organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,4-Bis(4-methyl-2-nitro­phen­­oxy)butane

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Anhui University, Hefei 230601, People's Republic of China, and bKey Laboratory of Functional Inorganic Materials Chemistry, Hefei 230601, People's Republic of China
*Correspondence e-mail: iu_jh@163.com

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 10 August 2017; accepted 4 December 2017; online 12 December 2017)

The asymmetric unit of the title compound, C18H20N2O6, contains one-half mol­ecule, the mid-point of the central C—C bond being located on a crystallographic inversion centre. In the crystal, weak C—H⋯O inter­actions generate a layered structure. The O atoms of the nitro group are disordered over two sets of sites with a refined occupancy ratio of 0.700 (8):0.300 (8).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound (Fig. 1[link]) crystallizes with the mol­ecule being situated on a crystallographic inversion centre located at the midpoint of the C7—C7A bond. The two parallel phenyl rings are linked by an ethereal chain, forming a non-coplanar structure similar to that described by Elizondo et al. (2009[Elizondo, P., Rodríguez de Barbarín, C., Nájera, B. & Pérez, N. (2009). Acta Cryst. E65, o3217.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule, with displacement ellipsoids drawn at the 50% probability level.

In the crystal, the mol­ecules are linked into chains by the C7—H7A⋯O3 inter­actions (Table 1[link], Fig. 2[link]). The chains are connected into layers by C9—H9A⋯O2 inter­actions (Table 1[link], Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O3i 0.97 2.69 3.637 (3) 166
C9—H9A⋯O2ii 0.96 2.71 3.516 (4) 143
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x-1, y, z.
[Figure 2]
Figure 2
The chains generated by C7—H7A⋯O3 inter­actions (green dashed lines). H atoms not involved in these inter­actions have been omitted.
[Figure 3]
Figure 3
A view along the c axis of the crystal packing of the title compound. The C9—H9A⋯O inter­actions are represented by purple dashed lines.

Synthesis and crystallization

To a solution of 4-methyl-2-nitro­phenol (5.00 g, 32.7 mmol) in aceto­nitrile (100 ml) were added potassium carbonate (6.78 g, 50.0 mmol) and 1,4-di­bromo­butane (3.30 g, 15.3 mmol). After the reaction mixture had been refluxed for 6 h, all the volatile components were evaporated and the residue was partitioned between di­chloro­methane and water. The organic phase was washed with water, then dried in calcium chloride, and concentrated in vacuo to give an off-white solid. White single crystals were obtained in a yield of 62% using aceto­nitrile crude extraction.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The O atoms of the nitro group are disordered over two sets of sites (O2/O2′ and O3/O3′) with a refined occupancy ratio of 0.700 (8):0.300 (8).

Table 2
Experimental details

Crystal data
Chemical formula C18H20N2O6
Mr 360.36
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 4.7936 (7), 12.9828 (19), 14.632 (2)
β (°) 92.986 (2)
V3) 909.4 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.2 × 0.2 × 0.2
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.950, 0.966
No. of measured, independent and observed [I > 2σ(I)] reflections 6305, 1603, 1348
Rint 0.022
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.124, 1.08
No. of reflections 1603
No. of parameters 137
No. of restraints 16
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.18
Computer programs: SMART and SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Structural data


Computing details top

Data collection: SMARTSAINT (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2007); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1,4-Bis(4-methyl-2-nitrophenoxy)butane top
Crystal data top
C18H20N2O6F(000) = 380
Mr = 360.36Dx = 1.316 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.7936 (7) ÅCell parameters from 3390 reflections
b = 12.9828 (19) Åθ = 2.9–25.0°
c = 14.632 (2) ŵ = 0.10 mm1
β = 92.986 (2)°T = 296 K
V = 909.4 (2) Å3Block, white
Z = 20.2 × 0.2 × 0.2 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
1348 reflections with I > 2σ(I)
none scansRint = 0.022
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 25.0°, θmin = 2.1°
Tmin = 0.950, Tmax = 0.966h = 55
6305 measured reflectionsk = 1415
1603 independent reflectionsl = 1717
Refinement top
Refinement on F216 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.1678P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1603 reflectionsΔρmax = 0.21 e Å3
137 parametersΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and UISO(H) = 1.2 Ueq.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5424 (3)0.69514 (12)0.46590 (10)0.0557 (4)
C20.7120 (4)0.62215 (12)0.42827 (11)0.0625 (4)
H20.81140.57640.46650.075*
C30.7361 (3)0.61619 (12)0.33476 (11)0.0597 (4)
C40.5797 (4)0.68498 (13)0.28134 (11)0.0619 (4)
H40.59180.68260.21810.074*
C50.4057 (3)0.75731 (12)0.31813 (11)0.0579 (4)
H50.30290.80180.27960.069*
C60.3835 (3)0.76397 (11)0.41205 (10)0.0506 (4)
C70.0937 (3)0.97110 (12)0.46540 (12)0.0615 (4)
H7A0.21840.92700.49780.074*
H7B0.20741.02030.43030.074*
C90.9223 (4)0.53703 (15)0.29328 (15)0.0833 (6)
H9A1.08140.52430.33430.125*
H9B0.98400.56230.23610.125*
H9C0.82000.47420.28310.125*
C100.0657 (3)0.90647 (13)0.40078 (11)0.0609 (4)
H10A0.06190.87270.35670.073*
H10B0.19260.94910.36780.073*
O10.2189 (2)0.83138 (8)0.45505 (7)0.0604 (3)
N10.5373 (4)0.69963 (13)0.56589 (11)0.0819 (5)
O20.5488 (9)0.6235 (2)0.6110 (2)0.1177 (11)0.7
O30.5494 (5)0.78584 (16)0.60470 (12)0.0886 (6)0.7
O2'0.739 (2)0.6707 (9)0.6058 (5)0.177 (4)0.3
O3'0.2837 (15)0.6876 (6)0.5918 (4)0.141 (3)0.3
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0667 (9)0.0528 (8)0.0476 (8)0.0036 (7)0.0022 (7)0.0013 (6)
C20.0664 (10)0.0537 (9)0.0664 (10)0.0092 (7)0.0050 (8)0.0002 (7)
C30.0558 (9)0.0574 (9)0.0663 (10)0.0025 (7)0.0067 (7)0.0111 (7)
C40.0663 (10)0.0688 (10)0.0511 (8)0.0019 (8)0.0071 (7)0.0071 (7)
C50.0615 (9)0.0610 (9)0.0508 (8)0.0028 (7)0.0002 (7)0.0034 (7)
C60.0515 (8)0.0478 (8)0.0526 (8)0.0000 (6)0.0044 (6)0.0007 (6)
C70.0490 (8)0.0572 (9)0.0777 (11)0.0043 (7)0.0025 (7)0.0042 (8)
C90.0799 (12)0.0762 (12)0.0949 (14)0.0115 (10)0.0164 (10)0.0192 (11)
C100.0570 (9)0.0601 (9)0.0646 (9)0.0081 (7)0.0067 (7)0.0000 (7)
O10.0699 (7)0.0556 (6)0.0562 (6)0.0144 (5)0.0083 (5)0.0020 (5)
N10.1193 (14)0.0729 (8)0.0541 (9)0.0261 (9)0.0099 (9)0.0099 (6)
O20.194 (3)0.0827 (15)0.0775 (16)0.0153 (18)0.0220 (19)0.0265 (12)
O30.1283 (17)0.0881 (11)0.0489 (10)0.0176 (12)0.0013 (10)0.0082 (8)
O2'0.244 (10)0.218 (10)0.062 (4)0.064 (8)0.063 (6)0.014 (5)
O3'0.176 (6)0.186 (7)0.064 (3)0.028 (6)0.041 (4)0.030 (4)
Geometric parameters (Å, º) top
C1—C21.382 (2)C7—C7i1.516 (3)
C1—C61.392 (2)C7—H7A0.9700
C1—N11.466 (2)C7—H7B0.9700
C2—C31.381 (2)C9—H9A0.9600
C2—H20.9300C9—H9B0.9600
C3—C41.382 (2)C9—H9C0.9600
C3—C91.509 (2)C10—O11.4353 (18)
C4—C51.383 (2)C10—H10A0.9700
C4—H40.9300C10—H10B0.9700
C5—C61.387 (2)N1—O2'1.164 (7)
C5—H50.9300N1—O21.188 (3)
C6—O11.3550 (18)N1—O31.255 (2)
C7—C101.502 (2)N1—O3'1.301 (6)
C2—C1—C6122.06 (14)C7i—C7—H7B108.9
C2—C1—N1117.77 (14)H7A—C7—H7B107.8
C6—C1—N1120.16 (14)C3—C9—H9A109.5
C3—C2—C1120.97 (15)C3—C9—H9B109.5
C3—C2—H2119.5H9A—C9—H9B109.5
C1—C2—H2119.5C3—C9—H9C109.5
C2—C3—C4116.94 (14)H9A—C9—H9C109.5
C2—C3—C9121.21 (17)H9B—C9—H9C109.5
C4—C3—C9121.84 (16)O1—C10—C7107.07 (13)
C3—C4—C5122.61 (15)O1—C10—H10A110.3
C3—C4—H4118.7C7—C10—H10A110.3
C5—C4—H4118.7O1—C10—H10B110.3
C4—C5—C6120.46 (15)C7—C10—H10B110.3
C4—C5—H5119.8H10A—C10—H10B108.6
C6—C5—H5119.8C6—O1—C10118.39 (12)
O1—C6—C5125.24 (14)O2—N1—O3119.4 (2)
O1—C6—C1117.81 (13)O2'—N1—O3'125.3 (6)
C5—C6—C1116.94 (14)O2'—N1—C1115.6 (5)
C10—C7—C7i113.19 (16)O2—N1—C1121.2 (2)
C10—C7—H7A108.9O3—N1—C1118.97 (16)
C7i—C7—H7A108.9O3'—N1—C1110.5 (3)
C10—C7—H7B108.9
C6—C1—C2—C31.6 (3)C7i—C7—C10—O161.7 (2)
N1—C1—C2—C3177.34 (16)C5—C6—O1—C103.8 (2)
C1—C2—C3—C41.1 (2)C1—C6—O1—C10176.66 (13)
C1—C2—C3—C9179.65 (16)C7—C10—O1—C6179.22 (12)
C2—C3—C4—C50.1 (2)C2—C1—N1—O2'26.8 (7)
C9—C3—C4—C5179.30 (16)C6—C1—N1—O2'152.2 (7)
C3—C4—C5—C60.5 (3)C2—C1—N1—O237.3 (4)
C4—C5—C6—O1179.66 (14)C6—C1—N1—O2143.8 (3)
C4—C5—C6—C10.1 (2)C2—C1—N1—O3135.5 (2)
C2—C1—C6—O1178.64 (14)C6—C1—N1—O343.5 (3)
N1—C1—C6—O12.4 (2)C2—C1—N1—O3'122.8 (4)
C2—C1—C6—C50.9 (2)C6—C1—N1—O3'58.2 (4)
N1—C1—C6—C5177.98 (16)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O3ii0.972.693.637 (3)166
C9—H9A···O2iii0.962.713.516 (4)143
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x1, y, z.
 

Funding information

This work was supported by the Graduate Students Innovative Program of Anhui University (J18515024, J18515019, 201310357155).

References

First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElizondo, P., Rodríguez de Barbarín, C., Nájera, B. & Pérez, N. (2009). Acta Cryst. E65, o3217.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]