organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Amino­anilinium benzene-1,2-diaminium tris­­(4-methyl­benzene-1-sulfonate)

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Presidency College, Chennai 600 005, India, bDepartment of Physics, Panimalar Engineering College, Chennai 600 123, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: mohan66@hotmail.com, chakkaravarthi_2005@yahoo.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 12 March 2018; accepted 15 March 2018; online 23 March 2018)

In the title mol­ecular salt, C6H10N22+·C6H9N2+·3C7H7O3S, one of the cations is doubly protonated and one is singly protonated with charge balance achieved by three sulfonate anions. The crystal packing features N—H⋯O and C—H⋯O hydrogen bonds. The ions are arranged into a two-dimensional network along the (010) plane and the structure is further consolidated by weak C—H⋯π inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

A variety of pharmaceutical drugs are prepared as salts of benzene­sulfonic acid. Recently, much attention has been devoted to simple mol­ecular–ionic crystals containing organic cations and anions because of the tunability of their special structural features and their inter­esting physical properties (Katrusiak & Szafrański, 2006[Katrusiak, A. & Szafrański, M. (2006). J. Am. Chem. Soc. 128, 15775-15785.]). In a continuation of our studies of mol­ecular compounds with non-linear optical properties that are used in optoelectronic and photonic devices (Nalwa & Miyata, 1997[Nalwa, H. S. & Miyata, S. (1997). In Nonlinear Optics of Organic Molecules and Polymers. Boca Raton: CRC Press.]), we herewith report the crystal structure of the title compound (Fig. 1[link]). One of the cations is doubly protonated (at N1 and N2) and the other is singly protonated at N4. The geometric parameters agree well with reported similar structures (Jasinski et al., 2011[Jasinski, J. P., Golen, J. A., Praveen, A. S., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o3288-o3289.]; Krishnakumar et al., 2012[Krishnakumar, M., Sudhahar, S., Silambarasan, A., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3268.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecular salt, with the atom labelling and 30% probability displacement ellipsoids.

The dihedral angles between the C22–C27 benzene ring of one of the cations and the C1–C6, C8–C13 and C15–C20 benzene rings of the anions are 70.63 (16), 75.67 (16) and 86.29 (16)°, respectively. The C28–C33 benzene ring of one of the cations makes dihedral angles of 63.57 (15), 69.42 (15) and 87.04 (16)°, respectively, with the C1–C6, C8–C13 and C15–C20 benzene rings of the anions.

The crystal packing features N—H⋯O and C—H⋯O hydrogen bonds (Fig. 2[link], Table 1[link]). The ions are arranged into a two-dimensional network parallel to the (010) plane and the structure is further consolidated by weak C—H⋯π inter­actions (Table 1[link]). An weak ππ stacking inter­action is observed between the C22–C27 and C28–C33 benzene rings of the cations, with a centroid-to-centroid distance of 3.7565 (17) Å.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C8–C13 and C15–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O8i 0.87 (1) 1.91 (1) 2.785 (3) 175 (3)
N2—H2B⋯O6i 0.87 (1) 1.86 (1) 2.707 (3) 164 (3)
N3—H3A⋯O3i 0.86 (1) 2.28 (1) 3.113 (3) 164 (3)
N1—H1A⋯O3i 0.86 (1) 2.06 (2) 2.810 (3) 144 (3)
N1—H1A⋯O6i 0.86 (1) 2.44 (3) 2.852 (4) 110 (3)
N3—H3B⋯O1ii 0.86 (1) 2.15 (1) 2.989 (4) 163 (3)
N4—H4B⋯O1ii 0.87 (1) 2.12 (2) 2.910 (4) 150 (3)
C24—H24⋯O1ii 0.93 2.55 3.197 (4) 127
N1—H1C⋯O4iii 0.87 (1) 1.84 (1) 2.698 (3) 169 (4)
N1—H1B⋯O2iii 0.86 (1) 1.83 (1) 2.669 (3) 164 (3)
N2—H2C⋯O2iii 0.87 (1) 2.30 (3) 2.873 (3) 124 (2)
N2—H2C⋯O9iv 0.87 (1) 2.07 (2) 2.833 (3) 146 (3)
N4—H4A⋯O5v 0.87 (1) 1.88 (1) 2.742 (4) 175 (4)
N4—H4C⋯O7v 0.87 (1) 2.06 (2) 2.826 (3) 147 (4)
C5—H5⋯Cg2vi 0.93 2.87 3.629 (4) 140
C10—H10⋯Cg3vii 0.93 2.81 3.587 (5) 142
C13—H13⋯Cg1 0.93 2.93 3.609 (3) 131
Symmetry codes: (i) -x+2, -y+1, -z-1; (ii) x, y, z-1; (iii) x+1, y, z-1; (iv) x+1, y, z; (v) -x+1, -y+1, -z-1; (vi) -x+1, -y+2, -z; (vii) -x+1, -y+2, -z-1.
[Figure 2]
Figure 2
The crystal packing of the title mol­ecular salt viewed along the a axis. The hydrogen bonds (Table 1[link]) are shown as dashed lines. H atoms not involving in hydrogen bonding have been omitted for clarity.

Synthesis and crystallization

o-Phenyl­edi­amine (1.36 g) and p-toluene­sulfonic acid (2.3 g) were mixed in a 1:2 ratio in water at ambient temperature and the solution was stirred for five hours, then filtered and placed in a beaker covered with perforated polythene. Colourless crystals of the title molecular salt were recovered after one week.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H10N22+·C6H9N2+·3C7H7O3S
Mr 732.87
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 295
a, b, c (Å) 10.5058 (4), 12.8929 (4), 14.0425 (4)
α, β, γ (°) 80.187 (2), 73.218 (1), 89.188 (2)
V3) 1793.17 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.26
Crystal size (mm) 0.24 × 0.20 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
No. of measured, independent and observed [I > 2σ(I)] reflections 32987, 6325, 4091
Rint 0.059
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.117, 1.03
No. of reflections 6325
No. of parameters 489
No. of restraints 11
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.36
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2016 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS2016 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b) and PLATON (Spek, 2009).

2-Aminoanilinium benzene-1,2-diaminium tris(4-methylbenzene-1-sulfonate) top
Crystal data top
C6H10N22+·C6H9N2+·3C7H7O3SZ = 2
Mr = 732.87F(000) = 772
Triclinic, P1Dx = 1.357 Mg m3
a = 10.5058 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.8929 (4) ÅCell parameters from 7569 reflections
c = 14.0425 (4) Åθ = 2.4–26.2°
α = 80.187 (2)°µ = 0.26 mm1
β = 73.218 (1)°T = 295 K
γ = 89.188 (2)°Block, colourless
V = 1793.17 (10) Å30.24 × 0.20 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
4091 reflections with I > 2σ(I)
ω and φ scansRint = 0.059
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 25.0°, θmin = 2.0°
h = 1212
32987 measured reflectionsk = 1515
6325 independent reflectionsl = 1616
Refinement top
Refinement on F211 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.048P)2 + 0.6864P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
6325 reflectionsΔρmax = 0.30 e Å3
489 parametersΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. C-bound H atoms were placed in calculated positions and allowed to ride on their carrier atoms, with C—H = 0.93 Å (aromatic CH) or 0.96 Å (methyl CH), and with Uiso = 1.5Ueq(methyl C) or Uiso = 1.2Ueq(aromatic C). H atoms for NH groups were located in difference-Fourier maps and refined with a distance restraint of N—H = 0.86 (1) Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7325 (3)0.7693 (2)0.05175 (19)0.0359 (7)
C20.8554 (3)0.8136 (2)0.0052 (2)0.0500 (8)
H20.9265110.7708000.0261430.060*
C30.8723 (4)0.9218 (3)0.0310 (3)0.0648 (10)
H30.9554660.9509460.0695950.078*
C40.7699 (4)0.9875 (3)0.0014 (3)0.0671 (10)
C50.6483 (4)0.9424 (3)0.0555 (3)0.0705 (11)
H50.5776800.9854280.0767730.085*
C60.6285 (3)0.8346 (3)0.0817 (2)0.0540 (8)
H60.5449870.8057950.1197510.065*
C70.7897 (5)1.1056 (3)0.0308 (4)0.1138 (17)
H7A0.8090131.1338810.0227130.171*
H7B0.7100801.1354530.0423700.171*
H7C0.8624441.1226810.0913200.171*
C80.5243 (3)0.8441 (2)0.21536 (19)0.0378 (7)
C90.4702 (3)0.9086 (3)0.2808 (2)0.0589 (9)
H90.3977780.8850120.2977800.071*
C100.5252 (4)1.0099 (3)0.3215 (3)0.0785 (12)
H100.4885941.0534750.3658770.094*
C110.6309 (4)1.0465 (3)0.2980 (3)0.0758 (11)
C120.6838 (4)0.9814 (3)0.2342 (3)0.0705 (10)
H120.7568921.0053250.2182880.085*
C130.6323 (3)0.8803 (3)0.1919 (2)0.0543 (8)
H130.6701790.8373170.1479910.065*
C140.6870 (5)1.1583 (3)0.3426 (4)0.141 (2)
H14A0.7702461.1670960.3289800.211*
H14B0.6253841.2075430.3127060.211*
H14C0.7007131.1706180.4143140.211*
C150.6807 (3)0.7641 (2)0.58539 (19)0.0333 (6)
C160.7424 (3)0.7992 (2)0.6864 (2)0.0470 (8)
H160.7365440.7585390.7337510.056*
C170.8127 (3)0.8942 (3)0.7177 (3)0.0659 (10)
H170.8532310.9171370.7862340.079*
C180.8242 (4)0.9555 (3)0.6501 (3)0.0733 (11)
C190.7625 (4)0.9197 (3)0.5492 (3)0.0772 (12)
H190.7693640.9602680.5020230.093*
C200.6906 (3)0.8247 (3)0.5163 (2)0.0587 (9)
H200.6492450.8020780.4477860.070*
C210.8996 (5)1.0613 (3)0.6843 (4)0.131 (2)
H21A0.9935071.0503090.7048860.196*
H21B0.8788811.1000750.6294300.196*
H21C0.8741981.1003830.7400540.196*
C221.2542 (3)0.5750 (2)0.81322 (19)0.0314 (6)
C231.1471 (3)0.6203 (2)0.8383 (2)0.0463 (8)
H231.1489230.6371790.9057530.056*
C241.0372 (3)0.6410 (3)0.7643 (3)0.0568 (9)
H240.9653050.6731230.7817480.068*
C251.0328 (3)0.6145 (3)0.6645 (3)0.0557 (9)
H250.9572970.6269780.6142440.067*
C261.1407 (3)0.5694 (2)0.6391 (2)0.0435 (7)
H261.1379980.5515880.5714920.052*
C271.2523 (2)0.55048 (19)0.71291 (18)0.0291 (6)
C280.8648 (3)0.3735 (2)0.68323 (19)0.0342 (6)
C290.8651 (3)0.3320 (2)0.5866 (2)0.0448 (7)
H290.7898320.3358110.5327960.054*
C300.9761 (3)0.2849 (2)0.5691 (2)0.0530 (8)
H300.9768600.2569310.5037170.064*
C311.0864 (3)0.2798 (2)0.6499 (3)0.0525 (8)
H311.1622480.2484550.6387250.063*
C321.0857 (3)0.3202 (2)0.7462 (2)0.0441 (7)
H321.1611530.3157040.7996550.053*
C330.9741 (3)0.3680 (2)0.76597 (19)0.0354 (7)
N11.3660 (3)0.5504 (2)0.89483 (19)0.0429 (6)
N21.3655 (2)0.5040 (2)0.68291 (18)0.0352 (6)
N30.9729 (3)0.4043 (2)0.86411 (19)0.0491 (7)
N40.7447 (3)0.4232 (2)0.6989 (2)0.0455 (6)
O10.8136 (2)0.59810 (16)0.13209 (17)0.0612 (6)
O20.57959 (19)0.60896 (17)0.15234 (14)0.0560 (6)
O30.7300 (2)0.59162 (16)0.00861 (14)0.0557 (6)
O40.4293 (3)0.70824 (18)0.05549 (16)0.0840 (8)
O50.3438 (3)0.7040 (2)0.1939 (2)0.0908 (9)
O60.5632 (2)0.64617 (17)0.20037 (18)0.0720 (7)
O70.4923 (2)0.64765 (17)0.45485 (16)0.0636 (6)
O80.6954 (2)0.56619 (16)0.52454 (15)0.0532 (6)
O90.5535 (3)0.61892 (18)0.62836 (16)0.0757 (8)
S10.71235 (7)0.63186 (6)0.08397 (5)0.0366 (2)
S20.45907 (8)0.71568 (6)0.16259 (6)0.0451 (2)
S30.59663 (7)0.64019 (6)0.54542 (5)0.0387 (2)
H1A1.355 (4)0.4892 (14)0.909 (3)0.088 (13)*
H1B1.4393 (18)0.557 (3)0.880 (2)0.064 (11)*
H1C1.377 (4)0.599 (2)0.9477 (17)0.089 (14)*
H2A1.342 (3)0.4814 (19)0.6177 (8)0.043 (8)*
H2B1.398 (3)0.4519 (18)0.713 (2)0.074 (12)*
H2C1.430 (2)0.5497 (19)0.693 (2)0.062 (10)*
H3A1.0508 (15)0.417 (2)0.9065 (16)0.048 (9)*
H3B0.921 (3)0.4550 (17)0.875 (2)0.058 (11)*
H4A0.714 (4)0.386 (3)0.734 (3)0.098 (15)*
H4B0.757 (3)0.4879 (12)0.731 (2)0.073 (12)*
H4C0.683 (3)0.423 (3)0.6426 (16)0.101 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0353 (17)0.0430 (17)0.0305 (14)0.0038 (14)0.0100 (13)0.0083 (13)
C20.044 (2)0.0362 (19)0.062 (2)0.0026 (15)0.0023 (16)0.0098 (15)
C30.061 (2)0.043 (2)0.076 (2)0.0075 (18)0.0018 (19)0.0074 (18)
C40.088 (3)0.040 (2)0.071 (2)0.014 (2)0.018 (2)0.0114 (18)
C50.074 (3)0.058 (3)0.080 (3)0.034 (2)0.017 (2)0.024 (2)
C60.045 (2)0.061 (2)0.0524 (19)0.0132 (17)0.0056 (16)0.0168 (17)
C70.143 (4)0.040 (2)0.151 (4)0.014 (3)0.034 (4)0.014 (3)
C80.0439 (18)0.0353 (17)0.0313 (15)0.0106 (14)0.0072 (13)0.0049 (13)
C90.056 (2)0.061 (2)0.057 (2)0.0124 (18)0.0212 (18)0.0031 (18)
C100.087 (3)0.062 (3)0.066 (2)0.022 (2)0.011 (2)0.023 (2)
C110.069 (3)0.052 (2)0.078 (3)0.003 (2)0.010 (2)0.010 (2)
C120.058 (2)0.055 (2)0.091 (3)0.0095 (19)0.011 (2)0.011 (2)
C130.057 (2)0.049 (2)0.057 (2)0.0071 (17)0.0188 (17)0.0054 (16)
C140.135 (5)0.059 (3)0.165 (5)0.015 (3)0.025 (4)0.035 (3)
C150.0302 (16)0.0368 (16)0.0320 (15)0.0018 (12)0.0075 (12)0.0062 (12)
C160.053 (2)0.0442 (19)0.0387 (17)0.0027 (15)0.0038 (15)0.0094 (14)
C170.069 (3)0.052 (2)0.056 (2)0.0121 (19)0.0116 (18)0.0040 (18)
C180.059 (2)0.054 (2)0.095 (3)0.0189 (19)0.001 (2)0.021 (2)
C190.081 (3)0.076 (3)0.084 (3)0.013 (2)0.022 (2)0.044 (2)
C200.070 (2)0.064 (2)0.0426 (18)0.0095 (19)0.0111 (17)0.0163 (17)
C210.117 (4)0.078 (3)0.168 (5)0.051 (3)0.018 (4)0.040 (3)
C220.0325 (16)0.0277 (15)0.0343 (15)0.0010 (12)0.0093 (13)0.0069 (12)
C230.052 (2)0.0447 (19)0.0503 (18)0.0061 (16)0.0275 (17)0.0096 (15)
C240.043 (2)0.058 (2)0.085 (3)0.0179 (16)0.0356 (19)0.0264 (19)
C250.0298 (18)0.071 (2)0.069 (2)0.0075 (16)0.0082 (16)0.0322 (19)
C260.0377 (18)0.053 (2)0.0394 (16)0.0000 (15)0.0062 (14)0.0168 (14)
C270.0286 (15)0.0252 (14)0.0345 (15)0.0006 (12)0.0104 (12)0.0052 (11)
C280.0317 (16)0.0318 (16)0.0373 (16)0.0033 (12)0.0066 (13)0.0070 (13)
C290.047 (2)0.0477 (19)0.0355 (16)0.0009 (15)0.0055 (14)0.0062 (14)
C300.067 (2)0.051 (2)0.0431 (18)0.0044 (17)0.0228 (18)0.0009 (15)
C310.049 (2)0.049 (2)0.066 (2)0.0089 (16)0.0274 (18)0.0090 (17)
C320.0329 (17)0.0420 (18)0.0548 (19)0.0045 (14)0.0079 (15)0.0100 (15)
C330.0364 (17)0.0329 (16)0.0350 (16)0.0003 (13)0.0069 (13)0.0067 (13)
N10.0475 (18)0.0478 (18)0.0314 (14)0.0006 (14)0.0081 (13)0.0071 (13)
N20.0354 (15)0.0369 (16)0.0321 (14)0.0021 (12)0.0107 (12)0.0009 (12)
N30.0421 (18)0.062 (2)0.0355 (15)0.0089 (15)0.0029 (14)0.0019 (14)
N40.0370 (17)0.0503 (19)0.0405 (16)0.0109 (14)0.0014 (14)0.0025 (15)
O10.0547 (14)0.0508 (14)0.0867 (16)0.0012 (11)0.0447 (13)0.0072 (12)
O20.0408 (13)0.0758 (16)0.0386 (11)0.0182 (11)0.0041 (10)0.0007 (11)
O30.0690 (15)0.0557 (14)0.0384 (11)0.0137 (11)0.0041 (11)0.0157 (10)
O40.140 (2)0.0519 (15)0.0405 (13)0.0117 (15)0.0027 (14)0.0045 (11)
O50.0742 (18)0.0717 (18)0.139 (2)0.0116 (14)0.0529 (18)0.0133 (17)
O60.0810 (18)0.0399 (13)0.0926 (18)0.0209 (12)0.0150 (14)0.0237 (12)
O70.0456 (14)0.0586 (15)0.0630 (14)0.0003 (11)0.0181 (11)0.0047 (11)
O80.0467 (13)0.0462 (13)0.0560 (13)0.0120 (10)0.0059 (11)0.0041 (10)
O90.107 (2)0.0680 (16)0.0621 (15)0.0359 (14)0.0489 (14)0.0073 (12)
S10.0338 (4)0.0428 (4)0.0319 (4)0.0060 (3)0.0097 (3)0.0026 (3)
S20.0539 (5)0.0359 (4)0.0453 (5)0.0034 (4)0.0132 (4)0.0083 (3)
S30.0387 (4)0.0400 (4)0.0334 (4)0.0016 (3)0.0077 (3)0.0003 (3)
Geometric parameters (Å, º) top
C1—C21.379 (4)C22—C231.368 (4)
C1—C61.381 (4)C22—C271.385 (3)
C1—S11.753 (3)C22—N11.459 (4)
C2—C31.381 (4)C23—C241.370 (4)
C2—H20.9300C23—H230.9300
C3—C41.373 (5)C24—C251.372 (4)
C3—H30.9300C24—H240.9300
C4—C51.372 (5)C25—C261.377 (4)
C4—C71.509 (5)C25—H250.9300
C5—C61.378 (5)C26—C271.373 (4)
C5—H50.9300C26—H260.9300
C6—H60.9300C27—N21.460 (3)
C7—H7A0.9600C28—C291.372 (4)
C7—H7B0.9600C28—C331.389 (4)
C7—H7C0.9600C28—N41.463 (4)
C8—C91.374 (4)C29—C301.372 (4)
C8—C131.378 (4)C29—H290.9300
C8—S21.755 (3)C30—C311.378 (4)
C9—C101.393 (5)C30—H300.9300
C9—H90.9300C31—C321.366 (4)
C10—C111.358 (5)C31—H310.9300
C10—H100.9300C32—C331.392 (4)
C11—C121.354 (5)C32—H320.9300
C11—C141.523 (5)C33—N31.382 (4)
C12—C131.383 (4)N1—H1A0.863 (10)
C12—H120.9300N1—H1B0.864 (10)
C13—H130.9300N1—H1C0.867 (10)
C14—H14A0.9600N2—H2A0.874 (10)
C14—H14B0.9600N2—H2B0.869 (10)
C14—H14C0.9600N2—H2C0.868 (10)
C15—C201.372 (4)N3—H3A0.860 (10)
C15—C161.377 (4)N3—H3B0.862 (10)
C15—S31.759 (3)N4—H4A0.867 (10)
C16—C171.376 (4)N4—H4B0.868 (10)
C16—H160.9300N4—H4C0.865 (10)
C17—C181.365 (5)O1—S11.442 (2)
C17—H170.9300O2—S11.4478 (19)
C18—C191.378 (5)O3—S11.4428 (19)
C18—C211.518 (5)O4—S21.431 (2)
C19—C201.385 (5)O5—S21.421 (2)
C19—H190.9300O6—S21.442 (2)
C20—H200.9300O7—S31.436 (2)
C21—H21A0.9600O8—S31.458 (2)
C21—H21B0.9600O9—S31.433 (2)
C21—H21C0.9600
C2—C1—C6119.0 (3)C27—C22—N1122.1 (2)
C2—C1—S1119.1 (2)C22—C23—C24120.2 (3)
C6—C1—S1121.8 (2)C22—C23—H23119.9
C1—C2—C3119.6 (3)C24—C23—H23119.9
C1—C2—H2120.2C23—C24—C25120.2 (3)
C3—C2—H2120.2C23—C24—H24119.9
C4—C3—C2121.9 (3)C25—C24—H24119.9
C4—C3—H3119.0C24—C25—C26119.7 (3)
C2—C3—H3119.0C24—C25—H25120.1
C5—C4—C3117.8 (3)C26—C25—H25120.1
C5—C4—C7120.9 (4)C27—C26—C25120.4 (3)
C3—C4—C7121.3 (4)C27—C26—H26119.8
C4—C5—C6121.4 (3)C25—C26—H26119.8
C4—C5—H5119.3C26—C27—C22119.3 (3)
C6—C5—H5119.3C26—C27—N2118.7 (2)
C5—C6—C1120.2 (3)C22—C27—N2121.9 (2)
C5—C6—H6119.9C29—C28—C33121.8 (3)
C1—C6—H6119.9C29—C28—N4118.6 (3)
C4—C7—H7A109.5C33—C28—N4119.5 (2)
C4—C7—H7B109.5C28—C29—C30120.2 (3)
H7A—C7—H7B109.5C28—C29—H29119.9
C4—C7—H7C109.5C30—C29—H29119.9
H7A—C7—H7C109.5C29—C30—C31119.0 (3)
H7B—C7—H7C109.5C29—C30—H30120.5
C9—C8—C13119.4 (3)C31—C30—H30120.5
C9—C8—S2121.0 (2)C32—C31—C30120.8 (3)
C13—C8—S2119.6 (2)C32—C31—H31119.6
C8—C9—C10119.3 (3)C30—C31—H31119.6
C8—C9—H9120.4C31—C32—C33121.3 (3)
C10—C9—H9120.4C31—C32—H32119.4
C11—C10—C9121.6 (3)C33—C32—H32119.4
C11—C10—H10119.2N3—C33—C28122.5 (3)
C9—C10—H10119.2N3—C33—C32120.6 (3)
C12—C11—C10118.3 (3)C28—C33—C32116.9 (3)
C12—C11—C14121.5 (4)C22—N1—H1A111 (2)
C10—C11—C14120.2 (4)C22—N1—H1B110 (2)
C11—C12—C13122.0 (4)H1A—N1—H1B113 (3)
C11—C12—H12119.0C22—N1—H1C109 (2)
C13—C12—H12119.0H1A—N1—H1C111 (3)
C8—C13—C12119.4 (3)H1B—N1—H1C102 (3)
C8—C13—H13120.3C27—N2—H2A109.6 (18)
C12—C13—H13120.3C27—N2—H2B113 (2)
C11—C14—H14A109.5H2A—N2—H2B108 (3)
C11—C14—H14B109.5C27—N2—H2C113 (2)
H14A—C14—H14B109.5H2A—N2—H2C104 (3)
C11—C14—H14C109.5H2B—N2—H2C108 (3)
H14A—C14—H14C109.5C33—N3—H3A114.0 (19)
H14B—C14—H14C109.5C33—N3—H3B118 (2)
C20—C15—C16119.2 (3)H3A—N3—H3B110 (3)
C20—C15—S3120.6 (2)C28—N4—H4A107 (3)
C16—C15—S3120.1 (2)C28—N4—H4B115 (2)
C17—C16—C15120.4 (3)H4A—N4—H4B108 (3)
C17—C16—H16119.8C28—N4—H4C112 (3)
C15—C16—H16119.8H4A—N4—H4C107 (4)
C18—C17—C16121.3 (3)H4B—N4—H4C107 (3)
C18—C17—H17119.3O1—S1—O3112.34 (14)
C16—C17—H17119.3O1—S1—O2112.08 (13)
C17—C18—C19117.9 (3)O3—S1—O2112.18 (12)
C17—C18—C21121.6 (4)O1—S1—C1105.76 (12)
C19—C18—C21120.5 (4)O3—S1—C1107.14 (12)
C18—C19—C20121.6 (3)O2—S1—C1106.84 (13)
C18—C19—H19119.2O5—S2—O4112.67 (18)
C20—C19—H19119.2O5—S2—O6113.46 (16)
C15—C20—C19119.5 (3)O4—S2—O6111.30 (16)
C15—C20—H20120.3O5—S2—C8106.66 (15)
C19—C20—H20120.3O4—S2—C8106.07 (13)
C18—C21—H21A109.5O6—S2—C8106.05 (14)
C18—C21—H21B109.5O9—S3—O7115.46 (15)
H21A—C21—H21B109.5O9—S3—O8111.31 (14)
C18—C21—H21C109.5O7—S3—O8111.09 (13)
H21A—C21—H21C109.5O9—S3—C15106.42 (12)
H21B—C21—H21C109.5O7—S3—C15106.38 (12)
C23—C22—C27120.1 (3)O8—S3—C15105.44 (12)
C23—C22—N1117.8 (2)
C6—C1—C2—C30.1 (4)C25—C26—C27—C221.5 (4)
S1—C1—C2—C3180.0 (2)C25—C26—C27—N2179.0 (3)
C1—C2—C3—C40.1 (5)C23—C22—C27—C261.9 (4)
C2—C3—C4—C50.0 (5)N1—C22—C27—C26175.8 (2)
C2—C3—C4—C7179.6 (4)C23—C22—C27—N2178.7 (2)
C3—C4—C5—C60.4 (5)N1—C22—C27—N23.6 (4)
C7—C4—C5—C6179.2 (4)C33—C28—C29—C301.1 (4)
C4—C5—C6—C10.7 (5)N4—C28—C29—C30179.9 (3)
C2—C1—C6—C50.5 (4)C28—C29—C30—C310.2 (4)
S1—C1—C6—C5179.6 (2)C29—C30—C31—C320.4 (5)
C13—C8—C9—C100.5 (5)C30—C31—C32—C330.2 (5)
S2—C8—C9—C10179.7 (3)C29—C28—C33—N3176.5 (3)
C8—C9—C10—C110.1 (6)N4—C28—C33—N32.6 (4)
C9—C10—C11—C120.7 (6)C29—C28—C33—C321.3 (4)
C9—C10—C11—C14179.0 (4)N4—C28—C33—C32179.7 (2)
C10—C11—C12—C130.8 (6)C31—C32—C33—N3177.1 (3)
C14—C11—C12—C13178.9 (4)C31—C32—C33—C280.7 (4)
C9—C8—C13—C120.4 (4)C2—C1—S1—O154.1 (2)
S2—C8—C13—C12179.6 (2)C6—C1—S1—O1126.0 (2)
C11—C12—C13—C80.3 (5)C2—C1—S1—O365.9 (2)
C20—C15—C16—C170.2 (5)C6—C1—S1—O3114.0 (2)
S3—C15—C16—C17177.4 (3)C2—C1—S1—O2173.7 (2)
C15—C16—C17—C180.5 (5)C6—C1—S1—O26.4 (3)
C16—C17—C18—C190.3 (6)C9—C8—S2—O55.2 (3)
C16—C17—C18—C21178.9 (4)C13—C8—S2—O5175.6 (2)
C17—C18—C19—C200.1 (6)C9—C8—S2—O4125.6 (3)
C21—C18—C19—C20178.5 (4)C13—C8—S2—O455.2 (3)
C16—C15—C20—C190.2 (5)C9—C8—S2—O6116.0 (3)
S3—C15—C20—C19177.0 (3)C13—C8—S2—O663.2 (3)
C18—C19—C20—C150.4 (6)C20—C15—S3—O9155.4 (3)
C27—C22—C23—C240.5 (4)C16—C15—S3—O927.4 (3)
N1—C22—C23—C24177.3 (3)C20—C15—S3—O731.8 (3)
C22—C23—C24—C251.3 (5)C16—C15—S3—O7151.0 (2)
C23—C24—C25—C261.6 (5)C20—C15—S3—O886.3 (3)
C24—C25—C26—C270.2 (5)C16—C15—S3—O890.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C8–C13 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O8i0.87 (1)1.91 (1)2.785 (3)175 (3)
N2—H2B···O6i0.87 (1)1.86 (1)2.707 (3)164 (3)
N3—H3A···O3i0.86 (1)2.28 (1)3.113 (3)164 (3)
N1—H1A···O3i0.86 (1)2.06 (2)2.810 (3)144 (3)
N1—H1A···O6i0.86 (1)2.44 (3)2.852 (4)110 (3)
N3—H3B···O1ii0.86 (1)2.15 (1)2.989 (4)163 (3)
N4—H4B···O1ii0.87 (1)2.12 (2)2.910 (4)150 (3)
C24—H24···O1ii0.932.553.197 (4)127
N1—H1C···O4iii0.87 (1)1.84 (1)2.698 (3)169 (4)
N1—H1B···O2iii0.86 (1)1.83 (1)2.669 (3)164 (3)
N2—H2C···O2iii0.87 (1)2.30 (3)2.873 (3)124 (2)
N2—H2C···O9iv0.87 (1)2.07 (2)2.833 (3)146 (3)
N4—H4A···O5v0.87 (1)1.88 (1)2.742 (4)175 (4)
N4—H4C···O7v0.87 (1)2.06 (2)2.826 (3)147 (4)
C5—H5···Cg2vi0.932.873.629 (4)140
C10—H10···Cg3vii0.932.813.587 (5)142
C13—H13···Cg10.932.933.609 (3)131
Symmetry codes: (i) x+2, y+1, z1; (ii) x, y, z1; (iii) x+1, y, z1; (iv) x+1, y, z; (v) x+1, y+1, z1; (vi) x+1, y+2, z; (vii) x+1, y+2, z1.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJasinski, J. P., Golen, J. A., Praveen, A. S., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o3288–o3289.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatrusiak, A. & Szafrański, M. (2006). J. Am. Chem. Soc. 128, 15775–15785.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKrishnakumar, M., Sudhahar, S., Silambarasan, A., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3268.  CSD CrossRef IUCr Journals Google Scholar
First citationNalwa, H. S. & Miyata, S. (1997). In Nonlinear Optics of Organic Molecules and Polymers. Boca Raton: CRC Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds