organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

An ortho­rhom­bic polymorph of (E)-1-(benzo[d][1,3]dioxol-5-yl)-3-(2,3-di­chloro­phen­yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, School of Engineering & Technology, Jain University, Bangalore 562 112, India, bDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 005, India, cDepartment of Physics, National Institute of Engineering, Mysuru 570 008, India, dDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, and eDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: s.naveen@jainuniversity.ac.in, khalil.i@najah.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 25 October 2017; accepted 1 November 2017; online 10 November 2017)

The title compound, C16H10Cl2O3, is almost planar with a dihedral angle of 0.14 (16)° between the benzodioxole ring system and the di­chloro­benzene ring that are bridged by the olefinic double bond. The corresponding value reported for the monoclinic polymorph is [5.57 (9)° (Lokeshwari et al. (2017[Lokeshwari, D. M., Pavithra, G., Renuka, N., Lokanath, N. K., Naveen, S. & Ajay Kumar, K. (2017). IUCrData, 2, x170103.]). IUCrData, 2, x170103). The carbonyl group lies almost in the plane of the olefinic double bond and is twisted slightly from the benzodioxole ring plane. In the crystal, the mol­ecules are linked by weak C—H⋯O and C—H⋯Cl hydrogen bonds, forming a chain propagating along the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Chalcones and their derivatives exhibit a plethora of biological applications that include use as anti­oxidants, or anti­fungal, anti­bacterial and cardioprotective agents. As part of our ongoing work on such mol­ecules (Rajendraprasad et al., 2017[Rajendraprasad, S., Chidan Kumar, C. S., Quah, C. K., Chandraju, S., Lokanath, N. K., Naveen, S. & Warad, I. (2017). IUCrData, 2, x170379.]; Naveen et al., 2016a[Naveen, S., Dileep Kumar, A., Ajay Kumar, K., Manjunath, H. R., Lokanath, N. K. & Warad, I. (2016a). IUCrData, 1, x161800.],b[Naveen, S., Prabhudeva, M. G., Ajay Kumar, K., Lokanath, N. K. & Abdoh, M. (2016b). IUCrData, 1, x161974.]), we report here the synthesis and crystal structure of the title compound.

The structure of the title mol­ecule is shown in Fig. 1[link]. It is a polymorph having been reported previously in the monoclinic space-group P21/c (Lokeshwari et al., 2017[Lokeshwari, D. M., Pavithra, G., Renuka, N., Lokanath, N. K., Naveen, S. & Ajay Kumar, K. (2017). IUCrData, 2, x170103.]). The mol­ecule is nearly planar as seen by the dihedral angle of 0.14 (16)° between the benzodioxole ring system and the di­chloro­benzene ring; these are bridged by an olefinic double bond that adopts an E conformation. The corresponding dihedral angle reported for the monoclinic polymorph is 5.57 (9)° (Lokeshwari et al., 2017[Lokeshwari, D. M., Pavithra, G., Renuka, N., Lokanath, N. K., Naveen, S. & Ajay Kumar, K. (2017). IUCrData, 2, x170103.]). The trans conformation of the C=C double bond in the central enone group is confirmed by the C—C=C—C torsion angle of −174.9 (4)°. The carbonyl group at C9 lies almost in the plane of the olefinic double bond and is twisted slightly from the benzodioxole ring as indicated by the C11—C10—C9—O3 and C7—C8—C9—O3 torsion angles of 13.7 (5) and 5.0 (6)° respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

In the crystal, the mol­ecules are linked by weak C—H⋯O and C—H⋯Cl hydrogen bonds (Table 1[link]), forming a chain propagating along the b-axis direction, Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.93 2.46 3.185 (5) 135
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing of the mol­ecules, viewed along the b axis, with hydrogen bonds shown as blue lines.

Synthesis and crystallization

A mixture of 2,3-di­chloro­benzaldehyde (5 mmol), 1-(benzo[d][1,3]dioxol-5-yl)ethanone (5 mmol) and sodium hydroxide (5 mmol) in methanol (25 ml) was stirred at room temperature for 3 h. The progress of the reaction was monitored by TLC. After completion, the mixture was poured into ice-cold water and kept in the refrigerator for 18 h. The solid formed was filtered, and washed with cold 5% hydro­chloric acid. Pale-green crystals were obtained from methanol solution by using the slow solvent evaporation technique, yield 88%, m.p. 401–402 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H10Cl2O3
Mr 321.14
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 296
a, b, c (Å) 21.9756 (11), 12.7354 (6), 4.9889 (3)
V3) 1396.23 (13)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.25
Crystal size (mm) 0.27 × 0.26 × 0.22
 
Data collection
Diffractometer Bruker X8 Proteum
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.393, 0.455
No. of measured, independent and observed [I > 2σ(I)] reflections 6212, 1801, 1639
Rint 0.061
(sin θ/λ)max−1) 0.585
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.120, 1.06
No. of reflections 1801
No. of parameters 190
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.37
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])
Absolute structure parameter 0.02 (2)
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

(E)-1-(Benzo[d][1,3]dioxol-5-yl)-3-(2,3-dichlorophenyl)prop-2-en-1-one top
Crystal data top
C16H10Cl2O3F(000) = 656
Mr = 321.14Dx = 1.528 Mg m3
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2nCell parameters from 1639 reflections
a = 21.9756 (11) Åθ = 4.0–64.5°
b = 12.7354 (6) ŵ = 4.25 mm1
c = 4.9889 (3) ÅT = 296 K
V = 1396.23 (13) Å3Prism, green
Z = 40.27 × 0.26 × 0.22 mm
Data collection top
Bruker X8 Proteum
diffractometer
1801 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode1639 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.061
Detector resolution: 18.4 pixels mm-1θmax = 64.5°, θmin = 4.0°
φ and ω scansh = 2524
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1314
Tmin = 0.393, Tmax = 0.455l = 45
6212 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0639P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1801 reflectionsΔρmax = 0.29 e Å3
190 parametersΔρmin = 0.37 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (2)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.40504 (4)0.22650 (8)1.0103 (2)0.0306 (3)
Cl20.48016 (5)0.35770 (9)1.4215 (3)0.0386 (3)
O10.05572 (13)0.4848 (2)0.3392 (7)0.0333 (10)
O20.05823 (13)0.3043 (2)0.2738 (7)0.0335 (10)
O30.23955 (15)0.2272 (2)0.3436 (7)0.0399 (11)
C10.38991 (17)0.3592 (3)1.0505 (8)0.0229 (11)
C20.34376 (17)0.4072 (3)0.8997 (9)0.0227 (11)
C30.33324 (17)0.5145 (3)0.9436 (9)0.0260 (11)
C40.36566 (19)0.5703 (3)1.1311 (9)0.0283 (12)
C50.41077 (18)0.5219 (4)1.2808 (9)0.0300 (14)
C60.42298 (18)0.4164 (4)1.2366 (8)0.0268 (13)
C70.30817 (18)0.3496 (3)0.7011 (9)0.0263 (12)
C80.26308 (18)0.3868 (3)0.5549 (8)0.0283 (12)
C90.22949 (17)0.3220 (3)0.3630 (7)0.0232 (11)
C100.18281 (17)0.3718 (3)0.1898 (8)0.0220 (11)
C110.14240 (17)0.3059 (3)0.0514 (8)0.0242 (11)
C120.10171 (17)0.3520 (3)0.1190 (9)0.0224 (11)
C130.02917 (19)0.3861 (3)0.4182 (9)0.0307 (14)
C140.10051 (17)0.4598 (3)0.1576 (8)0.0270 (14)
C150.13913 (18)0.5262 (3)0.0252 (9)0.0307 (14)
C160.17994 (18)0.4807 (3)0.1541 (9)0.0270 (12)
H30.303600.548700.843200.0310*
H40.357300.641101.157800.0340*
H50.432500.559501.408800.0360*
H70.318400.279400.675000.0320*
H80.252200.456900.574500.0340*
H110.143300.233500.074800.0290*
H13A0.014100.386200.379700.0370*
H13B0.034600.375400.609300.0370*
H150.138200.598300.053600.0370*
H160.205900.523700.252300.0320*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0342 (5)0.0241 (6)0.0335 (6)0.0047 (4)0.0025 (4)0.0021 (5)
Cl20.0333 (5)0.0449 (7)0.0375 (6)0.0001 (5)0.0139 (5)0.0056 (5)
O10.0329 (16)0.0280 (17)0.0389 (18)0.0053 (13)0.0114 (13)0.0013 (15)
O20.0322 (15)0.0252 (17)0.0431 (19)0.0008 (13)0.0158 (14)0.0055 (15)
O30.0466 (18)0.0182 (18)0.055 (2)0.0044 (14)0.0244 (17)0.0006 (14)
C10.0237 (19)0.021 (2)0.024 (2)0.0026 (16)0.0011 (18)0.0057 (17)
C20.0239 (19)0.024 (2)0.0203 (19)0.0035 (15)0.0004 (16)0.0030 (18)
C30.0259 (18)0.022 (2)0.030 (2)0.0005 (16)0.0036 (17)0.0009 (19)
C40.034 (2)0.023 (2)0.028 (2)0.0007 (18)0.0004 (19)0.001 (2)
C50.028 (2)0.039 (3)0.023 (2)0.0089 (18)0.0015 (16)0.006 (2)
C60.0214 (18)0.036 (3)0.023 (2)0.0028 (17)0.0016 (17)0.002 (2)
C70.029 (2)0.018 (2)0.032 (2)0.0014 (16)0.0055 (19)0.0016 (19)
C80.031 (2)0.024 (2)0.030 (2)0.0005 (17)0.0033 (19)0.0078 (19)
C90.0225 (18)0.025 (2)0.022 (2)0.0022 (17)0.0014 (16)0.0039 (18)
C100.0230 (19)0.026 (2)0.017 (2)0.0003 (16)0.0024 (16)0.0018 (18)
C110.0275 (19)0.021 (2)0.024 (2)0.0002 (17)0.0006 (16)0.0002 (18)
C120.0231 (18)0.022 (2)0.022 (2)0.0002 (16)0.0018 (17)0.0020 (18)
C130.029 (2)0.032 (3)0.031 (2)0.0012 (18)0.0066 (18)0.001 (2)
C140.0249 (19)0.028 (3)0.028 (2)0.0035 (18)0.0004 (16)0.0006 (19)
C150.037 (2)0.018 (2)0.037 (3)0.0012 (18)0.0029 (19)0.0009 (19)
C160.027 (2)0.024 (2)0.030 (2)0.0023 (17)0.0055 (17)0.004 (2)
Geometric parameters (Å, º) top
Cl1—C11.734 (4)C10—C111.404 (5)
Cl2—C61.729 (4)C10—C161.400 (5)
O1—C131.441 (5)C11—C121.366 (6)
O1—C141.375 (5)C12—C141.387 (5)
O2—C121.371 (5)C14—C151.368 (6)
O2—C131.419 (5)C15—C161.393 (6)
O3—C91.231 (5)C3—H30.9300
C1—C21.403 (6)C4—H40.9300
C1—C61.386 (6)C5—H50.9300
C2—C31.403 (5)C7—H70.9300
C2—C71.460 (6)C8—H80.9300
C3—C41.374 (6)C11—H110.9300
C4—C51.386 (6)C13—H13A0.9700
C5—C61.388 (7)C13—H13B0.9700
C7—C81.318 (6)C15—H150.9300
C8—C91.464 (5)C16—H160.9300
C9—C101.484 (5)
C13—O1—C14105.6 (3)O1—C14—C12109.5 (3)
C12—O2—C13105.9 (3)O1—C14—C15128.2 (3)
Cl1—C1—C2120.1 (3)C12—C14—C15122.2 (4)
Cl1—C1—C6119.3 (3)C14—C15—C16116.9 (4)
C2—C1—C6120.6 (4)C10—C16—C15121.5 (4)
C1—C2—C3117.4 (4)C2—C3—H3119.00
C1—C2—C7122.2 (3)C4—C3—H3119.00
C3—C2—C7120.5 (4)C3—C4—H4120.00
C2—C3—C4121.6 (4)C5—C4—H4120.00
C3—C4—C5120.5 (4)C4—C5—H5121.00
C4—C5—C6118.9 (4)C6—C5—H5121.00
Cl2—C6—C1120.8 (4)C2—C7—H7117.00
Cl2—C6—C5118.3 (3)C8—C7—H7117.00
C1—C6—C5120.9 (4)C7—C8—H8119.00
C2—C7—C8126.7 (4)C9—C8—H8119.00
C7—C8—C9122.6 (4)C10—C11—H11121.00
O3—C9—C8120.9 (3)C12—C11—H11121.00
O3—C9—C10119.8 (3)O1—C13—H13A110.00
C8—C9—C10119.3 (3)O1—C13—H13B110.00
C9—C10—C11117.9 (3)O2—C13—H13A110.00
C9—C10—C16121.9 (3)O2—C13—H13B110.00
C11—C10—C16120.1 (4)H13A—C13—H13B108.00
C10—C11—C12117.6 (4)C14—C15—H15122.00
O2—C12—C11128.1 (3)C16—C15—H15122.00
O2—C12—C14110.3 (3)C10—C16—H16119.00
C11—C12—C14121.6 (4)C15—C16—H16119.00
O1—C13—O2108.6 (3)
C14—O1—C13—O21.6 (4)C4—C5—C6—C11.4 (6)
C13—O1—C14—C121.1 (4)C2—C7—C8—C9179.1 (4)
C13—O1—C14—C15179.6 (4)C7—C8—C9—O35.0 (6)
C13—O2—C12—C11178.6 (4)C7—C8—C9—C10174.9 (4)
C13—O2—C12—C140.8 (4)O3—C9—C10—C1113.7 (5)
C12—O2—C13—O11.5 (4)O3—C9—C10—C16163.7 (4)
Cl1—C1—C2—C3179.3 (3)C8—C9—C10—C11166.4 (4)
Cl1—C1—C2—C71.6 (6)C8—C9—C10—C1616.2 (6)
C6—C1—C2—C30.6 (6)C9—C10—C11—C12176.5 (4)
C6—C1—C2—C7179.7 (4)C16—C10—C11—C121.0 (6)
Cl1—C1—C6—Cl21.7 (5)C9—C10—C16—C15174.8 (4)
Cl1—C1—C6—C5177.8 (3)C11—C10—C16—C152.6 (6)
C2—C1—C6—Cl2179.7 (3)C10—C11—C12—O2179.9 (4)
C2—C1—C6—C50.9 (6)C10—C11—C12—C140.8 (6)
C1—C2—C3—C41.5 (6)O2—C12—C14—O10.2 (5)
C7—C2—C3—C4179.3 (4)O2—C12—C14—C15179.6 (4)
C1—C2—C7—C8178.2 (4)C11—C12—C14—O1179.6 (4)
C3—C2—C7—C82.8 (7)C11—C12—C14—C151.0 (6)
C2—C3—C4—C51.0 (7)O1—C14—C15—C16178.7 (4)
C3—C4—C5—C60.5 (6)C12—C14—C15—C160.5 (6)
C4—C5—C6—Cl2179.1 (3)C14—C15—C16—C102.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.932.463.185 (5)135
C7—H7···Cl10.932.623.061 (4)109
C7—H7···O30.932.492.808 (5)100
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, India, for providing the single-crystal X-ray diffractometer facility.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLokeshwari, D. M., Pavithra, G., Renuka, N., Lokanath, N. K., Naveen, S. & Ajay Kumar, K. (2017). IUCrData, 2, x170103.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNaveen, S., Dileep Kumar, A., Ajay Kumar, K., Manjunath, H. R., Lokanath, N. K. & Warad, I. (2016a). IUCrData, 1, x161800.  Google Scholar
First citationNaveen, S., Prabhudeva, M. G., Ajay Kumar, K., Lokanath, N. K. & Abdoh, M. (2016b). IUCrData, 1, x161974.  Google Scholar
First citationRajendraprasad, S., Chidan Kumar, C. S., Quah, C. K., Chandraju, S., Lokanath, N. K., Naveen, S. & Warad, I. (2017). IUCrData, 2, x170379.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]