organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-[Phen­yl(pyridin-4-yl)amino]­penta-2,4-diyn-1-ol

CROSSMARK_Color_square_no_text.svg

aDepartment of Material Science and Chemistry, Wakayama University, Sakaedani, Wakayama, 640-8510, Japan
*Correspondence e-mail: okuno@center.wakayama-u.ac.jp

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 6 March 2018; accepted 18 March 2018; online 23 March 2018)

In the title di­acetyl­ene derivative, C16H12N2O, the amino plane makes dihedral angles of 3.90 (4) and 60.53 (4)°, respectively, with the pyridyl and phenyl rings, indicating that an electron-deficient pyridyl ring makes better conjugation with a lone pair of the amino nitro­gen atom. In the crystal, mol­ecules form inversion dimers via pairs of hydrogen bonds between the hy­droxy and pyridyl groups, with an O⋯N distance of 2.7765 (16) Å. The dimers stack along the a axis, but the title compound shows little solid-state polymerization reactivity.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In di­acetyl­ene derivatives, a phenyl­pyridyl­amino group is connected to a terminal acetyl­ene group. Solid-state polymerization of di­acetyl­ene derivatives (Wegner, 1969[Wegner, G. (1969). Z. Naturforsch. Teil B, 24, 824-832.]) affords polydi­acetyl­enes whose one-dimensional π system has attracted attention from a materials science viewpoint. In order to improve their properties, several strategies for making novel polydi­acetyl­enes have been examined, such as the introduction of hetero atoms directly to their π system. However, except for the case of iodine or nitro­gen, these attempts have resulted in failure owing to limitations on mol­ecular arrangement for solid-state polymerization of di­acetyl­enes (Baughman, 1974[Baughman, R. H. (1974). J. Polym. Sci. Polym. Phys. Ed. 12, 1511-1535.]), where the mol­ecular arrangement is expressed in terms of stacking inter­vals and the inclination angle of the di­acetyl­ene unit to the stacking axis. Some heteroatom-substituted polydi­acetyl­enes have been developed successfully (Galli et al., 1988[Galli, R., Neuenschwander, M. & Engel, P. (1988). Helv. Chim. Acta, 71, 1914-1923.], 1989[Galli, R., Neuenschwander, M. & Engel, P. (1989). Helv. Chim. Acta, 72, 1324-1336.]; Sarkar et al., 1998[Sarkar, A., Okada, S., Nakanishi, H. & Matsuda, H. (1998). Macromolecules, 31, 9174-9180.]; Okuno et al., 2006[Okuno, T., Ikeda, S., Kubo, N. & Sandman, D. J. (2006). Mol. Cryst. Liq. Cryst. 456, 35-44.]; Tabata et al., 2012[Tabata, H., Tokoyama, H., Yamakado, H. & Okuno, T. (2012). J. Mater. Chem. 22, 115-122.], 2016[Tabata, H., Kuwamoto, K. & Okuno, T. (2016). J. Mol. Struct. 1106, 452-459.]; Tokutome et al., 2012[Tokutome, Y., Kubo, N. & Okuno, T. (2012). J. Mol. Struct. 1029, 135-141.]).

The title compound (Fig. 1[link]) comprises two parts, viz. di­acetyl­ene and anilino­pyridine units. The di­acetyl­ene unit curves slightly. The structure around the amino nitro­gen atom is almost planar (r.m.s. deviation of C1/C6/C7/N1 plane = 0.0228 Å). The plane makes dihedral angles of 3.84 (7) and 60.64 (6)°, respectively, with the C1–C5/N2 pyridyl and C6–C11 phenyl rings, indicating that an electron-deficient pyridyl ring makes better conjugation with a lone pair of the amino nitro­gen (Umezono & Okuno, 2015[Umezono, S. & Okuno, T. (2015). J. Struct. Chem. 56 C531-533.]). The structure of 5-(di­phenyl­amino)-2,4-penta­diyne-1-ol (Tokutome et al., 2012[Tokutome, Y., Kubo, N. & Okuno, T. (2012). J. Mol. Struct. 1029, 135-141.]), where a pyridyl ring of the title compound is replaced by a phenyl ring, has an almost similar structure but here the phenyl rings make dihedral angles of 7.05 (9) and 82.5 (9)° with the amino plane. The large difference in the dihedral angle is thought to originate in inter­molecular inter­actions.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radius.

In the crystal, mol­ecules form centrosymmetric hydrogen-bonded dimers (Table 1[link], Fig. 2[link]), where the O1⋯N2i distance is 2.7765 (16) Å. These dimeric unit stacks along the a axis where the repeating inter­vals and inclination angle of the di­acetyl­ene unit to the stacking axis are 4.0205 (11) Å and ca 66°. These stacking parameters do not satisfy Baughman's limitation, and the title compound did not show any solid-state polymerization reactivity. In the case of 5-(di­phenyl­amino)-2,4-penta­diyne-1-ol, polymeric hydrogen bonds are formed among the hy­droxy groups and they play a crucial role in the mol­ecular arrangement. However, in the case of the title compound, the hy­droxy groups are used for making dimeric hydrogen bonds. This is the main reason for forming an inert structure regarding solid-state polymerization.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 1.01 (2) 1.77 (2) 2.7765 (16) 177 (2)
Symmetry code: (i) -x+1, -y+1, -z.
[Figure 2]
Figure 2
A view of the hydrogen-bonded dimer of the title compound [symmetry code: (i) -x + 1, -y + 1, -z].

Synthesis and crystallization

Sodium hydride (0.28 g, 11.8 mmol) was added to a solution of N-phenyl­pyridin-4-amine (1.00 g, 5.88 mmol) in tetra­hydro­furan. Tri­chloro­ethyl­ene (1.06 ml, 11.8 mmol) was added to the solution and it was stirred for 24 h under an argon atmos­phere. The solution was concentrated under reduced pressure and extracted with chloro­form. The chloro­form solution was concentrated, and the residual oil was purified by column chromatography to give 0.55 g (36%) of (E)-N-(1,2-di­chloro­vin­yl)-N-phenyl­pyridin-4-amine as a black oil. 1H NMR (400 MHz, CDCl3): δ 6.40 (s, 1H); 6.76 (d, J = 8.0 Hz, 2H); 7.33(m, 3H); 7.44 (t, J = 8.0 Hz, 2H); 8.38 (d, J = 8.0 Hz, 2H).

A solution of butyl­lithium in hexane (6.2 mmol) was added to a solution of (E)-N-(1,2-di­chloro­vin­yl)-N-phenyl­pyridin-4-amine (0.55 g, 2.1 mmol) at 193 K, and the solution was stirred for 2 h. The reaction was quenched at 253 K, and the solution was concentrated by a rotary evaporator. The residue was extracted with chloro­form, and the organic layer was washed with water and then brine. Removal of the solvent gave 0.35 g (86%) of N-ethynyl-N-phenyl­pyridin-4-amine as a black oil. 1H NMR (400 MHz, CDCl3): δ 2.97 (s, 1H); 7.02 (dd, J = 4.8,1.6 Hz, 2H); 7.30–7.43(m, 3H); 7.47(t, J = 8.0 Hz, 2H); 8.39 (dd, J = 4.8, 1.6 Hz, 2H).

Cu-TMEDA catalyst prepared from CuI (0.021 g, 0.21 mmol) and TMEDA (0.063 ml, 0.42 mmol) was added to a solution of N-ethynyl-N-phenyl­pyridin-4-amine (0.81 g, 4.2 mmol) and 2-propyn-1-ol (1.2 ml, 20.9 mmol) in acetone (30 ml). The solution was stirred for 1 d and concentrated under reduced pressure. The residue was extracted with di­chloro­methane, and the organic layer was washed with 5% ammonium hydroxide and water. It was concentrated by a rotary evaporator, and the residue was purified by column chromatography to afford the title compound (0.28 g, 28%) as a brown solid. 1H NMR (400 MHz, CDCl3): δ 2.07 (s, 1H); 4.41 (s, 2H); 7.03 (dd, J = 4.8,1.6 Hz, 2H); 7.38 (m, 3H); 7.49 (t, J = 8.1 Hz, 2H); 8.44 (dd, J = 4.8, 1.6 Hz, 2H).

Single colourless crystals of sufficient quality for X-ray crystallographic analysis were prepared by recrystallization from a di­chloro­methane solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H12N2O
Mr 248.28
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 93
a, b, c (Å) 4.0205 (11), 11.316 (3), 13.781 (4)
α, β, γ (°) 85.067 (9), 88.517 (9), 84.335 (6)
V3) 621.5 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.10 × 0.06 × 0.04
 
Data collection
Diffractometer Rigaku Saturn724+
Absorption correction Numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.995, 0.997
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 4294, 2156, 1773
Rint 0.019
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.06
No. of reflections 2156
No. of parameters 176
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.17
Computer programs: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear . Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CrystalStructure (Rigaku, 2014[Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Structural data


Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2014).

5-[Phenyl(pyridin-4-yl)amino]penta-2,4-diyn-1-ol top
Crystal data top
C16H12N2OZ = 2
Mr = 248.28F(000) = 260.00
Triclinic, P1Dx = 1.327 Mg m3
a = 4.0205 (11) ÅMo Kα radiation, λ = 0.71075 Å
b = 11.316 (3) ÅCell parameters from 2024 reflections
c = 13.781 (4) Åθ = 2.4–31.2°
α = 85.067 (9)°µ = 0.09 mm1
β = 88.517 (9)°T = 93 K
γ = 84.335 (6)°Block, colorless
V = 621.5 (3) Å30.10 × 0.06 × 0.04 mm
Data collection top
Rigaku Saturn724+
diffractometer
1773 reflections with F2 > 2.0σ(F2)
Detector resolution: 7.111 pixels mm-1Rint = 0.019
ω scansθmax = 25.0°, θmin = 3.4°
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
h = 44
Tmin = 0.995, Tmax = 0.997k = 1313
4294 measured reflectionsl = 1416
2156 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.0857P]
where P = (Fo2 + 2Fc2)/3
2156 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.17 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

The C-bound H atoms were placed at ideal positions and were refined as riding on their parent C atoms. Uiso(H) values of the H atoms were set at 1.2Ueq(parent atom). The O-bound H atom was obtained from a difference Fourier map and was refined isotropically without any restrictions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1044 (3)0.04808 (8)0.19758 (7)0.0212 (3)
N10.3981 (3)0.65837 (10)0.24201 (8)0.0164 (3)
N20.6840 (3)0.82820 (10)0.02810 (8)0.0199 (3)
C10.4983 (3)0.71528 (12)0.15208 (10)0.0158 (3)
C20.4407 (4)0.66720 (13)0.06486 (10)0.0194 (3)
C30.5357 (4)0.72613 (13)0.02170 (11)0.0205 (3)
C40.7401 (4)0.87159 (13)0.05677 (11)0.0200 (3)
C50.6560 (4)0.81987 (12)0.14734 (10)0.0179 (3)
C60.4511 (4)0.70306 (12)0.33530 (10)0.0162 (3)
C70.3302 (4)0.81874 (13)0.35304 (10)0.0188 (3)
C80.3819 (4)0.85885 (13)0.44329 (10)0.0209 (3)
C90.5475 (4)0.78394 (13)0.51558 (11)0.0226 (3)
C100.6625 (4)0.66780 (13)0.49748 (11)0.0227 (4)
C110.6158 (4)0.62704 (13)0.40721 (10)0.0188 (3)
C120.2817 (4)0.55039 (12)0.24330 (10)0.0174 (3)
C130.1761 (4)0.45476 (12)0.24541 (10)0.0180 (3)
C140.0675 (4)0.34287 (12)0.24871 (10)0.0175 (3)
C150.0230 (4)0.24424 (12)0.25177 (10)0.0185 (3)
C160.1235 (4)0.12318 (12)0.25070 (11)0.0207 (3)
H10.172 (6)0.095 (2)0.1360 (17)0.064 (7)*
H20.337790.595130.065060.0233*
H30.493870.692550.080520.0246*
H40.845610.943310.054480.0240*
H50.704440.854760.205010.0214*
H70.21380.869610.304050.0225*
H80.303420.938160.455770.0251*
H90.582030.812010.57720.0271*
H100.773470.616240.547090.0272*
H110.695480.547890.394590.0226*
H16A0.141320.087580.318590.0249*
H16B0.347250.127550.221510.0249*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0271 (6)0.0156 (5)0.0208 (6)0.0027 (4)0.0032 (4)0.0008 (4)
N10.0215 (7)0.0131 (6)0.0153 (6)0.0046 (5)0.0002 (5)0.0007 (5)
N20.0218 (7)0.0204 (7)0.0172 (7)0.0017 (5)0.0009 (5)0.0007 (5)
C10.0141 (7)0.0170 (7)0.0154 (7)0.0009 (5)0.0005 (6)0.0003 (5)
C20.0216 (8)0.0174 (7)0.0196 (8)0.0032 (6)0.0011 (6)0.0015 (6)
C30.0229 (8)0.0214 (8)0.0176 (8)0.0031 (6)0.0008 (6)0.0029 (6)
C40.0210 (8)0.0179 (7)0.0208 (8)0.0026 (6)0.0013 (6)0.0005 (6)
C50.0186 (8)0.0185 (7)0.0170 (7)0.0026 (6)0.0010 (6)0.0029 (6)
C60.0170 (7)0.0185 (7)0.0139 (7)0.0055 (6)0.0006 (6)0.0019 (6)
C70.0182 (8)0.0190 (7)0.0190 (8)0.0028 (6)0.0004 (6)0.0005 (6)
C80.0221 (8)0.0201 (8)0.0212 (8)0.0034 (6)0.0015 (6)0.0043 (6)
C90.0233 (8)0.0299 (9)0.0160 (8)0.0081 (7)0.0010 (6)0.0047 (6)
C100.0228 (8)0.0265 (8)0.0182 (8)0.0039 (6)0.0007 (6)0.0035 (6)
C110.0207 (8)0.0160 (7)0.0195 (8)0.0022 (6)0.0023 (6)0.0001 (6)
C120.0197 (8)0.0175 (8)0.0145 (7)0.0000 (6)0.0002 (6)0.0015 (6)
C130.0221 (8)0.0175 (8)0.0144 (7)0.0016 (6)0.0003 (6)0.0026 (6)
C140.0187 (8)0.0191 (8)0.0146 (7)0.0015 (6)0.0001 (6)0.0011 (6)
C150.0190 (8)0.0195 (8)0.0168 (7)0.0022 (6)0.0000 (6)0.0006 (6)
C160.0215 (8)0.0166 (7)0.0247 (8)0.0047 (6)0.0018 (6)0.0026 (6)
Geometric parameters (Å, º) top
O1—C161.4199 (18)C12—C131.199 (2)
N1—C11.4146 (18)C13—C141.376 (2)
N1—C61.4495 (19)C14—C151.205 (2)
N1—C121.3496 (19)C15—C161.467 (2)
N2—C31.346 (2)O1—H11.01 (2)
N2—C41.339 (2)C2—H20.950
C1—C21.395 (2)C3—H30.950
C1—C51.393 (2)C4—H40.950
C2—C31.380 (2)C5—H50.950
C4—C51.381 (2)C7—H70.950
C6—C71.390 (2)C8—H80.950
C6—C111.3912 (19)C9—H90.950
C7—C81.387 (2)C10—H100.950
C8—C91.390 (2)C11—H110.950
C9—C101.391 (2)C16—H16A0.990
C10—C111.387 (2)C16—H16B0.990
O1···C143.4566 (19)C14···H9xiii3.1269
N2···C12.8111 (18)C14···H10xiii2.9861
C1···C73.131 (2)C14···H11v3.4092
C1···C133.470 (2)C14···H16Biv3.2549
C2···C42.704 (2)C15···H3x3.0559
C2···C122.780 (2)C15···H3i3.2182
C2···C133.527 (2)C15···H9xii3.2805
C3···C52.715 (2)C15···H9xiii2.9730
C5···C62.941 (2)C15···H10xiii3.5202
C5···C73.091 (2)C15···H16Biv2.9371
C6···C92.770 (2)C16···H1v3.33 (2)
C6···C133.455 (2)C16···H3x3.2852
C7···C102.787 (2)C16···H4ii3.5333
C7···C123.531 (2)C16···H5ii3.2966
C8···C112.780 (2)C16···H7iii3.0877
C11···C122.895 (2)C16···H9xii3.0606
O1···N2i2.7765 (16)C16···H9xiii3.4327
O1···C4ii3.360 (2)C16···H16Biv3.1411
O1···C4i3.599 (2)H1···N2i1.77 (2)
O1···C5ii3.4191 (19)H1···C3i2.79 (2)
O1···C5iii3.3412 (18)H1···C4ii3.47 (2)
O1···C7iii3.2907 (18)H1···C4iii3.46 (2)
O1···C16iv3.412 (2)H1···C4i2.67 (2)
N1···C5v3.5581 (19)H1···C5iii3.50 (2)
N2···O1i2.7765 (16)H1···C16iv3.33 (2)
N2···C2iv3.595 (2)H1···H3x3.4742
N2···C3iv3.505 (2)H1···H3i2.9075
N2···C15i3.468 (2)H1···H4ii2.6024
N2···C16i3.529 (2)H1···H4iii3.2841
C1···C4v3.590 (2)H1···H4i2.7004
C1···C5v3.476 (2)H1···H5ii3.5048
C2···N2v3.595 (2)H1···H5iii3.3717
C2···C4v3.462 (2)H1···H7iii3.2860
C3···N2v3.505 (2)H1···H16Biv2.3651
C3···C14i3.586 (2)H2···H2i3.0888
C4···O1vi3.360 (2)H2···H3i3.2488
C4···O1i3.599 (2)H3···N2v3.5445
C4···C1iv3.590 (2)H3···C13i3.1243
C4···C2iv3.462 (2)H3···C14x3.3519
C4···C4vii3.590 (2)H3···C14i2.9072
C5···O1viii3.3412 (18)H3···C15x3.0559
C5···O1vi3.4191 (19)H3···C15i3.2182
C5···N1iv3.5581 (19)H3···C16x3.2852
C5···C1iv3.476 (2)H3···H1x3.4742
C7···O1viii3.2907 (18)H3···H1i2.9075
C11···C12iv3.548 (2)H3···H2i3.2488
C12···C11v3.548 (2)H3···H16Bx2.7220
C14···C3i3.586 (2)H4···O1vi2.6700
C15···N2i3.468 (2)H4···O1i3.4677
C16···O1v3.412 (2)H4···N2vii3.1847
C16···N2i3.529 (2)H4···N2ix3.3412
N1···H22.6234H4···C4vii3.3081
N1···H52.6512H4···C4ix3.0850
N1···H72.6388H4···C16vi3.5333
N1···H112.6070H4···H1viii3.2841
N2···H23.2545H4···H1vi2.6024
N2···H53.2560H4···H1i2.7004
C1···H33.2383H4···H4vii3.2871
C1···H43.2303H4···H4ix2.3084
C1···H72.9757H4···H16Bvi3.2650
C2···H53.2581H5···O1viii3.0902
C3···H43.1322H5···O1vi2.8336
C4···H33.1331H5···N1iv3.4106
C5···H23.2563H5···C1iv3.5062
C5···H72.8202H5···C7iv3.2522
C6···H52.6323H5···C16vi3.2966
C6···H83.2532H5···H1viii3.3717
C6···H103.2581H5···H1vi3.5048
C7···H52.5320H5···H7iv2.5173
C7···H93.2680H5···H16Avi3.2951
C7···H113.2760H5···H16Bvi3.1010
C8···H53.5015H7···O1viii2.4028
C8···H103.2635H7···C5v3.2741
C9···H73.2706H7···C16viii3.0877
C9···H113.2665H7···H1viii3.2860
C10···H83.2625H7···H5v2.5173
C11···H73.2771H7···H16Aviii2.7455
C11···H93.2647H8···C8xi3.1665
C12···H22.4740H8···C9xi3.3170
C12···H112.6973H8···H8xv2.9771
C13···H22.9264H8···H8xi2.6026
C13···H113.2752H8···H9xi2.9046
C14···H13.31 (2)H8···H16Aviii2.9425
C14···H16A3.1522H8···H16Avi3.3754
C14···H16B3.1384H8···H16Axii3.1552
C15···H12.48 (2)H9···C14xiii3.1269
H1···H16A2.7831H9···C15xii3.2805
H1···H16B2.3837H9···C15xiii2.9730
H2···H32.3076H9···C16xii3.0606
H4···H52.3072H9···C16xiii3.4327
H5···H72.3700H9···H8xi2.9046
H7···H82.3401H9···H16Axii2.4989
H8···H92.3374H9···H16Axiii3.0597
H9···H102.3404H9···H16Bxii3.0194
H10···H112.3398H10···C11xiii3.3054
O1···H4ii2.6700H10···C11xiv3.5289
O1···H4i3.4677H10···C12xiii3.3258
O1···H5ii2.8336H10···C13xiii2.9096
O1···H5iii3.0902H10···C14xiii2.9861
O1···H7iii2.4028H10···C15xiii3.5202
O1···H16Aiv3.5826H10···H10xiv3.3826
O1···H16Biv2.5017H10···H11xiii2.8296
N1···H5v3.4106H10···H11xiv2.7755
N2···H1i1.77 (2)H11···C10xiii3.1938
N2···H3iv3.5445H11···C11xiii3.5110
N2···H4vii3.1847H11···C12iv3.1065
N2···H4ix3.3412H11···C13iv2.9725
N2···H16Bx3.0018H11···C14iv3.4092
C1···H5v3.5062H11···H10xiii2.8296
C3···H1i2.79 (2)H11···H10xiv2.7755
C3···H16Bx3.1581H11···H11xiii3.4124
C4···H1viii3.46 (2)H16A···O1v3.5826
C4···H1vi3.47 (2)H16A···C7iii3.4255
C4···H1i2.67 (2)H16A···C8iii3.5249
C4···H4vii3.3081H16A···C8xii3.4832
C4···H4ix3.0850H16A···C9xii3.1484
C5···H1viii3.50 (2)H16A···H5ii3.2951
C5···H7iv3.2741H16A···H7iii2.7455
C7···H5v3.2522H16A···H8ii3.3754
C7···H16Aviii3.4255H16A···H8iii2.9425
C8···H8xi3.1665H16A···H8xii3.1552
C8···H16Aviii3.5249H16A···H9xii2.4989
C8···H16Axii3.4832H16A···H9xiii3.0597
C9···H8xi3.3170H16A···H16Biv3.4852
C9···H16Axii3.1484H16B···O1v2.5017
C10···H11xiii3.1938H16B···N2x3.0018
C11···H10xiii3.3054H16B···C3x3.1581
C11···H10xiv3.5289H16B···C14v3.2549
C11···H11xiii3.5110H16B···C15v2.9371
C12···H10xiii3.3258H16B···C16v3.1411
C12···H11v3.1065H16B···H1v2.3651
C13···H3i3.1243H16B···H3x2.7220
C13···H10xiii2.9096H16B···H4ii3.2650
C13···H11v2.9725H16B···H5ii3.1010
C14···H3x3.3519H16B···H9xii3.0194
C14···H3i2.9072H16B···H16Av3.4852
C1—N1—C6123.25 (12)C16—O1—H1108.4 (13)
C1—N1—C12119.14 (12)C1—C2—H2120.577
C6—N1—C12117.18 (11)C3—C2—H2120.570
C3—N2—C4115.73 (12)N2—C3—H3117.923
N1—C1—C2120.31 (13)C2—C3—H3117.912
N1—C1—C5121.70 (13)N2—C4—H4117.566
C2—C1—C5118.00 (13)C5—C4—H4117.556
C1—C2—C3118.85 (14)C1—C5—H5120.814
N2—C3—C2124.16 (14)C4—C5—H5120.826
N2—C4—C5124.88 (14)C6—C7—H7120.459
C1—C5—C4118.36 (13)C8—C7—H7120.463
N1—C6—C7120.30 (12)C7—C8—H8119.721
N1—C6—C11118.76 (12)C9—C8—H8119.737
C7—C6—C11120.91 (13)C8—C9—H9120.083
C6—C7—C8119.08 (13)C10—C9—H9120.079
C7—C8—C9120.54 (14)C9—C10—H10119.904
C8—C9—C10119.84 (14)C11—C10—H10119.914
C9—C10—C11120.18 (13)C6—C11—H11120.284
C6—C11—C10119.43 (13)C10—C11—H11120.285
N1—C12—C13179.23 (15)O1—C16—H16A109.016
C12—C13—C14177.71 (15)O1—C16—H16B109.017
C13—C14—C15179.07 (15)C15—C16—H16A109.016
C14—C15—C16177.00 (15)C15—C16—H16B109.011
O1—C16—C15112.86 (12)H16A—C16—H16B107.794
C1—N1—C6—C755.63 (17)C2—C1—C5—C41.36 (18)
C1—N1—C6—C11126.23 (13)C5—C1—C2—C31.25 (19)
C6—N1—C1—C2179.77 (10)C1—C2—C3—N20.3 (2)
C6—N1—C1—C50.21 (18)N2—C4—C5—C10.6 (2)
C12—N1—C1—C27.53 (18)N1—C6—C7—C8179.43 (11)
C12—N1—C1—C5172.45 (11)N1—C6—C11—C10178.76 (11)
C12—N1—C6—C7131.99 (12)C7—C6—C11—C100.6 (2)
C12—N1—C6—C1146.15 (17)C11—C6—C7—C81.3 (2)
C3—N2—C4—C50.4 (2)C6—C7—C8—C91.0 (2)
C4—N2—C3—C20.5 (2)C7—C8—C9—C100.0 (2)
N1—C1—C2—C3178.77 (11)C8—C9—C10—C110.7 (2)
N1—C1—C5—C4178.66 (10)C9—C10—C11—C60.4 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y1, z; (iii) x, y1, z; (iv) x+1, y, z; (v) x1, y, z; (vi) x+1, y+1, z; (vii) x+1, y+2, z; (viii) x, y+1, z; (ix) x+2, y+2, z; (x) x, y+1, z; (xi) x+1, y+2, z+1; (xii) x, y+1, z+1; (xiii) x+1, y+1, z+1; (xiv) x+2, y+1, z+1; (xv) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i1.01 (2)1.77 (2)2.7765 (16)177 (2)
Symmetry code: (i) x+1, y+1, z.
 

Funding information

This work was supported by the Adaptable and Seamless Technology Transfer Program through Target-driven R&D of the Japan Science and Technology Agency (JST).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBaughman, R. H. (1974). J. Polym. Sci. Polym. Phys. Ed. 12, 1511–1535.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGalli, R., Neuenschwander, M. & Engel, P. (1988). Helv. Chim. Acta, 71, 1914–1923.  CSD CrossRef CAS Web of Science Google Scholar
First citationGalli, R., Neuenschwander, M. & Engel, P. (1989). Helv. Chim. Acta, 72, 1324–1336.  CSD CrossRef CAS Web of Science Google Scholar
First citationOkuno, T., Ikeda, S., Kubo, N. & Sandman, D. J. (2006). Mol. Cryst. Liq. Cryst. 456, 35–44.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear . Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSarkar, A., Okada, S., Nakanishi, H. & Matsuda, H. (1998). Macromolecules, 31, 9174–9180.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabata, H., Kuwamoto, K. & Okuno, T. (2016). J. Mol. Struct. 1106, 452–459.  CSD CrossRef CAS Google Scholar
First citationTabata, H., Tokoyama, H., Yamakado, H. & Okuno, T. (2012). J. Mater. Chem. 22, 115–122.  Web of Science CSD CrossRef CAS Google Scholar
First citationTokutome, Y., Kubo, N. & Okuno, T. (2012). J. Mol. Struct. 1029, 135–141.  Web of Science CSD CrossRef CAS Google Scholar
First citationUmezono, S. & Okuno, T. (2015). J. Struct. Chem. 56 C531–533.  Google Scholar
First citationWegner, G. (1969). Z. Naturforsch. Teil B, 24, 824–832.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds