organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

7-Hy­dr­oxy­hexa­cyclo­[7.5.1.01,7.06,13.08,12.010,14]penta­decan-15-one-11-spiro­cyclo­penta­ne

aDepartment of Chemistry, Indian Institute of Technology – Bombay, Powai, Mumbai 400 076, India
*Correspondence e-mail: srk@chem.iitb.ac.in

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 12 December 2017; accepted 15 January 2018; online 26 January 2018)

The reorganization of the carbon skeleton in a spiro cage dione to an unusual cage system, C19H24O2, using acid-promoted rearrangement with the aid of zinc dust as a reducing agent in the reaction medium is reported. The resulting tris­homocubane hy­droxy­ketone derivative includes five-membered rings having an envelope conformation and one seven-membered ring with a twist-chair conformation.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Cage mol­ecules act as useful precursors for the synthesis of diverse natural and non-natural products (Marchand et al., 1999[Marchand, A. P., Chong, H.-S. & Ganguly, B. (1999). Tetrahedron Asymmetry, 10, 4695-4700.]). Many of these compounds are found to be key synthons in material chemistry (Eaton et al., 2002[Eaton, P. E., Zhang, M.-X., Gilardi, R., Gelber, N., Iyer, S. & Surapaneni, R. (2002). Propellants, Explosives, Pyrotech. 27, 1-6.]; Lal et al., 2015[Lal, S., Mallick, L., Rajkumar, S., Oommen, O. P., Reshmi, S., Kumbhakarna, N., Chowdhury, A. & Namboothiri, I. N. N. (2015). J. Mater. Chem. A, 3, 22118-22128.]), in medicinal chemistry, and pharmaceutical drug design (Chalmers et al., 2016[Chalmers, B. A., Xing, H., Houston, S., Clark, C., Ghassabian, S., Kuo, A., Cao, B., Reitsma, A., Murray, C. P., Stok, J. E., Boyle, G. M., Pierce, C. J., Littler, S. W., Winkler, D. A., Bernhardt, P. V., Pasay, C., De Voss, J. J., McCarthy, J., Parsons, P. G., Walter, G. H., Smith, M. T., Cooper, H. M., Nilsson, S. K., Tsanaktsidis, J., Savage, G. P. & Williams, C. M. (2016). Angew. Chem. Int. Ed. 55, 3580-3585.]). Some of the functionalized cage systems are important templates for the design of supra­molecules. As a result of the rigid architecture and considerable strain energy of cage moieties, they are involved in unusual skeletal rearrangements, generating intricate polycycles that are often difficult to design by other synthetic protocols (Kotha et al., 2017[Kotha, S., Cheekatla, S. R. & Mandal, B. (2017). Eur. J. Org. Chem. pp. 4277-4282.]).

As part of our ongoing research efforts in this field, we present herein the synthesis and the structure of the title compound (Fig. 1[link]). The title compound II was synthesized (Fig. 2[link]) from inexpensive commercially available starting materials such as 1,4-hydro­quinone, using our earlier reported strategy, via a Claisen rearrangement, Diels–Alder reaction, [2 + 2] photo­cyclo­addition and ring-closing metathesis (RCM), followed by catalytic hydrogenation (Kotha & Dipak, 2006[Kotha, S. & Dipak, M. K. (2006). Chem. Eur. J. 12, 4446-4450.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Reduction of cage propellane dione I with Zn/AcOH.

The mol­ecule consists of eight fused rings of which one seven-membered, one six-membered and six five-membered rings are fused into a caged carbon skeleton. All five-membered rings are in envelope conformations, whereas the seven-membered ring is in a twist-chair conformation.

Synthesis and crystallization

A mixture of hepta­cyclic cage propellanedione I (100 mg, 0.35 mmol) and activated zinc dust (300 mg, 4.55 mmol) in 5 ml of glacial acetic acid was stirred at room temperature overnight. Insoluble zinc metal and salts were removed by filtration. The resulting filtrate was concentrated, diluted with cold water, and extracted with di­chloro­methane. The combined organic layers were washed with aqueous NaHCO3, brine, and dried over anhydrous Na2SO4. The organic layer was concentrated under reduced pressure to give the crude rearranged cage hy­droxy­ketone, which was purified by crystallization from mixed solvents of petroleum ether and ethyl acetate (4:1) to afford the title compound II (87 mg, 86%) as a colourless crystalline solid, m.p. 395–397 K.

IR (neat, cm−1): 3440, 2935, 2861, 1756, 1451, 1308, 1244, 1158; 1H NMR (500 MHz, CDCl3, p.p.m.): 2.41–2.39 (m, 1H), 2.26–2.16 (m, 5H), 2.14–2.06 (m, 2H), 1.99 (s, 1H), 1.82–1.71 (m, 2H), 1.68–1.62 (m, 4H), 1.52–1.34 (m, 7H), 1.31–1.17 (m, 2H); 13C NMR (125 MHz, CDCl3, p.p.m.): 217.7, 85.8, 58.3, 56.6, 56.4, 53.2, 50.2, 50.1, 49.6, 48.7, 47.2, 33.0, 31.2, 28.9, 26.2, 26.1, 26.0, 24.85, 24.81; HRMS (ESI) m/z calculated for C19H24NaO2 [M + Na]+ 307.1669; found: 307.1670.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The mol­ecule crystallizes in a centrosymmetric space group, with a racemic mixture of enanti­omers. The relative configuration of the nine chiral centres was assigned as S-C2, S-C7, R-C8, S-C9, R-C10, R-C11, R-C12, S-C13 and R-C14.

Table 1
Experimental details

Crystal data
Chemical formula C19H24O2
Mr 284.38
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 6.3600 (2), 11.0807 (4), 11.5351 (4)
α, β, γ (°) 114.539 (4), 91.465 (3), 93.401 (3)
V3) 737.07 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.13 × 0.11 × 0.06
 
Data collection
Diffractometer Rigaku Saturn724+
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.815, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7967, 2593, 2255
Rint 0.044
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.114, 1.11
No. of reflections 2593
No. of parameters 191
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.25
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

7-Hydroxyhexacyclo[7.5.1.01,7.06,13.08,12.010,14]pentadecan-15-one-11-spirocyclopentane top
Crystal data top
C19H24O2F(000) = 308
Mr = 284.38Dx = 1.281 Mg m3
Triclinic, P1Melting point = 395–397 K
a = 6.3600 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.0807 (4) ÅCell parameters from 5950 reflections
c = 11.5351 (4) Åθ = 1.9–31.2°
α = 114.539 (4)°µ = 0.08 mm1
β = 91.465 (3)°T = 293 K
γ = 93.401 (3)°Block, colourless
V = 737.07 (5) Å30.13 × 0.11 × 0.06 mm
Z = 2
Data collection top
Rigaku Saturn724+
diffractometer
2593 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2255 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 1.9°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 1313
Tmin = 0.815, Tmax = 1.000l = 1313
7967 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.2482P]
where P = (Fo2 + 2Fc2)/3
2593 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of: All O(H) groups 2.a Ternary CH refined with riding coordinates: C7(H7), C13(H13), C10(H10), C14(H14), C9(H9), C11(H11), C12(H12) 2.b Secondary CH2 refined with riding coordinates: C6(H6A,H6B), C3(H3A,H3B), C5(H5A,H5B), C4(H4A,H4B), C17(H17A,H17B), C19(H19A, H19B), C16(H16A,H16B), C18(H18A,H18B) 2.c Idealised tetrahedral OH refined as rotating group: O1(H1)

All H atoms were placed in their geometrically calculated positions and refined using a riding model with C–H distances of 0.98 Å for all H atoms bound to tertiary C(sp3) atoms and 0.97 Å for all other H atoms bound to secondary C(sp3) atoms. The hydroxyl O—H bond length was fixed to 0.82 Å. Isotropic displacement parameters for H atoms were calculated as Uiso(H) = xUeq(C/O), where x = 1.2 for all methine and methylene groups, and x = 1.5 for the hydroxyl group.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36404 (17)0.91284 (11)0.24611 (11)0.0252 (3)
H10.32570.93890.31930.038*
O20.75618 (16)1.03470 (11)0.50985 (10)0.0259 (3)
C10.7323 (2)0.92662 (15)0.41932 (15)0.0199 (3)
C20.7505 (2)0.89395 (15)0.27990 (15)0.0198 (3)
C30.8338 (3)1.01079 (16)0.25321 (16)0.0249 (4)
H3A0.98651.01230.25440.030*
H3B0.79761.09210.32260.030*
C40.7555 (3)1.01269 (17)0.12836 (16)0.0284 (4)
H4A0.60891.03310.13460.034*
H4B0.83551.08340.11620.034*
C50.7737 (3)0.88268 (17)0.01230 (16)0.0303 (4)
H5A0.90160.84400.02310.036*
H5B0.78550.90090.06270.036*
C60.5864 (3)0.78268 (17)0.00940 (16)0.0279 (4)
H6A0.60220.70700.08970.033*
H6B0.46040.82330.01980.033*
C70.5474 (2)0.72978 (15)0.09132 (15)0.0208 (4)
H70.41830.67010.06340.025*
C80.5245 (2)0.82645 (15)0.22937 (15)0.0190 (3)
C90.5050 (2)0.73109 (15)0.30108 (14)0.0193 (3)
H90.36230.71830.32620.023*
C100.5980 (2)0.59946 (15)0.20791 (14)0.0195 (3)
H100.49390.52450.16200.023*
C110.7151 (2)0.65541 (15)0.12496 (14)0.0196 (3)
H110.78300.59030.05240.024*
C120.8694 (2)0.76285 (15)0.23240 (14)0.0188 (3)
H121.01160.77230.20500.023*
C130.8622 (2)0.71750 (15)0.34580 (14)0.0197 (3)
H130.99380.73530.39830.024*
C140.6743 (2)0.79265 (15)0.41509 (14)0.0206 (4)
H140.63980.78790.49550.025*
C150.7715 (2)0.57240 (15)0.28579 (15)0.0214 (4)
C160.9272 (3)0.47262 (16)0.20525 (16)0.0264 (4)
H16A0.85940.41040.12440.032*
H16B1.04910.51880.18870.032*
C170.9918 (3)0.40057 (18)0.28674 (17)0.0354 (4)
H17A1.04240.31470.23470.042*
H17B1.10040.45320.35160.042*
C180.7878 (3)0.38491 (17)0.34615 (17)0.0357 (5)
H18A0.81470.36660.42020.043*
H18B0.69310.31380.28510.043*
C190.6968 (3)0.51950 (16)0.38404 (16)0.0272 (4)
H19A0.74810.58030.46970.033*
H19B0.54400.50970.38140.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0202 (6)0.0262 (6)0.0305 (7)0.0069 (5)0.0017 (5)0.0125 (6)
O20.0223 (6)0.0205 (6)0.0259 (6)0.0006 (5)0.0008 (5)0.0008 (5)
C10.0121 (7)0.0193 (8)0.0229 (8)0.0024 (6)0.0019 (6)0.0035 (7)
C20.0185 (8)0.0169 (8)0.0211 (8)0.0002 (6)0.0006 (6)0.0053 (7)
C30.0228 (8)0.0185 (8)0.0314 (9)0.0008 (6)0.0003 (7)0.0089 (7)
C40.0289 (9)0.0242 (9)0.0373 (10)0.0007 (7)0.0034 (7)0.0182 (8)
C50.0361 (10)0.0316 (10)0.0286 (9)0.0020 (8)0.0049 (7)0.0176 (8)
C60.0342 (9)0.0272 (9)0.0241 (9)0.0017 (7)0.0016 (7)0.0129 (8)
C70.0204 (8)0.0195 (8)0.0212 (8)0.0017 (6)0.0025 (6)0.0078 (7)
C80.0152 (7)0.0189 (8)0.0229 (8)0.0017 (6)0.0007 (6)0.0087 (7)
C90.0168 (7)0.0196 (8)0.0203 (8)0.0001 (6)0.0005 (6)0.0075 (7)
C100.0215 (8)0.0156 (8)0.0187 (8)0.0014 (6)0.0016 (6)0.0050 (6)
C110.0226 (8)0.0168 (8)0.0162 (8)0.0024 (6)0.0002 (6)0.0036 (6)
C120.0160 (7)0.0188 (8)0.0195 (8)0.0016 (6)0.0013 (6)0.0058 (7)
C130.0186 (7)0.0197 (8)0.0177 (8)0.0015 (6)0.0027 (6)0.0049 (7)
C140.0216 (8)0.0210 (8)0.0165 (8)0.0012 (6)0.0000 (6)0.0053 (7)
C150.0243 (8)0.0192 (8)0.0196 (8)0.0028 (6)0.0008 (6)0.0070 (7)
C160.0297 (9)0.0209 (8)0.0241 (9)0.0057 (7)0.0024 (7)0.0046 (7)
C170.0463 (11)0.0264 (10)0.0288 (10)0.0133 (8)0.0061 (8)0.0060 (8)
C180.0572 (12)0.0227 (9)0.0279 (9)0.0032 (8)0.0057 (9)0.0117 (8)
C190.0341 (9)0.0243 (9)0.0248 (9)0.0015 (7)0.0017 (7)0.0122 (7)
Geometric parameters (Å, º) top
O2—C11.2163 (19)C10—C151.526 (2)
O1—H10.8200C4—H4A0.9700
O1—C81.4025 (18)C4—H4B0.9700
C1—C141.489 (2)C14—H140.9800
C1—C21.504 (2)C14—C91.565 (2)
C6—H6A0.9700C2—C121.572 (2)
C6—H6B0.9700C2—C81.560 (2)
C6—C71.522 (2)C17—H17A0.9700
C6—C51.519 (2)C17—H17B0.9700
C3—H3A0.9700C17—C161.527 (2)
C3—H3B0.9700C17—C181.516 (3)
C3—C41.521 (2)C9—H90.9800
C3—C21.520 (2)C9—C81.591 (2)
C7—H70.9800C19—H19A0.9700
C7—C111.522 (2)C19—H19B0.9700
C7—C81.523 (2)C19—C151.549 (2)
C13—H130.9800C19—C181.525 (2)
C13—C141.541 (2)C16—H16A0.9700
C13—C151.530 (2)C16—H16B0.9700
C13—C121.585 (2)C16—C151.546 (2)
C5—H5A0.9700C11—H110.9800
C5—H5B0.9700C11—C121.578 (2)
C5—C41.519 (2)C18—H18A0.9700
C10—H100.9800C18—H18B0.9700
C10—C91.570 (2)C12—H120.9800
C10—C111.526 (2)
C8—O1—H1109.5C3—C2—C8120.48 (13)
O2—C1—C14130.14 (14)C8—C2—C1297.08 (11)
O2—C1—C2128.57 (14)H17A—C17—H17B109.1
C14—C1—C2101.29 (12)C16—C17—H17A111.2
H6A—C6—H6B107.1C16—C17—H17B111.2
C7—C6—H6A107.7C18—C17—H17A111.2
C7—C6—H6B107.7C18—C17—H17B111.2
C5—C6—H6A107.7C18—C17—C16102.78 (14)
C5—C6—H6B107.7C10—C9—H9114.2
C5—C6—C7118.51 (14)C10—C9—C8104.35 (11)
H3A—C3—H3B107.3C14—C9—C10103.93 (12)
C4—C3—H3A108.1C14—C9—H9114.2
C4—C3—H3B108.1C14—C9—C8104.67 (11)
C2—C3—H3A108.1C8—C9—H9114.2
C2—C3—H3B108.1H19A—C19—H19B108.7
C2—C3—C4116.65 (14)C15—C19—H19A110.5
C6—C7—H7107.2C15—C19—H19B110.5
C6—C7—C8119.86 (13)C18—C19—H19A110.5
C11—C7—C6119.97 (13)C18—C19—H19B110.5
C11—C7—H7107.2C18—C19—C15106.10 (13)
C11—C7—C894.09 (11)C17—C16—H16A110.8
C8—C7—H7107.2C17—C16—H16B110.8
C14—C13—H13115.6C17—C16—C15104.70 (13)
C14—C13—C1299.50 (11)H16A—C16—H16B108.9
C15—C13—H13115.6C15—C16—H16A110.8
C15—C13—C14102.84 (12)C15—C16—H16B110.8
C15—C13—C12105.66 (12)C7—C11—C10102.41 (12)
C12—C13—H13115.6C7—C11—H11115.6
C6—C5—H5A109.0C7—C11—C12107.14 (12)
C6—C5—H5B109.0C10—C11—H11115.6
H5A—C5—H5B107.8C10—C11—C1298.33 (11)
C4—C5—C6112.79 (14)C12—C11—H11115.6
C4—C5—H5A109.0C13—C15—C19113.97 (13)
C4—C5—H5B109.0C13—C15—C16114.25 (13)
C9—C10—H10115.4C10—C15—C1393.32 (12)
C11—C10—H10115.4C10—C15—C19116.05 (13)
C11—C10—C998.14 (11)C10—C15—C16114.56 (13)
C15—C10—H10115.4C16—C15—C19104.95 (13)
C15—C10—C9105.94 (12)C17—C18—C19103.31 (14)
C15—C10—C11104.71 (12)C17—C18—H18A111.1
C3—C4—H4A108.8C17—C18—H18B111.1
C3—C4—H4B108.8C19—C18—H18A111.1
C5—C4—C3113.87 (13)C19—C18—H18B111.1
C5—C4—H4A108.8H18A—C18—H18B109.1
C5—C4—H4B108.8C13—C12—H12114.1
H4A—C4—H4B107.7C2—C12—C13105.03 (11)
C1—C14—C13100.18 (12)C2—C12—C11104.64 (11)
C1—C14—H14117.5C2—C12—H12114.1
C1—C14—C9103.04 (12)C11—C12—C13103.68 (11)
C13—C14—H14117.5C11—C12—H12114.1
C13—C14—C998.00 (11)O1—C8—C7114.29 (12)
C9—C14—H14117.5O1—C8—C2115.98 (12)
C1—C2—C3114.04 (13)O1—C8—C9116.75 (12)
C1—C2—C12102.23 (12)C7—C8—C2105.24 (12)
C1—C2—C899.12 (11)C7—C8—C9102.90 (12)
C3—C2—C12120.17 (13)C2—C8—C999.74 (11)
O2—C1—C14—C13123.78 (16)C14—C9—C8—C7128.39 (12)
O2—C1—C14—C9135.46 (16)C14—C9—C8—C220.15 (14)
O2—C1—C2—C37.6 (2)C2—C1—C14—C1357.20 (13)
O2—C1—C2—C12138.86 (15)C2—C1—C14—C943.56 (13)
O2—C1—C2—C8121.79 (16)C2—C3—C4—C549.74 (19)
C1—C14—C9—C10122.62 (12)C17—C16—C15—C13106.45 (16)
C1—C14—C9—C813.42 (14)C17—C16—C15—C10147.55 (14)
C1—C2—C12—C1312.06 (14)C17—C16—C15—C1919.11 (17)
C1—C2—C12—C11120.91 (12)C9—C10—C11—C749.50 (13)
C1—C2—C8—O180.03 (15)C9—C10—C11—C1260.21 (12)
C1—C2—C8—C7152.60 (12)C9—C10—C15—C1344.32 (13)
C1—C2—C8—C946.25 (13)C9—C10—C15—C1974.45 (16)
C6—C7—C11—C10169.91 (14)C9—C10—C15—C16162.93 (13)
C6—C7—C11—C1287.20 (16)C16—C17—C18—C1942.56 (17)
C6—C7—C8—O156.73 (18)C11—C7—C8—O1175.07 (12)
C6—C7—C8—C271.66 (16)C11—C7—C8—C256.54 (13)
C6—C7—C8—C9175.68 (13)C11—C7—C8—C947.48 (12)
C6—C5—C4—C384.99 (18)C11—C10—C9—C1492.20 (12)
C3—C2—C12—C13139.52 (14)C11—C10—C9—C817.24 (14)
C3—C2—C12—C11111.63 (15)C11—C10—C15—C1358.82 (13)
C3—C2—C8—O144.95 (19)C11—C10—C15—C19177.59 (13)
C3—C2—C8—C782.42 (16)C11—C10—C15—C1659.79 (16)
C3—C2—C8—C9171.23 (13)C15—C13—C14—C1155.62 (12)
C7—C6—C5—C463.8 (2)C15—C13—C14—C950.74 (13)
C7—C11—C12—C13123.26 (12)C15—C13—C12—C2127.24 (12)
C7—C11—C12—C213.41 (15)C15—C13—C12—C1117.69 (14)
C13—C14—C9—C1020.16 (14)C15—C10—C9—C1415.71 (15)
C13—C14—C9—C889.05 (13)C15—C10—C9—C8125.15 (12)
C5—C6—C7—C1159.9 (2)C15—C10—C11—C7158.42 (12)
C5—C6—C7—C855.3 (2)C15—C10—C11—C1248.72 (14)
C10—C9—C8—O1145.51 (13)C15—C19—C18—C1730.67 (17)
C10—C9—C8—C719.49 (14)C18—C17—C16—C1538.27 (17)
C10—C9—C8—C288.75 (13)C18—C19—C15—C13132.77 (14)
C10—C11—C12—C1317.45 (13)C18—C19—C15—C10120.51 (15)
C10—C11—C12—C292.39 (12)C18—C19—C15—C167.03 (17)
C4—C3—C2—C1149.20 (14)C12—C13—C14—C147.02 (13)
C4—C3—C2—C1288.96 (17)C12—C13—C14—C957.85 (13)
C4—C3—C2—C831.6 (2)C12—C13—C15—C1044.42 (13)
C14—C1—C2—C3173.38 (12)C12—C13—C15—C19164.89 (12)
C14—C1—C2—C1242.10 (13)C12—C13—C15—C1674.44 (15)
C14—C1—C2—C857.26 (13)C12—C2—C8—O1176.31 (12)
C14—C13—C15—C1059.45 (13)C12—C2—C8—C748.94 (13)
C14—C13—C15—C1961.02 (16)C12—C2—C8—C957.41 (12)
C14—C13—C15—C16178.31 (12)C8—C7—C11—C1061.96 (13)
C14—C13—C12—C220.92 (14)C8—C7—C11—C1240.92 (13)
C14—C13—C12—C1188.63 (13)C8—C2—C12—C1388.92 (12)
C14—C9—C8—O1105.59 (14)C8—C2—C12—C1119.94 (13)
 

Acknowledgements

The authors thank Darshan Mhatre for helping in collecting the X-ray data.

Funding information

We thank the Defence Research and Development Organization (DRDO, No. ARDB/01/1041849/M/1), New Delhi for financial assistance. SK thanks the Department of Science and Technology (DST, No. SR/S2/JCB-33/2010) for the award of a J. C. Bose fellowship and Praj Industries for a Chair Professorship (Green Chemistry). SRC and RG thank the University Grants Commission (UGC), New Delhi, for the award of a research fellowship.

References

First citationChalmers, B. A., Xing, H., Houston, S., Clark, C., Ghassabian, S., Kuo, A., Cao, B., Reitsma, A., Murray, C. P., Stok, J. E., Boyle, G. M., Pierce, C. J., Littler, S. W., Winkler, D. A., Bernhardt, P. V., Pasay, C., De Voss, J. J., McCarthy, J., Parsons, P. G., Walter, G. H., Smith, M. T., Cooper, H. M., Nilsson, S. K., Tsanaktsidis, J., Savage, G. P. & Williams, C. M. (2016). Angew. Chem. Int. Ed. 55, 3580–3585.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEaton, P. E., Zhang, M.-X., Gilardi, R., Gelber, N., Iyer, S. & Surapaneni, R. (2002). Propellants, Explosives, Pyrotech. 27, 1–6.  Google Scholar
First citationKotha, S. & Dipak, M. K. (2006). Chem. Eur. J. 12, 4446–4450.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKotha, S., Cheekatla, S. R. & Mandal, B. (2017). Eur. J. Org. Chem. pp. 4277–4282.  CSD CrossRef Google Scholar
First citationLal, S., Mallick, L., Rajkumar, S., Oommen, O. P., Reshmi, S., Kumbhakarna, N., Chowdhury, A. & Namboothiri, I. N. N. (2015). J. Mater. Chem. A, 3, 22118–22128.  CrossRef CAS Google Scholar
First citationMarchand, A. P., Chong, H.-S. & Ganguly, B. (1999). Tetrahedron Asymmetry, 10, 4695–4700.  CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]