inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Al10Ni3Fe0.83, an Fe-depleted phase in the Al–Ni–Fe system

CROSSMARK_Color_square_no_text.svg

aState Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
*Correspondence e-mail: chzfan@ysu.edu.cn

Edited by M. Weil, Vienna University of Technology, Austria (Received 22 January 2018; accepted 9 February 2018; online 16 February 2018)

Crystals of the phase Al10Ni3Fe0.83 (deca­aluminium trinickel iron) were obtained by high-pressure sinter­ing (HPS) of a stoichiometric mixture with nominal composition Al71Ni24Fe5. Al10Ni3Fe0.83 adopts the Co2Al5 structure type in the space group type P63/mmc with the unique Fe site on site 2c partially occupied (occupancy 0.83).

3D view (loading...)
[Scheme 3D1]

Structure description

The second natural quasicrystal named deca­gonite has the composition Al70.2Ni24.5Fe5.3 (Bindi et al., 2015[Bindi, L., Yao, N., Lin, C., Hollister, L. S., Andronicos, C. L., Distler, V. V., Eddy, M., Kostin, A., Kryachko, V., MacPherson, G. J., Steinhardt, W. M., Yudovskaya, M. & Steinhardt, P. J. (2015). Am. Mineral. 100, 2340-2343.]), which is very similar to the synthetic phase Al71Ni24Fe5 (Lemmerz et al., 1994[Lemmerz, U., Grushko, B., Freiburg, C. & Jansen, M. (1994). Philos. Mag. Lett. 69, 141-146.]). While simulating the growth mechanism of deca­gonite under high-pressure and high-temperature conditions (HPHT) by the high-pressure sinter­ing (HPS) process, we obtained another phase in the ternary system Al–Ni–Fe (Raghavan, 2010[Raghavan, V. (2010). J. Phase Equilib. Diffus. 31, 455-458.]) with composition Al10Ni3Fe0.83. The occurrence of a phase with composition Al10Ni3Fe has been reported by Khaidar et al. (1982[Khaidar, M., Allibert, C. H. & Driole, J. (1982). Z. Metallkd. 73, 433-438.]) but it was never observed by other teams afterwards, although the existence of a deca­gonal phase with composition close to this phase was in argument (Zhang et al., 2008[Zhang, L., Du, Y., Xu, H., Tang, C., Chen, H. & Zhang, W. (2008). J. Alloys Compd. 454, 129-135.]). On the other hand, its Fe-rich counterpart Al10Fe3Ni was frequently observed, and its crystal structure has also been determined (Chumak et al., 2007[Chumak, I., Richter, K. W. & Ipser, H. (2007). Intermetallics, 15, 1416-1424.]).

The new phase Al10Ni3Fe0.83 adopts the Al5Co2 structure type (Bradley & Cheng, 1938[Bradley, A. J. & Cheng, C. S. (1938). Z. Kristallogr. 99, 480-487.]; Newkirk et al., 1961[Newkirk, J. B., Black, P. J. & Damjanovic, A. (1961). Acta Cryst. 14, 532-533.]) in space group type P63/mmc with the two Co sites replaced by Ni and Fe, respectively. This structure type can be derived from a distorted closed-packed arrangement of metal atoms (Wells, 1975[Wells, A. F. (1975). Structural Inorganic Chemistry, 4th ed., p. 1047. Oxford: Clarendon Press.]). The lattice parameters of Al10Ni3Fe0.83 (Table 1[link]) are similar to those of Al10Fe3Ni (Chumak et al., 2007[Chumak, I., Richter, K. W. & Ipser, H. (2007). Intermetallics, 15, 1416-1424.]). The asymmetric unit of Al10Ni3Fe0.83 comprises of five sites, three fully occupied by Al atoms at Wyckoff sites 2a (Al3), 6h (Al5) and 12k (Al4), one fully occupied by Ni atoms (6h; Ni1) and one partially occupied (occupancy 0.83) by Fe atoms (2c; Fe1). Both the Al3 atom at the 2a position and the Ni1 atom at the 6h position are surrounded by twelve atoms in the form of a distorted icosa­hedron (Fig. 1[link]). Al3 is bound to six Ni3 and six Al4 atoms (Fig. 2[link]a); Ni1 is bound to two Al3, six Al4, two Al5 and two Ni1 atoms (Fig. 2[link]b). The Fe2 atom is surrounded by nine Al atoms (six Al4 and three Al5), forming an irregular polyhedron as shown in Fig. 3[link].

Table 1
Experimental details

Crystal data
Chemical formula Al10Ni3Fe0.83
Mr 492.52
Crystal system, space group Hexagonal, P63/mmc
Temperature (K) 293
a, c (Å) 7.6981 (2), 7.6231 (2)
V3) 391.23 (2)
Z 2
Radiation type Cu Kα
μ (mm−1) 30.59
Crystal size (mm) 0.09 × 0.09 × 0.06
 
Data collection
Diffractometer Bruker D8 Venture Photon 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA, 2008.])
Tmin, Tmax 0.104, 0.170
No. of measured, independent and observed [I > 2σ(I)] reflections 5095, 178, 177
Rint 0.035
(sin θ/λ)max−1) 0.624
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.090, 1.09
No. of reflections 178
No. of parameters 21
Δρmax, Δρmin (e Å−3) 0.53, −0.42
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA, 2008.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2017[Brandenburg, K. & Putz, H. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 1]
Figure 1
The crystal structure of Al10Ni3Fe0.83 with two Al3 atoms on the 2a site and two Ni1 atoms on the 6h site displayed with their coordination environments as polyhedra.
[Figure 2]
Figure 2
(a) The coordination sphere of the Al3 atom at the 2a site; (b) the coordination sphere of the Ni1 atom at the 6h site. Displacement ellipsoids are drawn at the 99.8% probability level. [Symmetry codes: (i) −y + 1, x − y, z; (ii) x, y, −z + [{1\over 2}]; (iii) −x, −y, z + [{1\over 2}]; (iv) y, −x + y, z − [{1\over 2}]; (v) x − y, x, −z + 1; (vi) y, −x + y, −z + 1; (vii) x − y, x, z − [{1\over 2}]; (viii) −x + y, −x, z; (ix) −y, x − y, z; (xvi) −x, −y, −z; (xvii) y, −x + y, −z; (xviii) x − y, x, −z; (xix) −x + y, −x, −z + [{1\over 2}]; (xx) −x, −y, z − [{1\over 2}]; (xxi) −y, x − y, −z + [{1\over 2}].]
[Figure 3]
Figure 3
(a) The coordination polyhedron of the Fe1 atom at the 2c site; (b) the coordination sphere of the Fe1 atom showing all atoms as displacement ellipsoids at 99.8% probability level. [Symmetry codes: (i) −y + 1, x − y, z; (vi) y, −x + y, −z + 1; (x) −y + 1, x − y, −z + [{3\over 2}]; (xi) −x + y + 1, −x + 1, −z + [{3\over 2}]; (xii) x, y, −z + [{3\over 2}]; (xiii) −x + y + 1, −x + 1, z; (xiv) x − y + 1, x, −z + 1; (xv) −x + 1, −y + 1, −z + 1.]

Synthesis and crystallization

Pure aluminium powder (indicated purity 99.8%), nickel powder (indicated purity 99.95%) and iron powder (indicated purity 99.9%) were mixed according to the atomic ratio 71: 24: 5. The detailed description of the employed HPS process can be found elsewhere (Liu & Fan, 2018[Liu, C. & Fan, C. (2018). IUCrData, 3, x180093.]). In the current work, the prepared cylindrical block mixture was pressurized up to 5 GPa and heated to 1473 K for 30 min, cooled to 1073 K, held at that temperature for 1 h, and then was rapidly cooled down to room temperature. A fragment was selected and mounted on a glass fiber for single-crystal X-ray diffraction measurements.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Although iron and nickel atoms have very similar scattering factors and thus cannot be distinguished unambiguously in an X-ray diffraction study, the best model was obtained for the Ni atoms occupying the 6h site and the Fe atoms the 2c site. Free refinement of the occupation factors revealed the Ni site to be fully occupied and the Fe site to have a partial occupancy of 0.834 (11). The refined composition of Al10Ni3Fe0.83 is in agreement with the results of energy dispersive X-ray spectroscopy (EDS) analysis (see Supporting information).

Structural data


Computing details top

Data collection: APEX3 and SAINT (Bruker, 2015); cell refinement: APEX3 and SAINT (Bruker, 2015); data reduction: APEX3 and SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2017); software used to prepare material for publication: publCIF (Westrip, 2010).

Decaaluminium trinickel iron top
Crystal data top
Al10Ni3Fe0.83Dx = 4.181 Mg m3
Mr = 492.52Cu Kα radiation, λ = 1.54178 Å
Hexagonal, P63/mmcCell parameters from 3731 reflections
a = 7.6981 (2) Åθ = 5.8–74.2°
c = 7.6231 (2) ŵ = 30.59 mm1
V = 391.23 (2) Å3T = 293 K
Z = 2Grain, metallic
F(000) = 4710.09 × 0.09 × 0.06 mm
Data collection top
Bruker APEXII Photon 100 CMOS
diffractometer
177 reflections with I > 2σ(I)
Phi and ω scansRint = 0.035
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
θmax = 74.2°, θmin = 6.6°
Tmin = 0.104, Tmax = 0.170h = 99
5095 measured reflectionsk = 99
178 independent reflectionsl = 99
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.046P)2 + 2.8861P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.029(Δ/σ)max < 0.001
wR(F2) = 0.090Δρmax = 0.53 e Å3
S = 1.09Δρmin = 0.41 e Å3
178 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
21 parametersExtinction coefficient: 0.0025 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.25269 (18)0.12635 (9)0.2500000.0105 (5)
Fe20.6666670.3333330.7500000.0158 (10)0.834 (11)
Al30.0000000.0000000.0000000.0125 (9)
Al40.3919 (3)0.19597 (13)0.5598 (2)0.0155 (6)
Al50.53478 (17)0.46522 (17)0.2500000.0160 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0074 (7)0.0102 (7)0.0129 (8)0.0037 (4)0.0000.000
Fe20.0147 (12)0.0147 (12)0.0181 (15)0.0073 (6)0.0000.000
Al30.0114 (11)0.0114 (11)0.0148 (18)0.0057 (6)0.0000.000
Al40.0155 (9)0.0140 (7)0.0177 (9)0.0077 (4)0.0016 (6)0.0008 (3)
Al50.0129 (9)0.0129 (9)0.0205 (13)0.0052 (9)0.0000.000
Geometric parameters (Å, º) top
Ni1—Al52.4199 (10)Al3—Al4xix2.6525 (17)
Ni1—Al5i2.4199 (10)Al3—Al4vii2.6525 (17)
Ni1—Al42.5374 (18)Al3—Al4xx2.6525 (17)
Ni1—Al4ii2.5374 (18)Al3—Al4ii2.6525 (17)
Ni1—Al32.5436 (8)Al3—Al4iv2.6525 (17)
Ni1—Al3iii2.5436 (8)Al3—Al4xxi2.6525 (17)
Ni1—Al4iv2.7141 (15)Al4—Al3iii2.6525 (17)
Ni1—Al4v2.7141 (15)Al4—Ni1vi2.7141 (15)
Ni1—Al4vi2.7141 (15)Al4—Ni1v2.7141 (15)
Ni1—Al4vii2.7141 (15)Al4—Al4vi2.767 (2)
Ni1—Ni1viii2.918 (2)Al4—Al4v2.7674 (19)
Ni1—Ni1ix2.918 (2)Al4—Al5xv2.7842 (17)
Fe2—Al4x2.3360 (17)Al4—Al5vi2.7842 (17)
Fe2—Al4i2.3360 (17)Al4—Al4xii2.900 (4)
Fe2—Al42.3360 (17)Al4—Al5i2.9669 (16)
Fe2—Al4xi2.3360 (17)Al4—Al52.9669 (16)
Fe2—Al4xii2.3360 (17)Al5—Ni1xiii2.4199 (10)
Fe2—Al4xiii2.3360 (17)Al5—Fe2xv2.686 (2)
Fe2—Al5vi2.686 (2)Al5—Al4xv2.7842 (17)
Fe2—Al5xiv2.686 (2)Al5—Al4vii2.7842 (17)
Fe2—Al5xv2.686 (2)Al5—Al4xxii2.7842 (17)
Al3—Ni1xvi2.5436 (8)Al5—Al4v2.7842 (17)
Al3—Ni1xvii2.5436 (8)Al5—Al4xiii2.9669 (16)
Al3—Ni1ix2.5436 (8)Al5—Al4ii2.9669 (16)
Al3—Ni1xviii2.5436 (8)Al5—Al4xxiii2.9669 (16)
Al3—Ni1viii2.5436 (8)
Al5—Ni1—Al5i78.00 (12)Al4vii—Al3—Al4ii62.89 (2)
Al5—Ni1—Al473.48 (4)Al4xx—Al3—Al4ii180.00 (9)
Al5i—Ni1—Al473.48 (4)Ni1xvi—Al3—Al4iv117.06 (3)
Al5—Ni1—Al4ii73.48 (4)Ni1—Al3—Al4iv62.94 (3)
Al5i—Ni1—Al4ii73.48 (4)Ni1xvii—Al3—Al4iv58.42 (4)
Al4—Ni1—Al4ii137.08 (9)Ni1ix—Al3—Al4iv121.58 (4)
Al5—Ni1—Al3120.98 (3)Ni1xviii—Al3—Al4iv117.06 (3)
Al5i—Ni1—Al3120.98 (3)Ni1viii—Al3—Al4iv62.94 (3)
Al4—Ni1—Al3159.99 (6)Al4xix—Al3—Al4iv62.89 (2)
Al4ii—Ni1—Al362.94 (4)Al4vii—Al3—Al4iv117.11 (2)
Al5—Ni1—Al3iii120.98 (3)Al4xx—Al3—Al4iv117.11 (2)
Al5i—Ni1—Al3iii120.98 (3)Al4ii—Al3—Al4iv62.89 (2)
Al4—Ni1—Al3iii62.94 (4)Ni1xvi—Al3—Al4xxi62.94 (3)
Al4ii—Ni1—Al3iii159.99 (6)Ni1—Al3—Al4xxi117.06 (3)
Al3—Ni1—Al3iii97.05 (4)Ni1xvii—Al3—Al4xxi121.58 (4)
Al5—Ni1—Al4iv129.27 (6)Ni1ix—Al3—Al4xxi58.42 (4)
Al5i—Ni1—Al4iv65.39 (5)Ni1xviii—Al3—Al4xxi62.94 (3)
Al4—Ni1—Al4iv123.24 (4)Ni1viii—Al3—Al4xxi117.06 (3)
Al4ii—Ni1—Al4iv63.50 (3)Al4xix—Al3—Al4xxi117.11 (2)
Al3—Ni1—Al4iv60.49 (4)Al4vii—Al3—Al4xxi62.89 (2)
Al3iii—Ni1—Al4iv107.94 (4)Al4xx—Al3—Al4xxi62.89 (2)
Al5—Ni1—Al4v65.39 (5)Al4ii—Al3—Al4xxi117.11 (2)
Al5i—Ni1—Al4v129.27 (6)Al4iv—Al3—Al4xxi180.00 (4)
Al4—Ni1—Al4v63.50 (3)Fe2—Al4—Ni1149.83 (8)
Al4ii—Ni1—Al4v123.24 (4)Fe2—Al4—Al3iii151.52 (8)
Al3—Ni1—Al4v107.94 (4)Ni1—Al4—Al3iii58.65 (5)
Al3iii—Ni1—Al4v60.49 (4)Fe2—Al4—Ni1vi100.36 (6)
Al4iv—Ni1—Al4v163.98 (7)Ni1—Al4—Ni1vi104.98 (6)
Al5—Ni1—Al4vi129.27 (6)Al3iii—Al4—Ni1vi56.57 (4)
Al5i—Ni1—Al4vi65.39 (5)Fe2—Al4—Ni1v100.36 (6)
Al4—Ni1—Al4vi63.50 (3)Ni1—Al4—Ni1v104.98 (6)
Al4ii—Ni1—Al4vi123.24 (4)Al3iii—Al4—Ni1v56.57 (4)
Al3—Ni1—Al4vi107.94 (4)Ni1vi—Al4—Ni1v65.03 (6)
Al3iii—Ni1—Al4vi60.49 (4)Fe2—Al4—Al4vi125.07 (4)
Al4iv—Ni1—Al4vi64.59 (7)Ni1—Al4—Al4vi61.36 (6)
Al4v—Ni1—Al4vi112.97 (7)Al3iii—Al4—Al4vi58.556 (11)
Al5—Ni1—Al4vii65.39 (5)Ni1vi—Al4—Al4vi55.14 (4)
Al5i—Ni1—Al4vii129.27 (6)Ni1v—Al4—Al4vi107.91 (5)
Al4—Ni1—Al4vii123.24 (4)Fe2—Al4—Al4v125.07 (4)
Al4ii—Ni1—Al4vii63.50 (3)Ni1—Al4—Al4v61.36 (6)
Al3—Ni1—Al4vii60.49 (4)Al3iii—Al4—Al4v58.556 (11)
Al3iii—Ni1—Al4vii107.94 (4)Ni1vi—Al4—Al4v107.91 (5)
Al4iv—Ni1—Al4vii112.97 (7)Ni1v—Al4—Al4v55.14 (4)
Al4v—Ni1—Al4vii64.59 (7)Al4vi—Al4—Al4v109.71 (7)
Al4vi—Ni1—Al4vii163.98 (7)Fe2—Al4—Al5xv62.56 (5)
Al5—Ni1—Ni1viii171.00 (6)Ni1—Al4—Al5xv123.29 (4)
Al5i—Ni1—Ni1viii111.00 (6)Al3iii—Al4—Al5xv105.21 (5)
Al4—Ni1—Ni1viii108.47 (4)Ni1vi—Al4—Al5xv106.58 (6)
Al4ii—Ni1—Ni1viii108.47 (4)Ni1v—Al4—Al5xv52.20 (4)
Al3—Ni1—Ni1viii55.001 (16)Al4vi—Al4—Al5xv159.64 (7)
Al3iii—Ni1—Ni1viii55.001 (16)Al4v—Al4—Al5xv64.61 (6)
Al4iv—Ni1—Ni1viii57.48 (3)Fe2—Al4—Al5vi62.56 (5)
Al4v—Ni1—Ni1viii107.23 (4)Ni1—Al4—Al5vi123.29 (4)
Al4vi—Ni1—Ni1viii57.48 (3)Al3iii—Al4—Al5vi105.21 (5)
Al4vii—Ni1—Ni1viii107.23 (4)Ni1vi—Al4—Al5vi52.20 (4)
Al5—Ni1—Ni1ix111.00 (6)Ni1v—Al4—Al5vi106.58 (6)
Al5i—Ni1—Ni1ix171.00 (6)Al4vi—Al4—Al5vi64.61 (6)
Al4—Ni1—Ni1ix108.47 (4)Al4v—Al4—Al5vi159.64 (7)
Al4ii—Ni1—Ni1ix108.47 (4)Al5xv—Al4—Al5vi113.32 (8)
Al3—Ni1—Ni1ix55.001 (16)Fe2—Al4—Al4xii51.63 (4)
Al3iii—Ni1—Ni1ix55.001 (16)Ni1—Al4—Al4xii158.54 (5)
Al4iv—Ni1—Ni1ix107.23 (4)Al3iii—Al4—Al4xii99.89 (4)
Al4v—Ni1—Ni1ix57.48 (3)Ni1vi—Al4—Al4xii57.71 (3)
Al4vi—Ni1—Ni1ix107.23 (4)Ni1v—Al4—Al4xii57.71 (3)
Al4vii—Ni1—Ni1ix57.48 (3)Al4vi—Al4—Al4xii109.23 (7)
Ni1viii—Ni1—Ni1ix60.0Al4v—Al4—Al4xii109.23 (7)
Al4x—Fe2—Al4i76.74 (9)Al5xv—Al4—Al4xii58.61 (4)
Al4x—Fe2—Al4133.84 (3)Al5vi—Al4—Al4xii58.61 (4)
Al4i—Fe2—Al485.53 (6)Fe2—Al4—Al5i104.03 (5)
Al4x—Fe2—Al4xi85.53 (6)Ni1—Al4—Al5i51.44 (4)
Al4i—Fe2—Al4xi133.84 (3)Al3iii—Al4—Al5i100.34 (5)
Al4—Fe2—Al4xi133.84 (3)Ni1vi—Al4—Al5i111.02 (5)
Al4x—Fe2—Al4xii85.53 (6)Ni1v—Al4—Al5i155.58 (7)
Al4i—Fe2—Al4xii133.84 (3)Al4vi—Al4—Al5i57.97 (7)
Al4—Fe2—Al4xii76.74 (9)Al4v—Al4—Al5i108.01 (9)
Al4xi—Fe2—Al4xii85.53 (6)Al5xv—Al4—Al5i141.91 (7)
Al4x—Fe2—Al4xiii133.84 (3)Al5vi—Al4—Al5i85.95 (3)
Al4i—Fe2—Al4xiii85.53 (6)Al4xii—Al4—Al5i142.74 (3)
Al4—Fe2—Al4xiii85.53 (6)Fe2—Al4—Al5104.03 (5)
Al4xi—Fe2—Al4xiii76.74 (9)Ni1—Al4—Al551.44 (4)
Al4xii—Fe2—Al4xiii133.84 (3)Al3iii—Al4—Al5100.34 (5)
Al4x—Fe2—Al5vi66.920 (15)Ni1vi—Al4—Al5155.58 (7)
Al4i—Fe2—Al5vi66.920 (15)Ni1v—Al4—Al5111.02 (5)
Al4—Fe2—Al5vi66.920 (15)Al4vi—Al4—Al5108.01 (9)
Al4xi—Fe2—Al5vi141.63 (4)Al4v—Al4—Al557.97 (7)
Al4xii—Fe2—Al5vi66.920 (15)Al5xv—Al4—Al585.95 (3)
Al4xiii—Fe2—Al5vi141.63 (4)Al5vi—Al4—Al5141.91 (7)
Al4x—Fe2—Al5xiv66.920 (15)Al4xii—Al4—Al5142.74 (3)
Al4i—Fe2—Al5xiv66.920 (15)Al5i—Al4—Al561.77 (8)
Al4—Fe2—Al5xiv141.63 (4)Ni1xiii—Al5—Ni1162.00 (12)
Al4xi—Fe2—Al5xiv66.920 (15)Ni1xiii—Al5—Fe2xv99.00 (6)
Al4xii—Fe2—Al5xiv141.63 (4)Ni1—Al5—Fe2xv99.00 (6)
Al4xiii—Fe2—Al5xiv66.920 (15)Ni1xiii—Al5—Al4xv62.41 (4)
Al5vi—Fe2—Al5xiv120.0Ni1—Al5—Al4xv131.46 (7)
Al4x—Fe2—Al5xv141.63 (4)Fe2xv—Al5—Al4xv50.52 (5)
Al4i—Fe2—Al5xv141.63 (4)Ni1xiii—Al5—Al4vii131.46 (7)
Al4—Fe2—Al5xv66.920 (15)Ni1—Al5—Al4vii62.41 (4)
Al4xi—Fe2—Al5xv66.920 (15)Fe2xv—Al5—Al4vii50.52 (5)
Al4xii—Fe2—Al5xv66.920 (15)Al4xv—Al5—Al4vii101.04 (10)
Al4xiii—Fe2—Al5xv66.920 (15)Ni1xiii—Al5—Al4xxii62.41 (4)
Al5vi—Fe2—Al5xv120.0Ni1—Al5—Al4xxii131.46 (7)
Al5xiv—Fe2—Al5xv120.0Fe2xv—Al5—Al4xxii50.52 (5)
Ni1xvi—Al3—Ni1180.0Al4xv—Al5—Al4xxii62.77 (7)
Ni1xvi—Al3—Ni1xvii70.00 (3)Al4vii—Al5—Al4xxii69.46 (8)
Ni1—Al3—Ni1xvii110.00 (3)Ni1xiii—Al5—Al4v131.46 (7)
Ni1xvi—Al3—Ni1ix110.00 (3)Ni1—Al5—Al4v62.41 (4)
Ni1—Al3—Ni1ix70.00 (3)Fe2xv—Al5—Al4v50.52 (5)
Ni1xvii—Al3—Ni1ix180.00 (3)Al4xv—Al5—Al4v69.46 (8)
Ni1xvi—Al3—Ni1xviii70.00 (3)Al4vii—Al5—Al4v62.77 (7)
Ni1—Al3—Ni1xviii110.00 (3)Al4xxii—Al5—Al4v101.04 (10)
Ni1xvii—Al3—Ni1xviii70.00 (3)Ni1xiii—Al5—Al4xiii55.08 (3)
Ni1ix—Al3—Ni1xviii110.00 (3)Ni1—Al5—Al4xiii118.92 (5)
Ni1xvi—Al3—Ni1viii110.00 (3)Fe2xv—Al5—Al4xiii106.50 (5)
Ni1—Al3—Ni1viii70.00 (3)Al4xv—Al5—Al4xiii57.42 (5)
Ni1xvii—Al3—Ni1viii110.00 (3)Al4vii—Al5—Al4xiii154.12 (8)
Ni1ix—Al3—Ni1viii70.00 (3)Al4xxii—Al5—Al4xiii106.89 (6)
Ni1xviii—Al3—Ni1viii180.00 (5)Al4v—Al5—Al4xiii94.05 (3)
Ni1xvi—Al3—Al4xix62.94 (3)Ni1xiii—Al5—Al4ii118.92 (5)
Ni1—Al3—Al4xix117.06 (3)Ni1—Al5—Al4ii55.08 (3)
Ni1xvii—Al3—Al4xix62.94 (3)Fe2xv—Al5—Al4ii106.50 (5)
Ni1ix—Al3—Al4xix117.06 (3)Al4xv—Al5—Al4ii154.12 (8)
Ni1xviii—Al3—Al4xix121.58 (4)Al4vii—Al5—Al4ii57.42 (5)
Ni1viii—Al3—Al4xix58.42 (4)Al4xxii—Al5—Al4ii94.05 (3)
Ni1xvi—Al3—Al4vii117.06 (3)Al4v—Al5—Al4ii106.89 (6)
Ni1—Al3—Al4vii62.94 (3)Al4xiii—Al5—Al4ii146.99 (10)
Ni1xvii—Al3—Al4vii117.06 (3)Ni1xiii—Al5—Al4xxiii55.08 (3)
Ni1ix—Al3—Al4vii62.94 (3)Ni1—Al5—Al4xxiii118.92 (5)
Ni1xviii—Al3—Al4vii58.42 (4)Fe2xv—Al5—Al4xxiii106.50 (5)
Ni1viii—Al3—Al4vii121.58 (4)Al4xv—Al5—Al4xxiii106.89 (6)
Al4xix—Al3—Al4vii180.00 (7)Al4vii—Al5—Al4xxiii94.05 (3)
Ni1xvi—Al3—Al4xx58.42 (4)Al4xxii—Al5—Al4xxiii57.42 (5)
Ni1—Al3—Al4xx121.58 (4)Al4v—Al5—Al4xxiii154.12 (8)
Ni1xvii—Al3—Al4xx117.06 (3)Al4xiii—Al5—Al4xxiii105.49 (6)
Ni1ix—Al3—Al4xx62.94 (3)Al4ii—Al5—Al4xxiii64.63 (6)
Ni1xviii—Al3—Al4xx117.06 (3)Ni1xiii—Al5—Al4118.92 (5)
Ni1viii—Al3—Al4xx62.94 (3)Ni1—Al5—Al455.08 (3)
Al4xix—Al3—Al4xx62.89 (2)Fe2xv—Al5—Al4106.50 (5)
Al4vii—Al3—Al4xx117.11 (2)Al4xv—Al5—Al494.05 (3)
Ni1xvi—Al3—Al4ii121.58 (4)Al4vii—Al5—Al4106.89 (6)
Ni1—Al3—Al4ii58.42 (4)Al4xxii—Al5—Al4154.12 (8)
Ni1xvii—Al3—Al4ii62.94 (3)Al4v—Al5—Al457.42 (5)
Ni1ix—Al3—Al4ii117.06 (3)Al4xiii—Al5—Al464.63 (6)
Ni1xviii—Al3—Al4ii62.94 (3)Al4ii—Al5—Al4105.49 (6)
Ni1viii—Al3—Al4ii117.06 (3)Al4xxiii—Al5—Al4146.99 (10)
Al4xix—Al3—Al4ii117.11 (2)
Symmetry codes: (i) y+1, xy, z; (ii) x, y, z+1/2; (iii) x, y, z+1/2; (iv) y, x+y, z1/2; (v) xy, x, z+1; (vi) y, x+y, z+1; (vii) xy, x, z1/2; (viii) x+y, x, z; (ix) y, xy, z; (x) y+1, xy, z+3/2; (xi) x+y+1, x+1, z+3/2; (xii) x, y, z+3/2; (xiii) x+y+1, x+1, z; (xiv) xy+1, x, z+1; (xv) x+1, y+1, z+1; (xvi) x, y, z; (xvii) y, x+y, z; (xviii) xy, x, z; (xix) x+y, x, z+1/2; (xx) x, y, z1/2; (xxi) y, xy, z+1/2; (xxii) x+1, y+1, z1/2; (xxiii) x+y+1, x+1, z+1/2.
 

Acknowledgements

We greatly acknowledge financial support from the Hebei Province Youth Top-notch Talent Program (2013–2018).

References

First citationBindi, L., Yao, N., Lin, C., Hollister, L. S., Andronicos, C. L., Distler, V. V., Eddy, M., Kostin, A., Kryachko, V., MacPherson, G. J., Steinhardt, W. M., Yudovskaya, M. & Steinhardt, P. J. (2015). Am. Mineral. 100, 2340–2343.  CrossRef Google Scholar
First citationBradley, A. J. & Cheng, C. S. (1938). Z. Kristallogr. 99, 480–487.  CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA, 2008.  Google Scholar
First citationChumak, I., Richter, K. W. & Ipser, H. (2007). Intermetallics, 15, 1416–1424.  Web of Science CrossRef CAS Google Scholar
First citationKhaidar, M., Allibert, C. H. & Driole, J. (1982). Z. Metallkd. 73, 433–438.  CAS Google Scholar
First citationLemmerz, U., Grushko, B., Freiburg, C. & Jansen, M. (1994). Philos. Mag. Lett. 69, 141–146.  CrossRef CAS Google Scholar
First citationLiu, C. & Fan, C. (2018). IUCrData, 3, x180093.  Google Scholar
First citationNewkirk, J. B., Black, P. J. & Damjanovic, A. (1961). Acta Cryst. 14, 532–533.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRaghavan, V. (2010). J. Phase Equilib. Diffus. 31, 455–458.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWells, A. F. (1975). Structural Inorganic Chemistry, 4th ed., p. 1047. Oxford: Clarendon Press.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L., Du, Y., Xu, H., Tang, C., Chen, H. & Zhang, W. (2008). J. Alloys Compd. 454, 129–135.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]