organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

rac-(9R,10R)-3,6,9,10-Tetra­bromo-8,8-di­methyl-9,10-di­hydro-2H,8H-pyrano[2,3-f]chromen-2-one (tetra­bromo­seselin): a photobiochemically active pyran­ocoumarin

CROSSMARK_Color_square_no_text.svg

aBio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India, bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and cDepartment of Applied Chemistry & Chemical Engineering, University of Dhaka, Dhaka-1000, Bangladesh
*Correspondence e-mail: mustafizacce@du.ac.bd

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 22 February 2018; accepted 28 February 2018; online 2 March 2018)

The title mol­ecule, C14H10Br4O3, is a tetra­brominated substituted pyran­ocoumarin synthesized by bromination of seselin (systematic name: 8,8-dimethyl-2H,8H-pyrano[2,3-f]chromene-2-one) isolated from the Indian herb Trachyspermum stictocapum. The pyran ring has a distorted half-chair conformation and its mean plane is inclined to mean plane of the coumarin unit by 3.33 (17)°. In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimmers with an R22(16) ring motif. The dimers are linked by pairs of C—H⋯Br hydrogen bonds, enclosing an R22(16) ring motif, forming chains propagating along the [1-10] direction. Within the chains there are offset ππ inter­actions involving inversion-related benzene rings with an inter­centroid distance of 3.788 (2) Å.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound (I) is a substituted angular pyran­ocoumarin derivative of seselin (II), whose crystal structure has previously been reported (Kato, 1970[Kato, K. (1970). Acta Cryst. B26, 2022-2029.]; Bauri et al., 2006[Bauri, A. K., Foro, S., Lindner, H.-J. & Nayak, S. K. (2006). Acta Cryst. E62, o1340-o1341.]). We have described the properties of pyran­ocoumarins when reporting the crystal structures of 8,8-dimethyl-3,4,9,10-tetra­hydro-2H,8H-pyrano[2,3-f]chromen-2-one] [(III); Bauri et al., 2017a[Bauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017a). Acta Cryst. E73, 1117-1120.]], rac-(9S,10R)-3,9-di­bromo-10-meth­oxy-8,8-dimethyl-9,10-di­hydro-2H,8H-pyrano [2,3-f]chromen-2-one [(IV); Bauri et al., 2017b[Bauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017b). Acta Cryst. E73, 774-776.]], and rac-(9S,10R)-9-bromo-10-hy­droxy-8,8-dimethyl-9,10-di­hydro-2H,8H-pyrano [2,3-f]chromen-2-one [(V); Bauri et al., 2017c[Bauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017c). Acta Cryst. E73, 453-455.]] (Fig. 1[link]).

[Figure 1]
Figure 1
The title compound and related compounds.

The title mol­ecule (I), illustrated in Fig. 2[link], belongs to a class of naturally occurring pyran­ocoumarins, known as psoralene. It is an angular isomer of the substituted pyran­ocoumarin seselin (II). It is composed of three rings, viz. a benzene and a pyrone ring each with one Br atom positioned at C12 and C8, respectively, and a pyran ring with a dimethyl-substituted C atom, C2, and two Br substituents located at positions C3 and C4; see Fig. 2[link]. The C5—C6—C10—C11 and C5—C6—C10—C9 torsion angles are very similar [−0.8 (6) and −179.3 (4)°, respectively) indicating that these rings are coplanar. The pyran ring (O1/C1–C5) has a distorted half-chair conformation [puckering parameters: Q = 0.420 (5) Å, θ = 129.9 (7)°, φ = 98.9 (8)°], probably because of the ring flexibility and the presence of the substituents. Its mean plane is inclined to the mean plane of the coumarin ring system (O2/C1/C5–C12, r.m.s. deviation = 0.016 Å) by 3.33 (17)°. There are two asymmetric centres at positions C3 and C4 (Fig. 1[link]) and the present study indicates their relative configuration to be R,R.

[Figure 2]
Figure 2
The mol­ecular structure of the title compound with the atom labelling and displacement ellipsoids drawn at the 50% probability level

In crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers with an R22(16) ring motif. Details of the hydrogen bonding are given in Table 1[link] and Fig. 3[link]. The dimers are linked by pairs of C—H⋯·Br hydrogen bonds, enclosing an R22(16) ring motif, forming chains propagating along [1[\overline{1}]0]. Within the chains there are offset ππ inter­actions involving inversion-related benzene rings (Fig. 2[link]); CgCgii = 3.788 (2) Å, Cg is the centroid of ring C1/C5/C6/C10–C12, inter­planar distance = 3.459 (2) Å, slippage = 1.544 Å; symmetry code: (ii) −x, −y, −z.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.98 2.43 3.277 (6) 144
C9—H9⋯Br1ii 0.93 2.91 3.771 (5) 154
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y, -z.
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of the title compound, showing the hydrogen bonds (dashed cyan lines; see Table 1[link]), the offset ππ inter­actions (blue dashed lines), and indicating the R22(16) ring motifs in the hydrogen-bonded chain. Only H atoms H3 and H9 have been included.

Synthesis and crystallization

The seselin synthon was isolated as a colourless crystalline solid from the methanol extract of T. stictocurpum by means of column chromatography (CC) over SiO2 gel by gradient elution with a mixture of binary solvents (hexane and ethyl acetate). Finally it was purified by reverse-phase high-pressure liquid chromatography. It was then brominated in benzene under reflux conditions over a period of 12 h with continuous stirring. The crude brominated seselin was purified by CC over SiO2 by gradient solvent elution and crystallized as colourless crystals. Crystals suitable for X-ray diffraction analysis were obtained by recrystallization (× 3) from an ethyl acetate:hexane (1:4) solution at room temperature by slow evaporation of the solvents. Spectroscopic data: 1H NMR (CDCl3, 200 MHz): δH 7.11 (s, 1H, H-9), 7.05 (s, 1H, H-9), 5.25 (d, 1H, J = 9.8 Hz, H-4), 4.26 (d, 1H, J = 9.8 Hz, H-3), 1.50 (s, 3H, CH3, H-13), 1.54 (s, 3H, CH3, H-14).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H10Br4O3
Mr 545.86
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 299
a, b, c (Å) 7.2256 (8), 10.4409 (9), 11.2102 (9)
α, β, γ (°) 91.337 (7), 93.972 (8), 110.077 (9)
V3) 791.41 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 10.18
Crystal size (mm) 0.40 × 0.24 × 0.12
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with a Sapphire CCD detector
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.])
Tmin, Tmax 0.106, 0.375
No. of measured, independent and observed [I > 2σ(I)] reflections 4887, 2870, 2365
Rint 0.015
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.091, 1.06
No. of reflections 2870
No. of parameters 192
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.76, −0.65
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

rac-(9R,10R)-3,6,9,10-Tetrabromo-8,8-dimethyl-9,10-dihydro-2H,8H-pyrano[2,3-f]chromen-2-one top
Crystal data top
C14H10Br4O3Z = 2
Mr = 545.86F(000) = 516
Triclinic, P1Dx = 2.291 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2256 (8) ÅCell parameters from 3670 reflections
b = 10.4409 (9) Åθ = 2.7–27.8°
c = 11.2102 (9) ŵ = 10.18 mm1
α = 91.337 (7)°T = 299 K
β = 93.972 (8)°Prism, colourless
γ = 110.077 (9)°0.40 × 0.24 × 0.12 mm
V = 791.41 (13) Å3
Data collection top
Oxford Diffraction Xcalibur with a Sapphire CCD detector
diffractometer
2870 independent reflections
Radiation source: fine-focus sealed tube2365 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Rotation method data acquisition using ω scansθmax = 25.4°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 88
Tmin = 0.106, Tmax = 0.375k = 1212
4887 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0513P)2 + 1.0324P]
where P = (Fo2 + 2Fc2)/3
2870 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.65 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 &gt; 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.56855 (7)0.25787 (5)0.22289 (6)0.05285 (18)
Br20.28329 (8)0.56363 (5)0.10391 (5)0.04718 (16)
Br30.21257 (9)0.16052 (7)0.42181 (5)0.0626 (2)
Br40.25882 (7)0.04642 (5)0.27392 (5)0.04240 (15)
O10.1145 (4)0.1914 (3)0.2955 (3)0.0374 (7)
O20.1306 (4)0.3208 (3)0.1092 (3)0.0350 (7)
O30.1571 (5)0.3827 (4)0.2955 (3)0.0515 (9)
C10.0368 (6)0.1798 (4)0.1818 (4)0.0297 (9)
C20.2614 (7)0.3222 (5)0.3396 (4)0.0384 (11)
C30.4094 (6)0.3763 (4)0.2449 (4)0.0353 (10)
H30.49860.46820.27140.042*
C40.3143 (6)0.3823 (4)0.1214 (4)0.0309 (9)
H40.40590.37480.06330.037*
C50.1244 (6)0.2667 (4)0.0927 (4)0.0296 (9)
C60.0364 (6)0.2367 (4)0.0234 (4)0.0301 (9)
C70.0616 (7)0.3029 (5)0.2292 (4)0.0373 (10)
C80.1199 (7)0.1882 (5)0.2591 (4)0.0371 (10)
C90.2127 (6)0.1043 (5)0.1773 (4)0.0355 (10)
H90.32760.03100.20000.043*
C100.1349 (6)0.1271 (4)0.0539 (4)0.0302 (9)
C110.2222 (6)0.0418 (4)0.0367 (4)0.0327 (10)
H110.33740.03290.01860.039*
C120.1377 (6)0.0685 (4)0.1513 (4)0.0313 (9)
C130.1523 (8)0.4204 (5)0.3642 (5)0.0475 (12)
H13A0.06850.42220.29440.057*
H13B0.24650.51030.38320.057*
H13C0.07330.39060.43040.057*
C140.3513 (8)0.2900 (6)0.4562 (5)0.0554 (14)
H14A0.25140.26070.51180.066*
H14B0.45580.37020.48920.066*
H14C0.40350.21850.44150.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0330 (3)0.0397 (3)0.0876 (4)0.0167 (2)0.0031 (2)0.0027 (3)
Br20.0460 (3)0.0335 (3)0.0621 (3)0.0138 (2)0.0052 (2)0.0015 (2)
Br30.0543 (4)0.0749 (4)0.0411 (3)0.0033 (3)0.0118 (2)0.0006 (3)
Br40.0317 (3)0.0387 (3)0.0537 (3)0.0073 (2)0.0061 (2)0.0093 (2)
O10.0309 (16)0.0365 (17)0.0376 (18)0.0042 (13)0.0048 (13)0.0007 (13)
O20.0293 (16)0.0340 (16)0.0371 (17)0.0057 (13)0.0006 (13)0.0024 (13)
O30.045 (2)0.052 (2)0.045 (2)0.0008 (17)0.0019 (16)0.0053 (17)
C10.023 (2)0.028 (2)0.039 (2)0.0095 (17)0.0019 (17)0.0019 (18)
C20.032 (2)0.030 (2)0.046 (3)0.0044 (19)0.008 (2)0.007 (2)
C30.026 (2)0.027 (2)0.051 (3)0.0089 (18)0.0059 (19)0.0063 (19)
C40.026 (2)0.0198 (19)0.046 (3)0.0073 (17)0.0037 (18)0.0036 (18)
C50.025 (2)0.027 (2)0.038 (2)0.0113 (17)0.0013 (17)0.0051 (18)
C60.022 (2)0.027 (2)0.042 (2)0.0098 (17)0.0035 (18)0.0047 (18)
C70.036 (2)0.038 (2)0.039 (3)0.015 (2)0.000 (2)0.004 (2)
C80.033 (2)0.041 (3)0.037 (2)0.015 (2)0.0050 (19)0.007 (2)
C90.026 (2)0.031 (2)0.047 (3)0.0092 (18)0.0032 (19)0.005 (2)
C100.022 (2)0.028 (2)0.042 (3)0.0112 (17)0.0002 (18)0.0046 (18)
C110.021 (2)0.026 (2)0.048 (3)0.0052 (17)0.0001 (18)0.0047 (19)
C120.024 (2)0.028 (2)0.042 (3)0.0090 (17)0.0058 (18)0.0002 (18)
C130.046 (3)0.049 (3)0.046 (3)0.015 (2)0.007 (2)0.009 (2)
C140.053 (3)0.057 (3)0.046 (3)0.010 (3)0.017 (2)0.002 (3)
Geometric parameters (Å, º) top
Br1—C31.979 (4)C4—H40.9800
Br2—C41.994 (4)C5—C61.388 (6)
Br3—C81.879 (5)C6—C101.382 (6)
Br4—C121.902 (4)C7—C81.452 (6)
O1—C11.342 (5)C8—C91.334 (7)
O1—C21.462 (5)C9—C101.439 (6)
O2—C61.371 (5)C9—H90.9300
O2—C71.387 (5)C10—C111.403 (6)
O3—C71.196 (6)C11—C121.364 (6)
C1—C51.399 (6)C11—H110.9300
C1—C121.405 (6)C13—H13A0.9600
C2—C141.515 (7)C13—H13B0.9600
C2—C131.523 (7)C13—H13C0.9600
C2—C31.537 (7)C14—H14A0.9600
C3—C41.514 (6)C14—H14B0.9600
C3—H30.9800C14—H14C0.9600
C4—C51.492 (6)
C1—O1—C2118.3 (3)O3—C7—C8127.6 (4)
C6—O2—C7123.1 (3)O2—C7—C8115.5 (4)
O1—C1—C5124.0 (4)C9—C8—C7122.4 (4)
O1—C1—C12116.7 (4)C9—C8—Br3121.6 (4)
C5—C1—C12119.2 (4)C7—C8—Br3116.0 (3)
O1—C2—C14104.1 (4)C8—C9—C10120.0 (4)
O1—C2—C13107.8 (4)C8—C9—H9120.0
C14—C2—C13109.9 (4)C10—C9—H9120.0
O1—C2—C3109.3 (4)C6—C10—C11118.3 (4)
C14—C2—C3114.4 (4)C6—C10—C9118.5 (4)
C13—C2—C3110.9 (4)C11—C10—C9123.2 (4)
C4—C3—C2114.2 (4)C12—C11—C10119.8 (4)
C4—C3—Br1105.2 (3)C12—C11—H11120.1
C2—C3—Br1111.2 (3)C10—C11—H11120.1
C4—C3—H3108.7C11—C12—C1121.7 (4)
C2—C3—H3108.7C11—C12—Br4119.6 (3)
Br1—C3—H3108.7C1—C12—Br4118.8 (3)
C5—C4—C3112.7 (4)C2—C13—H13A109.5
C5—C4—Br2112.3 (3)C2—C13—H13B109.5
C3—C4—Br2109.8 (3)H13A—C13—H13B109.5
C5—C4—H4107.2C2—C13—H13C109.5
C3—C4—H4107.2H13A—C13—H13C109.5
Br2—C4—H4107.2H13B—C13—H13C109.5
C6—C5—C1118.0 (4)C2—C14—H14A109.5
C6—C5—C4121.5 (4)C2—C14—H14B109.5
C1—C5—C4120.4 (4)H14A—C14—H14B109.5
O2—C6—C10120.6 (4)C2—C14—H14C109.5
O2—C6—C5116.4 (4)H14A—C14—H14C109.5
C10—C6—C5123.0 (4)H14B—C14—H14C109.5
O3—C7—O2116.8 (4)
C2—O1—C1—C519.7 (6)C4—C5—C6—O21.6 (6)
C2—O1—C1—C12163.7 (4)C1—C5—C6—C101.4 (6)
C1—O1—C2—C14166.8 (4)C4—C5—C6—C10177.3 (4)
C1—O1—C2—C1376.5 (5)C6—O2—C7—O3179.8 (4)
C1—O1—C2—C344.2 (5)C6—O2—C7—C80.3 (6)
O1—C2—C3—C452.5 (5)O3—C7—C8—C9179.1 (5)
C14—C2—C3—C4168.7 (4)O2—C7—C8—C91.0 (7)
C13—C2—C3—C466.3 (5)O3—C7—C8—Br31.2 (7)
O1—C2—C3—Br166.3 (4)O2—C7—C8—Br3178.9 (3)
C14—C2—C3—Br149.9 (5)C7—C8—C9—C101.0 (7)
C13—C2—C3—Br1174.9 (3)Br3—C8—C9—C10178.7 (3)
C2—C3—C4—C535.9 (5)O2—C6—C10—C11178.1 (4)
Br1—C3—C4—C586.3 (4)C5—C6—C10—C110.8 (6)
C2—C3—C4—Br290.2 (4)O2—C6—C10—C90.5 (6)
Br1—C3—C4—Br2147.7 (2)C5—C6—C10—C9179.3 (4)
O1—C1—C5—C6175.0 (4)C8—C9—C10—C60.2 (6)
C12—C1—C5—C61.6 (6)C8—C9—C10—C11178.7 (4)
O1—C1—C5—C40.9 (6)C6—C10—C11—C120.2 (6)
C12—C1—C5—C4177.4 (4)C9—C10—C11—C12178.7 (4)
C3—C4—C5—C6165.9 (4)C10—C11—C12—C10.4 (7)
Br2—C4—C5—C669.4 (5)C10—C11—C12—Br4179.2 (3)
C3—C4—C5—C19.8 (6)O1—C1—C12—C11175.7 (4)
Br2—C4—C5—C1114.9 (4)C5—C1—C12—C111.1 (6)
C7—O2—C6—C100.4 (6)O1—C1—C12—Br44.7 (5)
C7—O2—C6—C5179.4 (4)C5—C1—C12—Br4178.5 (3)
C1—C5—C6—O2177.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.982.433.277 (6)144
C9—H9···Br1ii0.932.913.771 (5)154
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z.
 

Acknowledgements

The authors thank Professor Dr Hartmut, FG Strukturforschung, Material-und Geowissenschaften, Technische Universität Darmstadt, for his kind co-operation to record the XRD of the crystal and provide diffractometer time.

References

First citationBauri, A. K., Foro, S., Lindner, H.-J. & Nayak, S. K. (2006). Acta Cryst. E62, o1340–o1341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017a). Acta Cryst. E73, 1117–1120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017b). Acta Cryst. E73, 774–776.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017c). Acta Cryst. E73, 453–455.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKato, K. (1970). Acta Cryst. B26, 2022–2029.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds