0071 (4)
O20.0223 (5)0.0447 (7)0.0230 (5)0.0070 (4)0.0110 (4)0.0005 (5)
O30.0229 (4)0.0329 (6)0.0189 (4)0.0057 (4)0.0089 (3)0.0021 (4)
O40.0282 (5)0.0190 (4)0.0153 (4)0.0051 (4)0.0055 (3)0.0044 (3)
C10.0186 (5)0.0152 (5)0.0161 (5)0.0007 (4)0.0033 (4)0.0005 (4)
C20.0216 (6)0.0206 (6)0.0121 (5)0.0015 (5)0.0035 (4)0.0003 (4)
C30.0183 (5)0.0205 (6)0.0135 (5)0.0077 (4)0.0017 (4)0.0016 (4)
C40.0172 (5)0.0167 (5)0.0129 (5)0.0031 (4)0.0028 (4)0.0004 (4)
C50.0203 (5)0.0140 (5)0.0125 (5)0.0028 (4)0.0021 (4)0.0008 (4)
C60.0203 (5)0.0151 (5)0.0105 (5)0.0003 (4)0.0025 (4)0.0009 (4)
C70.0165 (5)0.0153 (5)0.0105 (4)0.0005 (4)0.0024 (4)0.0004 (4)
C80.0172 (5)0.0169 (5)0.0107 (5)0.0005 (4)0.0019 (4)0.0011 (4)
C90.0134 (5)0.0167 (5)0.0116 (5)0.0024 (4)0.0017 (4)0.0000 (4)
C100.0192 (5)0.0164 (5)0.0136 (5)0.0022 (4)0.0017 (4)0.0010 (4)
C110.0217 (6)0.0235 (6)0.0139 (5)0.0047 (5)0.0013 (4)0.0040 (5)
C120.0190 (6)0.0329 (7)0.0124 (5)0.0052 (5)0.0033 (4)0.0008 (5)
C130.0229 (6)0.0291 (7)0.0166 (5)0.0029 (5)0.0067 (4)0.0028 (5)
C140.0219 (6)0.0194 (6)0.0160 (5)0.0024 (5)0.0050 (4)0.0001 (4)
C150.0157 (5)0.0163 (5)0.0120 (5)0.0036 (4)0.0035 (4)0.0000 (4)
C160.0174 (5)0.0198 (6)0.0187 (5)0.0020 (4)0.0015 (4)0.0010 (5)
C170.0163 (5)0.0308 (7)0.0195 (6)0.0035 (5)0.0014 (4)0.0004 (5)
C180.0210 (6)0.0317 (7)0.0209 (6)0.0129 (5)0.0038 (5)0.0025 (5)
C190.0301 (7)0.0205 (6)0.0246 (6)0.0106 (5)0.0035 (5)0.0026 (5)
C200.0220 (6)0.0168 (6)0.0196 (5)0.0025 (5)0.0032 (4)0.0012 (5)
C210.0164 (5)0.0131 (5)0.0118 (5)0.0014 (4)0.0022 (4)0.0011 (4)
C220.0177 (5)0.0170 (5)0.0163 (5)0.0007 (4)0.0034 (4)0.0022 (4)
C230.0167 (5)0.0230 (6)0.0196 (6)0.0030 (5)0.0006 (4)0.0043 (5)
C240.0248 (6)0.0192 (6)0.0167 (5)0.0065 (5)0.0029 (4)0.0024 (5)
C250.0280 (6)0.0157 (6)0.0140 (5)0.0031 (5)0.0025 (4)0.0016 (4)
C260.0197 (5)0.0153 (5)0.0141 (5)0.0007 (4)0.0037 (4)0.0006 (4)
C270.0138 (5)0.0145 (5)0.0126 (5)0.0002 (4)0.0029 (4)0.0003 (4)
C280.0184 (5)0.0173 (6)0.0152 (5)0.0019 (4)0.0031 (4)0.0018 (4)
C290.0167 (5)0.0267 (7)0.0176 (5)0.0046 (5)0.0058 (4)0.0017 (5)
C300.0143 (5)0.0273 (7)0.0214 (6)0.0014 (5)0.0026 (4)0.0054 (5)
C310.0170 (5)0.0183 (6)0.0212 (6)0.0029 (4)0.0003 (4)0.0020 (5)
C320.0163 (5)0.0145 (5)0.0154 (5)0.0005 (4)0.0023 (4)0.0001 (4)
C330.0139 (5)0.0196 (6)0.0158 (5)0.0024 (4)0.0044 (4)0.0059 (4)
C340.0179 (5)0.0241 (7)0.0208 (6)0.0042 (5)0.0024 (4)0.0074 (5)
C350.0180 (6)0.0317 (8)0.0400 (8)0.0076 (5)0.0044 (5)0.0180 (7)
C360.0181 (6)0.0430 (9)0.0462 (9)0.0043 (6)0.0117 (6)0.0294 (8)
C370.0319 (7)0.0406 (9)0.0296 (7)0.0169 (7)0.0209 (6)0.0185 (7)
C380.0276 (7)0.0249 (7)0.0202 (6)0.0103 (5)0.0127 (5)0.0074 (5)
C390.0212 (5)0.0138 (5)0.0115 (5)0.0025 (4)0.0025 (4)0.0011 (4)
C400.0212 (6)0.0205 (6)0.0149 (5)0.0040 (5)0.0049 (4)0.0002 (4)
C410.0297 (6)0.0192 (6)0.0175 (5)0.0080 (5)0.0077 (5)0.0011 (5)
C420.0383 (7)0.0154 (6)0.0203 (6)0.0021 (5)0.0054 (5)0.0023 (5)
C430.0295 (7)0.0198 (6)0.0264 (7)0.0012 (5)0.0024 (5)0.0056 (5)
C440.0222 (6)0.0176 (6)0.0223 (6)0.0031 (5)0.0013 (5)0.0021 (5)
C450.0307 (7)0.0279 (7)0.0161 (5)0.0105 (6)0.0018 (5)0.0071 (5)
F10.0343 (5)0.0298 (5)0.0312 (5)0.0138 (4)0.0105 (4)0.0049 (4)
F20.0383 (5)0.0219 (5)0.0584 (7)0.0049 (4)0.0022 (5)0.0023 (4)
P30.01575 (14)0.02113 (17)0.02609 (17)0.00089 (12)0.00322 (12)0.00016 (13)
P3A0.01575 (14)0.02113 (17)0.02609 (17)0.00089 (12)0.00322 (12)0.00016 (13)
P3B0.01575 (14)0.02113 (17)0.02609 (17)0.00089 (12)0.00322 (12)0.00016 (13)
P3C0.01575 (14)0.02113 (17)0.02609 (17)0.00089 (12)0.00322 (12)0.00016 (13)
Geometric parameters (Å, º) top
Fe1—P12.2334 (3)C26—H260.9500
Fe1—C11.7769 (12)C27—C281.4013 (16)
Fe1—C21.7762 (13)C27—C321.3998 (17)
Fe1—C42.1312 (12)C28—H280.9500
Fe1—C52.0497 (12)C28—C291.3906 (18)
Fe1—C62.0717 (11)C29—H290.9500
Fe1—C72.1431 (11)C29—C301.386 (2)
P1—C91.8379 (11)C30—H300.9500
P1—C151.8394 (12)C30—C311.3857 (19)
P1—C211.8212 (12)C31—H310.9500
P2—C81.8298 (12)C31—C321.3911 (17)
P2—C271.7929 (12)C32—H320.9500
P2—C331.7939 (12)C33—C341.4030 (19)
P2—C391.7936 (13)C33—C381.3959 (18)
O1—C11.1545 (15)C34—H340.9500
O2—C21.1428 (16)C34—C351.3889 (19)
O3—C31.2071 (15)C35—H350.9500
O4—C31.3621 (16)C35—C361.383 (3)
O4—C451.4382 (15)C36—H360.9500
C3—C41.4719 (17)C36—C371.381 (3)
C4—H40.966 (16)C37—H370.9500
C4—C51.4312 (17)C37—C381.399 (2)
C5—H50.969 (17)C38—H380.9500
C5—C61.4052 (16)C39—C401.3996 (17)
C6—H60.982 (16)C39—C441.3974 (18)
C6—C71.4260 (17)C40—H400.9500
C7—H70.987 (16)C40—C411.3871 (19)
C7—C81.5097 (16)C41—H410.9500
C8—H8A0.9900C41—C421.384 (2)
C8—H8B0.9900C42—H420.9500
C9—C101.3928 (17)C42—C431.384 (2)
C9—C141.4005 (17)C43—H430.9500
C10—H100.9500C43—C441.3917 (19)
C10—C111.3979 (17)C44—H440.9500
C11—H110.9500C45—H45A0.9800
C11—C121.381 (2)C45—H45B0.9800
C12—H120.9500C45—H45C0.9800
C12—C131.388 (2)F1—P31.6054 (10)
C13—H130.9500F1—P3A1.6054 (10)
C13—C141.3932 (17)F1—P3B1.6054 (10)
C14—H140.9500F1—P3C1.6054 (10)
C15—C161.3987 (17)F2—P31.6099 (10)
C15—C201.3987 (18)F2—P3A1.6099 (10)
C16—H160.9500F2—P3B1.6099 (10)
C16—C171.3929 (18)F2—P3C1.6099 (10)
C17—H170.9500P3—F31.583 (3)
C17—C181.387 (2)P3—F41.644 (3)
C18—H180.9500P3—F51.587 (3)
C18—C191.384 (2)P3—F61.593 (3)
C19—H190.9500P3A—F3A1.609 (2)
C19—C201.3937 (18)P3A—F4A1.614 (3)
C20—H200.9500P3A—F5A1.577 (3)
C21—C221.4023 (16)P3A—F6A1.625 (2)
C21—C261.4003 (17)P3B—F3B1.560 (6)
C22—H220.9500P3B—F4B1.562 (6)
C22—C231.3929 (18)P3B—F5B1.647 (7)
C23—H230.9500P3B—F6B1.664 (6)
C23—C241.393 (2)P3C—F3C1.546 (9)
C24—H240.9500P3C—F4C1.576 (10)
C24—C251.3871 (19)P3C—F5C1.643 (10)
C25—H250.9500P3C—F6C1.663 (10)
C25—C261.3964 (17)
C1—Fe1—P1102.27 (4)C25—C26—H26119.8
C1—Fe1—C497.93 (5)C28—C27—P2119.38 (9)
C1—Fe1—C594.19 (5)C32—C27—P2120.49 (9)
C1—Fe1—C6120.19 (5)C32—C27—C28120.12 (11)
C1—Fe1—C7159.30 (5)C27—C28—H28120.4
C2—Fe1—P195.53 (4)C29—C28—C27119.30 (12)
C2—Fe1—C188.28 (6)C29—C28—H28120.4
C2—Fe1—C4167.12 (5)C28—C29—H29119.8
C2—Fe1—C5128.65 (5)C30—C29—C28120.38 (12)
C2—Fe1—C696.57 (5)C30—C29—H29119.8
C2—Fe1—C790.50 (5)C29—C30—H30119.8
C4—Fe1—P194.16 (3)C31—C30—C29120.47 (12)
C4—Fe1—C779.70 (4)C31—C30—H30119.8
C5—Fe1—P1133.35 (4)C30—C31—H31120.0
C5—Fe1—C439.98 (5)C30—C31—C32120.00 (12)
C5—Fe1—C639.87 (5)C32—C31—H31120.0
C5—Fe1—C770.66 (5)C27—C32—H32120.2
C6—Fe1—P1136.02 (4)C31—C32—C27119.69 (11)
C6—Fe1—C470.55 (5)C31—C32—H32120.2
C6—Fe1—C739.51 (5)C34—C33—P2119.26 (9)
C7—Fe1—P198.42 (3)C38—C33—P2120.41 (11)
C9—P1—Fe1119.63 (4)C38—C33—C34120.30 (12)
C9—P1—C1598.79 (5)C33—C34—H34120.1
C15—P1—Fe1115.04 (4)C35—C34—C33119.82 (14)
C21—P1—Fe1111.13 (4)C35—C34—H34120.1
C21—P1—C9103.52 (5)C34—C35—H35120.2
C21—P1—C15107.24 (6)C36—C35—C34119.60 (15)
C27—P2—C8110.34 (5)C36—C35—H35120.2
C27—P2—C33110.54 (6)C35—C36—H36119.4
C27—P2—C39109.64 (6)C37—C36—C35121.12 (13)
C33—P2—C8106.77 (6)C37—C36—H36119.4
C39—P2—C8110.13 (6)C36—C37—H37119.9
C39—P2—C33109.37 (6)C36—C37—C38120.14 (14)
C3—O4—C45116.27 (11)C38—C37—H37119.9
O1—C1—Fe1175.30 (11)C33—C38—C37119.01 (15)
O2—C2—Fe1177.73 (12)C33—C38—H38120.5
O3—C3—O4122.80 (12)C37—C38—H38120.5
O3—C3—C4125.21 (13)C40—C39—P2119.17 (10)
O4—C3—C4111.99 (10)C44—C39—P2120.74 (9)
Fe1—C4—H4109.7 (10)C44—C39—C40120.06 (12)
C3—C4—Fe1120.97 (8)C39—C40—H40120.2
C3—C4—H4111.5 (10)C41—C40—C39119.55 (12)
C5—C4—Fe166.94 (7)C41—C40—H40120.2
C5—C4—C3119.94 (11)C40—C41—H41119.9
C5—C4—H4120.6 (10)C42—C41—C40120.16 (12)
Fe1—C5—H5124.0 (9)C42—C41—H41119.9
C4—C5—Fe173.08 (7)C41—C42—H42119.7
C4—C5—H5120.2 (10)C41—C42—C43120.68 (13)
C6—C5—Fe170.91 (7)C43—C42—H42119.7
C6—C5—C4117.72 (11)C42—C43—H43120.1
C6—C5—H5122.0 (10)C42—C43—C44119.88 (13)
Fe1—C6—H6121.7 (9)C44—C43—H43120.1
C5—C6—Fe169.22 (7)C39—C44—H44120.2
C5—C6—H6120.3 (10)C43—C44—C39119.65 (12)
C5—C6—C7117.91 (11)C43—C44—H44120.2
C7—C6—Fe172.95 (7)O4—C45—H45A109.5
C7—C6—H6121.2 (10)O4—C45—H45B109.5
Fe1—C7—H7104.3 (9)O4—C45—H45C109.5
C6—C7—Fe167.55 (6)H45A—C45—H45B109.5
C6—C7—H7120.7 (10)H45A—C45—H45C109.5
C6—C7—C8118.60 (10)H45B—C45—H45C109.5
C8—C7—Fe1125.88 (8)F1—P3—F2179.14 (6)
C8—C7—H7112.7 (10)F1—P3—F489.00 (11)
P2—C8—H8A108.9F2—P3—F490.69 (11)
P2—C8—H8B108.9F3—P3—F190.72 (11)
C7—C8—P2113.49 (8)F3—P3—F288.47 (12)
C7—C8—H8A108.9F3—P3—F488.98 (19)
C7—C8—H8B108.9F3—P3—F5175.89 (19)
H8A—C8—H8B107.7F3—P3—F691.6 (2)
C10—C9—P1120.27 (9)F5—P3—F192.47 (14)
C10—C9—C14118.61 (11)F5—P3—F288.32 (14)
C14—C9—P1121.02 (9)F5—P3—F488.5 (2)
C9—C10—H10119.6F5—P3—F690.9 (2)
C9—C10—C11120.73 (12)F6—P3—F191.86 (13)
C11—C10—H10119.6F6—P3—F288.46 (13)
C10—C11—H11120.0F6—P3—F4178.96 (19)
C12—C11—C10120.10 (12)F1—P3A—F2179.14 (6)
C12—C11—H11120.0F1—P3A—F3A88.75 (10)
C11—C12—H12120.1F1—P3A—F4A88.19 (11)
C11—C12—C13119.87 (12)F1—P3A—F6A88.20 (10)
C13—C12—H12120.1F2—P3A—F4A92.49 (11)
C12—C13—H13119.9F2—P3A—F6A91.11 (10)
C12—C13—C14120.25 (12)F3A—P3A—F290.73 (10)
C14—C13—H13119.9F3A—P3A—F4A89.47 (19)
C9—C14—H14119.8F3A—P3A—F6A89.29 (18)
C13—C14—C9120.43 (12)F4A—P3A—F6A176.20 (14)
C13—C14—H14119.8F5A—P3A—F190.32 (11)
C16—C15—P1117.00 (9)F5A—P3A—F290.20 (11)
C16—C15—C20118.59 (11)F5A—P3A—F3A179.02 (16)
C20—C15—P1124.37 (9)F5A—P3A—F4A90.2 (2)
C15—C16—H16119.5F5A—P3A—F6A91.00 (19)
C17—C16—C15121.04 (13)F1—P3B—F2179.14 (6)
C17—C16—H16119.5F1—P3B—F5B87.6 (3)
C16—C17—H17120.1F1—P3B—F6B88.9 (3)
C18—C17—C16119.71 (13)F2—P3B—F5B93.1 (3)
C18—C17—H17120.1F2—P3B—F6B90.6 (3)
C17—C18—H18120.1F3B—P3B—F192.1 (3)
C19—C18—C17119.85 (12)F3B—P3B—F287.2 (3)
C19—C18—H18120.1F3B—P3B—F4B93.0 (5)
C18—C19—H19119.6F3B—P3B—F5B179.5 (5)
C18—C19—C20120.72 (13)F3B—P3B—F6B89.3 (5)
C20—C19—H19119.6F4B—P3B—F194.3 (3)
C15—C20—H20120.0F4B—P3B—F286.2 (3)
C19—C20—C15120.05 (12)F4B—P3B—F5B87.5 (5)
C19—C20—H20120.0F4B—P3B—F6B176.0 (4)
C22—C21—P1119.24 (9)F5B—P3B—F6B90.3 (5)
C26—C21—P1121.00 (9)F1—P3C—F2179.14 (6)
C26—C21—C22119.09 (11)F1—P3C—F5C90.3 (5)
C21—C22—H22119.9F1—P3C—F6C90.0 (5)
C23—C22—C21120.17 (12)F2—P3C—F5C90.6 (5)
C23—C22—H22119.9F2—P3C—F6C89.9 (5)
C22—C23—H23119.9F3C—P3C—F196.1 (5)
C24—C23—C22120.28 (12)F3C—P3C—F283.0 (5)
C24—C23—H23119.9F3C—P3C—F4C91.3 (8)
C23—C24—H24120.0F3C—P3C—F5C173.6 (7)
C25—C24—C23119.96 (12)F3C—P3C—F6C90.3 (8)
C25—C24—H24120.0F4C—P3C—F192.1 (6)
C24—C25—H25119.9F4C—P3C—F288.0 (6)
C24—C25—C26120.13 (12)F4C—P3C—F5C88.7 (9)
C26—C25—H25119.9F4C—P3C—F6C177.2 (9)
C21—C26—H26119.8F5C—P3C—F6C89.6 (8)
C25—C26—C21120.34 (11)
Fe1—P1—C9—C1025.81 (11)C15—P1—C21—C2641.49 (11)
Fe1—P1—C9—C14158.01 (8)C15—C16—C17—C180.7 (2)
Fe1—P1—C15—C1643.04 (10)C16—C15—C20—C192.36 (18)
Fe1—P1—C15—C20139.46 (9)C16—C17—C18—C191.4 (2)
Fe1—P1—C21—C2285.53 (10)C17—C18—C19—C200.2 (2)
Fe1—P1—C21—C2685.02 (10)C18—C19—C20—C151.7 (2)
Fe1—C4—C5—C656.90 (9)C20—C15—C16—C171.17 (18)
Fe1—C5—C6—C756.23 (10)C21—P1—C9—C10150.09 (9)
Fe1—C6—C7—C8119.80 (10)C21—P1—C9—C1433.73 (11)
Fe1—C7—C8—P2167.38 (6)C21—P1—C15—C16167.19 (9)
P1—C9—C10—C11177.44 (9)C21—P1—C15—C2015.30 (12)
P1—C9—C14—C13177.68 (10)C21—C22—C23—C240.21 (19)
P1—C15—C16—C17178.82 (10)C22—C21—C26—C252.07 (18)
P1—C15—C20—C19179.83 (10)C22—C23—C24—C250.73 (19)
P1—C21—C22—C23172.32 (9)C23—C24—C25—C260.25 (19)
P1—C21—C26—C25172.62 (9)C24—C25—C26—C211.16 (19)
P2—C27—C28—C29177.59 (9)C26—C21—C22—C231.59 (18)
P2—C27—C32—C31178.52 (9)C27—P2—C8—C755.85 (10)
P2—C33—C34—C35177.10 (10)C27—P2—C33—C3471.33 (11)
P2—C33—C38—C37176.86 (10)C27—P2—C33—C38110.66 (11)
P2—C39—C40—C41179.33 (9)C27—P2—C39—C40166.48 (9)
P2—C39—C44—C43179.03 (11)C27—P2—C39—C4415.56 (12)
O3—C3—C4—Fe1121.25 (12)C27—C28—C29—C300.92 (19)
O3—C3—C4—C5159.20 (12)C28—C27—C32—C310.91 (17)
O4—C3—C4—Fe157.61 (13)C28—C29—C30—C310.95 (19)
O4—C3—C4—C521.94 (15)C29—C30—C31—C321.91 (19)
C3—C4—C5—Fe1113.59 (10)C30—C31—C32—C270.97 (18)
C3—C4—C5—C6170.50 (11)C32—C27—C28—C291.85 (18)
C4—C5—C6—Fe158.01 (9)C33—P2—C8—C7176.03 (9)
C4—C5—C6—C71.78 (16)C33—P2—C27—C28174.08 (9)
C5—C6—C7—Fe154.38 (9)C33—P2—C27—C326.48 (11)
C5—C6—C7—C8174.18 (10)C33—P2—C39—C4072.15 (11)
C6—C7—C8—P285.57 (12)C33—P2—C39—C44105.80 (11)
C8—P2—C27—C2868.04 (11)C33—C34—C35—C360.1 (2)
C8—P2—C27—C32111.40 (10)C34—C33—C38—C371.13 (19)
C8—P2—C33—C3448.72 (11)C34—C35—C36—C370.5 (2)
C8—P2—C33—C38129.30 (10)C35—C36—C37—C380.3 (2)
C8—P2—C39—C4044.89 (11)C36—C37—C38—C330.5 (2)
C8—P2—C39—C44137.16 (10)C38—C33—C34—C350.92 (19)
C9—P1—C15—C1685.61 (10)C39—P2—C8—C765.33 (10)
C9—P1—C15—C2091.89 (11)C39—P2—C27—C2853.43 (11)
C9—P1—C21—C2244.12 (11)C39—P2—C27—C32127.14 (10)
C9—P1—C21—C26145.34 (10)C39—P2—C33—C34167.85 (10)
C9—C10—C11—C120.00 (18)C39—P2—C33—C3810.16 (12)
C10—C9—C14—C131.45 (18)C39—C40—C41—C420.33 (19)
C10—C11—C12—C130.93 (19)C40—C39—C44—C431.10 (19)
C11—C12—C13—C140.7 (2)C40—C41—C42—C431.0 (2)
C12—C13—C14—C90.5 (2)C41—C42—C43—C441.2 (2)
C14—C9—C10—C111.18 (18)C42—C43—C44—C390.2 (2)
C15—P1—C9—C1099.69 (10)C44—C39—C40—C411.36 (18)
C15—P1—C9—C1476.49 (11)C45—O4—C3—O33.63 (17)
C15—P1—C21—C22147.96 (9)C45—O4—C3—C4175.26 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26···F10.952.433.1353 (15)131
C28—H28···F5Bi0.952.493.322 (8)146
C28—H28···F5Ci0.952.553.320 (15)139
C32—H32···O4ii0.952.563.3659 (16)143
C34—H34···F10.952.413.1349 (16)133
C40—H40···F2iii0.952.403.2586 (16)150
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2.
 

Funding information

Funding for this research was provided by: National Science Foundation, Division of Chemistry (award No. CHE-0848870).

References

First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChaudhury, S., Li, S., Bennett, D. W., Siddiquee, T., Haworth, D. T. & Donaldson, W. A. (2007). Organometallics, 26, 5295–5303.  Web of Science CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDonaldson, W. A. (2000). Curr. Org. Chem. 4, 837–868.  Google Scholar
First citationDonaldson, W. A. & Chaudhury, S. (2009). Eur. J. Org. Chem. pp. 3831–3843.  Web of Science CrossRef Google Scholar
First citationDonaldson, W. A., Shang, L. & Rogers, R. D. (1994). Organometallics, 13, 6–7.  CrossRef Web of Science Google Scholar
First citationDonaldson, W. A., Shang, L., Ramaswamy, M., Droste, C. A., Tao, C. & Bennett, D. W. (1995). Organometallics, 14, 5119–5126.  CrossRef Web of Science Google Scholar
First citationGrée, R. (1989). Synthesis, pp. 341–355.  Google Scholar
First citationHafner, A., Bieri, J. H., Prewo, R., von Philipsborn, W. & Salzer, A. (1983). Angew. Chem. Int. Ed. Engl. 22, 713–715.  CrossRef Web of Science Google Scholar
First citationHowell, J. A. S., Bell, A. G., O'Leary, P. J., Stephenson, G. R., Hastings, M., Howard, P. W., Owen, D. A., Whitehead, A. J., McArdle, P. & Cunningham, D. (1996). Organometallics, 15, 4247–4257.  CrossRef Web of Science Google Scholar
First citationHowell, J. A. S., Squibb, A. D., Bell, A. G., McArdle, P., Cunningham, D., Goldschmidt, Z., Gottlieb, H. E., Hezroni-Langerman, D. & Gree, R. (1994). Organometallics, 13, 4336–4351.  CrossRef Web of Science Google Scholar
First citationIwata, C. & Takemoto, Y. (1996). Chem. Commun. pp. 2497–2504.  CrossRef Web of Science Google Scholar
First citationMcArdle, P. & Sherlock, H. (1978). J. Chem. Soc. Dalton Trans. pp. 1678–1682.  CrossRef Web of Science Google Scholar
First citationCox, L. R. & Ley, S. V. (1998). Chem. Rev. 27, 301–314.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSalzer, A. & Hafner, A. (1983). Helv. Chim. Acta, 66, 1774–1785.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZutin, K., Nogueira, V. M., Mauro, A. E., Melnikov, P. & Iluykhin, A. (2001). Polyhedron, 20, 1011–1016.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds