organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Di­fluoro­methyl-5-[4-(tri­fluoro­meth­yl)phen­yl]isoxazole

CROSSMARK_Color_square_no_text.svg

aAnhui Engineering Technology Research Center for Extraction and Isolation of Active Components, Anhui Academy of Applied Technology, Hefei, 230031, People's Republic of China
*Correspondence e-mail: zh1986@iccas.ac.cn

Edited by J. Simpson, University of Otago, New Zealand (Received 8 March 2018; accepted 16 March 2018; online 6 April 2018)

The title mol­ecule, C11H6F5NO, lies on a mirror plane in the ortho­rhom­bic unit cell, with only two F atoms each of the di­fluoro and tri­fluoro­methyl substituents lying out of the plane. In the crystal, mol­ecules are linked by C—H⋯O, C—H⋯N and C—H⋯F hydrogen bonds, forming a layer structure parallel to the (001) plane. Weak ππ inter­actions promote the formation of a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Nitro­gen heterocycles are important scaffolds in bioactive natural and synthesized compounds (Fried et al., 2001[Fried, L. E., Manaa, M. R., Pagoria, P. F. & Simpson, R. L. (2001). Annu. Rev. Mater. Res. 31, 291-321.]; Baraldi et al., 2008[Baraldi, P. G., Tabrizi, M. A., Gessi, S. & Borea, P. A. (2008). Chem. Rev. 108, 238-263.]; Vitaku et al., 2014[Vitaku, E., Smith, D. T. & Njardarson, J. T. (2014). J. Med. Chem. 57, 10257-10274.]). Moreover, organic mol­ecules with fluoro­alkyl substituents often impart desirable physical and biological properties (Wang et al., 2014[Wang, J., Sánchez-Roselló, M., Aceña, J. L., del Pozo, C., Sorochinsky, A. E., Fustero, S., Soloshonok, V. A. & Liu, H. (2014). Chem. Rev. 114, 2432-2506.]).

The title compound crystallizes in the ortho­rhom­bic space group Pbcm with most atoms of the mol­ecule in the mirror plane (Fig. 1[link]). Only the F1 and F3 atoms of the di­fluoro and tri­fluoro­methyl substituents lie out of this plane. In the crystal, mol­ecules are linked by a combination of C—H⋯O, C—H⋯N and C—H⋯F hydrogen bonds (Table 1[link]) together with a weak ππ stacking inter­action between C5–C10 rings [centroid–centroid separation = 3.904 (2) Å] (Fig. 2[link]). In more detail, a chain running along the [010] direction forms through C3—H3⋯O1 and C3—H3⋯N1 hydrogen bonds, Table 1[link]. These [010] chains are joined by the C1—H1⋯F2 hydrogen bonds, forming a layer structure parallel to the (001) plane. Finally, mol­ecules in these (001) layers are linked by the weak ππ stacking inter­actions to generate a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.69 3.581 (7) 160
C3—H3⋯N1i 0.93 2.62 3.534 (6) 170
C1—H1⋯F2ii 0.98 2.65 3.258 (6) 121
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z.
[Figure 1]
Figure 1
The structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) x, y, −z + [{1\over 2}].]
[Figure 2]
Figure 2
Overall packing of the title compound viewed along the c-axis direction. Hydrogen bonds are drawn as dashed lines.

Synthesis and crystallization

The title compound was synthesized by a one-pot `click synthesis' of fluoro­alkyl­ated isoxazoles from commercially avalilable 1-ethynyl-4-(tri­fluoro­meth­yl)benzene and 2,2-di­fluoro­ethanamine, and the isolation and characterization have been reported previously (Zhang et al., 2018[Zhang, X.-W., Hu, W.-L., Chen, S. & Hu, X.-G. (2018). Org. Lett. 20, 860-863.]). Crystals for X-ray data collection were obtained by slow evaporation of a petroleum ether/ethyl­acetate (v:v = 100:1) solution.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H6F5NO
Mr 263.17
Crystal system, space group Orthorhombic, Pbcm
Temperature (K) 293
a, b, c (Å) 13.1081 (13), 11.1491 (13), 7.1798 (11)
V3) 1049.3 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.17
Crystal size (mm) 0.24 × 0.22 × 0.20
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.961, 0.967
No. of measured, independent and observed [I > 2σ(I)] reflections 5659, 1066, 707
Rint 0.027
(sin θ/λ)max−1) 0.605
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.292, 1.07
No. of reflections 1066
No. of parameters 103
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.49
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al. 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al. 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al. 2009).

3-Difluoromethyl-5-[4-(trifluoromethyl)phenyl]isoxazole top
Crystal data top
C11H6F5NODx = 1.666 Mg m3
Mr = 263.17Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcmCell parameters from 1887 reflections
a = 13.1081 (13) Åθ = 3.7–26.4°
b = 11.1491 (13) ŵ = 0.17 mm1
c = 7.1798 (11) ÅT = 293 K
V = 1049.3 (2) Å3Block, colourless
Z = 40.24 × 0.22 × 0.20 mm
F(000) = 528
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
diffractometer
1066 independent reflections
Radiation source: fine-focus sealed tube707 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.0353 pixels mm-1θmax = 25.5°, θmin = 3.6°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 1312
Tmin = 0.961, Tmax = 0.967l = 78
5659 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.292H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.1997P)2 + 0.0686P]
where P = (Fo2 + 2Fc2)/3
1066 reflections(Δ/σ)max < 0.001
103 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.49 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5503 (3)0.1715 (3)0.25000.0724 (13)
O10.4442 (3)0.1696 (2)0.25000.0689 (11)
F10.7082 (2)0.3834 (2)0.3982 (4)0.1078 (12)
C40.4094 (4)0.2842 (3)0.25000.0544 (12)
C50.2998 (4)0.3006 (4)0.25000.0542 (12)
C30.4895 (4)0.3580 (4)0.25000.0650 (14)
H30.48820.44140.25000.078*
C90.1574 (4)0.4343 (5)0.25000.0844 (17)
H90.13120.51180.25000.101*
C80.0914 (4)0.3356 (4)0.25000.0794 (16)
C60.2315 (4)0.2038 (4)0.25000.0683 (14)
H60.25680.12590.25000.082*
C100.2593 (4)0.4164 (4)0.25000.0704 (15)
H100.30310.48210.25000.084*
C110.0320 (6)0.3614 (6)0.25000.0780 (19)
C70.1293 (5)0.2218 (4)0.25000.0797 (17)
H70.08510.15650.25000.096*
C10.6860 (4)0.3158 (5)0.25000.0734 (15)
H10.72760.24280.25000.088*
C20.5753 (4)0.2845 (4)0.25000.0607 (13)
F20.0709 (6)0.2549 (10)0.25000.327 (7)
F30.0478 (5)0.3962 (6)0.3638 (11)0.260 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.066 (3)0.053 (3)0.098 (3)0.0016 (18)0.0000.000
O10.064 (2)0.0454 (19)0.097 (3)0.0009 (14)0.0000.000
F10.0887 (19)0.124 (2)0.111 (2)0.0307 (14)0.0063 (14)0.0265 (15)
C40.073 (3)0.043 (2)0.047 (2)0.0011 (19)0.0000.000
C50.064 (3)0.048 (2)0.050 (2)0.003 (2)0.0000.000
C30.074 (3)0.041 (2)0.080 (3)0.004 (2)0.0000.000
C90.079 (4)0.055 (3)0.118 (5)0.005 (2)0.0000.000
C80.066 (3)0.072 (4)0.100 (4)0.009 (3)0.0000.000
C60.078 (4)0.047 (3)0.080 (3)0.009 (2)0.0000.000
C100.066 (3)0.053 (3)0.092 (4)0.001 (2)0.0000.000
C110.058 (4)0.060 (3)0.115 (6)0.021 (3)0.0000.000
C70.074 (4)0.062 (3)0.103 (4)0.014 (3)0.0000.000
C10.070 (3)0.063 (3)0.088 (4)0.015 (3)0.0000.000
C20.069 (3)0.051 (3)0.062 (3)0.005 (2)0.0000.000
F20.127 (6)0.223 (8)0.63 (2)0.010 (7)0.0000.000
F30.101 (3)0.264 (6)0.414 (15)0.013 (4)0.016 (5)0.005 (5)
Geometric parameters (Å, º) top
N1—C21.302 (5)C8—C71.363 (7)
N1—O11.392 (6)C8—C111.643 (10)
O1—C41.356 (5)C6—C71.354 (8)
F1—C11.336 (3)C6—H60.9300
C4—C31.334 (7)C10—H100.9300
C4—C51.449 (7)C11—F3i0.928 (8)
C5—C101.395 (6)C11—F30.928 (8)
C5—C61.402 (7)C11—F21.293 (13)
C3—C21.393 (7)C7—H70.9300
C3—H30.9300C1—F1i1.336 (3)
C9—C101.351 (7)C1—C21.492 (7)
C9—C81.400 (7)C1—H10.9800
C9—H90.9300F3—F3i1.634 (16)
C2—N1—O1105.4 (3)C9—C10—H10119.6
C4—O1—N1108.8 (3)C5—C10—H10119.6
C3—C4—O1108.5 (5)F3i—C11—F3123.3 (15)
C3—C4—C5134.6 (4)F3i—C11—F2107.2 (7)
O1—C4—C5116.9 (4)F3—C11—F2107.2 (7)
C10—C5—C6118.0 (5)F3i—C11—C8107.1 (8)
C10—C5—C4119.6 (4)F3—C11—C8107.1 (8)
C6—C5—C4122.4 (4)F2—C11—C8103.1 (6)
C4—C3—C2105.8 (4)C6—C7—C8119.9 (5)
C4—C3—H3127.1C6—C7—H7120.1
C2—C3—H3127.1C8—C7—H7120.1
C10—C9—C8119.7 (5)F1—C1—F1i105.6 (4)
C10—C9—H9120.2F1—C1—C2110.1 (3)
C8—C9—H9120.2F1i—C1—C2110.1 (3)
C7—C8—C9120.5 (5)F1—C1—H1110.3
C7—C8—C11121.5 (5)F1i—C1—H1110.3
C9—C8—C11118.1 (4)C2—C1—H1110.3
C7—C6—C5121.2 (5)N1—C2—C3111.5 (5)
C7—C6—H6119.4N1—C2—C1118.1 (4)
C5—C6—H6119.4C3—C2—C1130.4 (4)
C9—C10—C5120.8 (5)C11—F3—F3i28.3 (7)
C2—N1—O1—C40.0C7—C8—C11—F3112.9 (8)
N1—O1—C4—C30.0C9—C8—C11—F367.1 (8)
N1—O1—C4—C5180.0C7—C8—C11—F20.0
C3—C4—C5—C100.0C9—C8—C11—F2180.0
O1—C4—C5—C10180.0C5—C6—C7—C80.0
C3—C4—C5—C6180.0C9—C8—C7—C60.0
O1—C4—C5—C60.0C11—C8—C7—C6180.0
O1—C4—C3—C20.0O1—N1—C2—C30.0
C5—C4—C3—C2180.0O1—N1—C2—C1180.0
C10—C9—C8—C70.0C4—C3—C2—N10.0
C10—C9—C8—C11180.0C4—C3—C2—C1180.0
C10—C5—C6—C70.0F1—C1—C2—N1122.0 (3)
C4—C5—C6—C7180.0F1i—C1—C2—N1122.0 (3)
C8—C9—C10—C50.0F1—C1—C2—C358.0 (3)
C6—C5—C10—C90.0F1i—C1—C2—C358.0 (3)
C4—C5—C10—C9180.0F2—C11—F3—F3i125.1 (18)
C7—C8—C11—F3i112.9 (8)C8—C11—F3—F3i124.8 (15)
C9—C8—C11—F3i67.1 (8)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1ii0.932.693.581 (7)160
C3—H3···N1ii0.932.623.534 (6)170
C1—H1···F2iii0.982.653.258 (6)121
Symmetry codes: (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z.
 

Funding information

Funding for this research was provided by: National Natural Science Foundation of China (award No. 21502076); Natural Science Foundation of Jiangxi Province (award No. 20161BAB213068); Hundred–Talent Program (Hefei); Outstanding Young Talent Program of Jiangxi Province (award No. 2017BCB23039).

References

First citationBaraldi, P. G., Tabrizi, M. A., Gessi, S. & Borea, P. A. (2008). Chem. Rev. 108, 238–263.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFried, L. E., Manaa, M. R., Pagoria, P. F. & Simpson, R. L. (2001). Annu. Rev. Mater. Res. 31, 291–321.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVitaku, E., Smith, D. T. & Njardarson, J. T. (2014). J. Med. Chem. 57, 10257–10274.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWang, J., Sánchez-Roselló, M., Aceña, J. L., del Pozo, C., Sorochinsky, A. E., Fustero, S., Soloshonok, V. A. & Liu, H. (2014). Chem. Rev. 114, 2432–2506.  Web of Science CrossRef CAS Google Scholar
First citationZhang, X.-W., Hu, W.-L., Chen, S. & Hu, X.-G. (2018). Org. Lett. 20, 860–863.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds