organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(3-Bromo-4-meth­­oxy­phen­yl)-3-nitro­pyridine

CROSSMARK_Color_square_no_text.svg

aUniversity of Mainz, Institut for Organic Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

Edited by J. Simpson, University of Otago, New Zealand (Received 22 September 2017; accepted 27 September 2017; online 7 November 2017)

The title compound, C12H9BrN2O3, was prepared in two steps from 2-chloro-3-nitro­pyridine. The nitro­biaryl unit is twisted, with dihedral angles of 35.4 (5)° between the nitro substituent and the pyridine ring to which it is bound, and 51.0 (5)° between the nitro group and the benzene ring. In the crystal, the mol­ecules are connected via C—H⋯O hydrogen bonds, forming strands along the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

2-Nitro­biaryl compounds are central inter­mediates for the synthesis of carbazoles and carbolines via the Cadogan (1962[Cadogan, J. I. G. (1962). Q. Rev. Chem. Soc. 16, 208-239.]) reaction or from iodo­lium salts (Letessier et al., 2013[Letessier, J., Geffe, M., Schollmeyer, D. & Detert, H. (2013). Synthesis, 45, 3173-3178.]).

The title mol­ecule (Fig. 1[link]) is twisted since steric congestion due to the β-nitro group neighbouring the biaryl bond provokes torsion in both units. The dihedral angle between the nitro group and the pyridine ring is 35.4 (5)°, while that between the pyridine and the benzene rings is 39.9 (2)° while the angle between the planes of the nitro group and the phenyl ring is 51.0 (5)°. The meth­oxy group lies in the plane of the benzene ring [torsion angle C14—C13—O16—C17: 178.9 (4)°] with the methyl group orientated anti to the bromo substituent.

[Figure 1]
Figure 1
View of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

The bond lengths in the benzene ring are similar to those in benzene itself except for C14—C15, 1.377 (5) Å, and C11—C12, 1.385 (6) Å that are shorter. These may be effected by the bromo substituent Br1. In the pyridine ring, C1—C6 [1.411 (5) Å] is longer than C3—C4 [1.386 (7) Å] as a result of the vicinal nitro and phenyl substituents. The biaryl bridge bond C1—C10 [1.480 (5) Å] is comparable to the equivalent bond in 2-phenyl­pyridine with an average of 1.478 Å (Sekine et al., 1994[Sekine, A., Ohashi, Y., Yoshimura, K., Yagi, M. & Higuchi, J. (1994). Acta Cryst. C50, 1101-1104.]).

There are four mol­ecules in the monoclinic unit cell. Mol­ecules form strands along the b axis, connected via C—H⋯O hydrogen bonds (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O8i 0.95 2.50 3.293 (5) 141
Symmetry code: (i) x, y+1, z.
[Figure 2]
Figure 2
Partial packing diagram, viewed along the c-axis direction. Hydrogen bonds are shown as dashed lines.

Synthesis and crystallization

2-(3-Bromo-4-meth­oxy­phen­yl)-3-nitro­pyridine was prepared in two steps from 2-chloro-3-nitro­pyridine. A mixture of the latter (409 mg, 2.58 mmol), p-tolyl­boronic acid (481 mg, 3.54 mmol), and 656 mg sodium bicarbonate in 25 ml of aqueous di­meth­oxy­ethane (1/1) was deaerated by passing a nitro­gen stream through the mixture before tetra­kis-tri­phenyl­phosphine palladium (152.4 mg) was added. This mixture was heated in a microwave oven with 300 W for 15 min to 400 K. Thereafter, the mixture was filtered and the residue was washed with ethyl acetate (80 ml). The pooled organic solution was washed with water and brine, dried (MgSO4), concentrated and the residue was purified by chromatography on silica gel (SiO2/toluene) to yield 220 mg (40%) of a yellow solid with m.p. = 336 K. NBS (126 mg, 0.709 mmol) was added to a solution of anisyl­nitro­pyridine (164 mg, 0.713 mmol) in aceto­nitrile (15 ml) and the mixture stirred for 30 min at 323 K. After 3 h, additional NBS (59 mg) was added. When the reaction was complete (NMR), the solvent was evaporated, the residue was dissolved in di­chloro­methane, filtered and di­chloro­methane exchanged by cyclo­hexane. Yield: 133 mg (60%) of a yellow solid with m.p. = 415 K. 1H NMR: (300 MHz, CDCl3): δ = 8.33 (dd, J = 4.7 Hz, J = 1.6 Hz, 1 H); 8.13 (dd, J = 8.3 Hz, J = 1.5 Hz, 1 H), 7.87 (d, J = 2.3 Hz, 1 H); 7.45 (dd, J = 8.6 Hz, J = 2.3 Hz, 1 H); 7.42 (dd, J = 4.7 Hz, J = 1.2 Hz, 1 H); 6.96, (d, J = 8.6, 1 H), 3.95 (s, 3 H); 1C NMR: (75 MHz, CDCl3): δ = 157.33, 152.26, 151.06, 146.06, 133.46, 132.47, 129.83, 128.62, 122.44, 112.29, 111.77, 56.52; IR (ATR) ν = 3067, 2973, 2913, 2842, 1587, 1556, 1517, 1441, 1352, 1293, 1267, 1183, 1161, 1058, 1014, 879, 863, 819, 806, 677 cm−1; HR–ESI–MS: 308.9885 (M+H+). Single crystals were grown by recrystallization from chloro­form solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H9BrN2O3
Mr 309.12
Crystal system, space group Monoclinic, Ia
Temperature (K) 193
a, b, c (Å) 14.7780 (9), 3.9561 (2), 21.1186 (13)
β (°) 109.812 (5)
V3) 1161.58 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.54
Crystal size (mm) 0.40 × 0.30 × 0.15
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Integration (X-RED32; Stoe & Cie, 2006[Stoe & Cie (2006). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.274, 0.587
No. of measured, independent and observed [I > 2σ(I)] reflections 4117, 2669, 2621
Rint 0.018
(sin θ/λ)max−1) 0.665
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.062, 1.07
No. of reflections 2669
No. of parameters 164
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.51, −0.24
Absolute structure Classical Flack method preferred over Parsons because s.u. lower.
Absolute structure parameter −0.012 (11)
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2006[Stoe & Cie (2006). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2006); cell refinement: X-AREA (Stoe & Cie, 2006); data reduction: X-RED32 (Stoe & Cie, 2006); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXL2014 (Sheldrick, 2015b); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

2-(3-Bromo-4-methoxyphenyl)-3-nitropyridine top
Crystal data top
C12H9BrN2O3Dx = 1.768 Mg m3
Mr = 309.12Melting point: 415 K
Monoclinic, IaMo Kα radiation, λ = 0.71073 Å
a = 14.7780 (9) ÅCell parameters from 7578 reflections
b = 3.9561 (2) Åθ = 2.9–28.4°
c = 21.1186 (13) ŵ = 3.54 mm1
β = 109.812 (5)°T = 193 K
V = 1161.58 (12) Å3Block, brown
Z = 40.40 × 0.30 × 0.15 mm
F(000) = 616
Data collection top
Stoe IPDS 2T
diffractometer
2669 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2621 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.018
rotation method scansθmax = 28.2°, θmin = 2.9°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2006)
h = 1919
Tmin = 0.274, Tmax = 0.587k = 55
4117 measured reflectionsl = 2827
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.035P)2 + 1.9908P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.51 e Å3
2669 reflectionsΔρmin = 0.24 e Å3
164 parametersAbsolute structure: Classical Flack method preferred over Parsons because s.u. lower.
2 restraintsAbsolute structure parameter: 0.012 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.61778 (2)0.11315 (8)0.69658 (2)0.02671 (10)
C10.5433 (3)0.5849 (10)0.4501 (2)0.0219 (8)
N20.6359 (2)0.6836 (10)0.47068 (18)0.0294 (7)
C30.6753 (3)0.7778 (13)0.4253 (2)0.0316 (9)
H30.74090.84530.44110.038*
C40.6267 (3)0.7836 (13)0.3565 (2)0.0352 (9)
H40.65740.85870.32620.042*
C50.5323 (3)0.6768 (12)0.3335 (2)0.0314 (8)
H50.49610.67600.28680.038*
C60.4920 (3)0.5708 (10)0.38038 (18)0.0238 (7)
N70.3940 (2)0.4327 (9)0.35391 (16)0.0258 (6)
O80.3729 (2)0.1949 (8)0.38338 (16)0.0330 (6)
O90.3390 (3)0.5580 (10)0.30220 (17)0.0440 (8)
C100.5041 (3)0.5122 (10)0.50459 (17)0.0209 (6)
C110.4134 (3)0.6188 (9)0.50232 (18)0.0233 (7)
H110.37250.72900.46310.028*
C120.3815 (3)0.5673 (10)0.55616 (19)0.0242 (7)
H120.31890.63880.55320.029*
C130.4411 (3)0.4110 (9)0.61472 (18)0.0210 (7)
C140.5325 (3)0.3077 (9)0.61701 (17)0.0208 (6)
C150.5640 (3)0.3563 (9)0.56332 (18)0.0213 (7)
H150.62650.28390.56620.026*
O160.4158 (2)0.3489 (7)0.66973 (14)0.0280 (6)
C170.3231 (3)0.4609 (12)0.6674 (2)0.0320 (9)
H17A0.31800.70570.66000.048*
H17B0.31390.40750.71010.048*
H17C0.27360.34650.63050.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02555 (15)0.03387 (17)0.01840 (14)0.00404 (19)0.00444 (10)0.00558 (18)
C10.0211 (18)0.0256 (19)0.0198 (18)0.0020 (13)0.0082 (14)0.0001 (13)
N20.0229 (16)0.0401 (18)0.0253 (14)0.0017 (14)0.0084 (12)0.0019 (13)
C30.026 (2)0.037 (2)0.036 (2)0.0036 (18)0.0158 (18)0.003 (2)
C40.040 (2)0.043 (2)0.032 (2)0.0030 (19)0.0230 (18)0.0088 (18)
C50.036 (2)0.040 (2)0.0216 (17)0.0053 (17)0.0139 (16)0.0047 (15)
C60.0230 (17)0.0292 (18)0.0195 (16)0.0040 (13)0.0075 (13)0.0007 (13)
N70.0248 (15)0.0320 (17)0.0190 (14)0.0032 (13)0.0054 (12)0.0041 (12)
O80.0319 (15)0.0351 (15)0.0337 (15)0.0038 (13)0.0134 (13)0.0005 (13)
O90.0379 (18)0.058 (2)0.0250 (15)0.0015 (15)0.0042 (13)0.0055 (14)
C100.0216 (15)0.0251 (16)0.0159 (14)0.0001 (13)0.0061 (13)0.0014 (13)
C110.0222 (17)0.0272 (17)0.0193 (16)0.0047 (13)0.0053 (14)0.0022 (13)
C120.0208 (16)0.0308 (19)0.0209 (17)0.0022 (14)0.0070 (13)0.0005 (14)
C130.0221 (16)0.0242 (16)0.0178 (15)0.0036 (13)0.0081 (13)0.0023 (12)
C140.0201 (15)0.0239 (15)0.0147 (14)0.0002 (13)0.0010 (12)0.0005 (12)
C150.0181 (15)0.0275 (17)0.0180 (15)0.0007 (13)0.0055 (12)0.0015 (13)
O160.0275 (14)0.0387 (15)0.0212 (13)0.0039 (11)0.0129 (11)0.0043 (11)
C170.032 (2)0.040 (2)0.0302 (19)0.0052 (17)0.0185 (17)0.0067 (17)
Geometric parameters (Å, º) top
Br1—C141.889 (3)C10—C111.391 (5)
C1—N21.346 (5)C10—C151.399 (5)
C1—C61.411 (5)C11—C121.385 (6)
C1—C101.480 (5)C11—H110.9500
N2—C31.332 (6)C12—C131.396 (5)
C3—C41.386 (7)C12—H120.9500
C3—H30.9500C13—O161.358 (4)
C4—C51.378 (7)C13—C141.396 (5)
C4—H40.9500C14—C151.377 (5)
C5—C61.383 (6)C15—H150.9500
C5—H50.9500O16—C171.425 (5)
C6—N71.469 (5)C17—H17A0.9800
N7—O91.223 (5)C17—H17B0.9800
N7—O81.225 (5)C17—H17C0.9800
N2—C1—C6118.4 (4)C12—C11—C10121.3 (3)
N2—C1—C10115.4 (4)C12—C11—H11119.4
C6—C1—C10126.2 (4)C10—C11—H11119.4
C3—N2—C1119.6 (4)C11—C12—C13120.3 (4)
N2—C3—C4124.2 (4)C11—C12—H12119.9
N2—C3—H3117.9C13—C12—H12119.9
C4—C3—H3117.9O16—C13—C12124.3 (3)
C5—C4—C3117.9 (4)O16—C13—C14117.4 (3)
C5—C4—H4121.1C12—C13—C14118.2 (3)
C3—C4—H4121.1C15—C14—C13121.5 (3)
C4—C5—C6118.1 (4)C15—C14—Br1118.7 (3)
C4—C5—H5120.9C13—C14—Br1119.7 (3)
C6—C5—H5120.9C14—C15—C10120.2 (3)
C5—C6—C1121.7 (4)C14—C15—H15119.9
C5—C6—N7116.7 (3)C10—C15—H15119.9
C1—C6—N7121.6 (4)C13—O16—C17117.0 (3)
O9—N7—O8124.0 (4)O16—C17—H17A109.5
O9—N7—C6117.3 (4)O16—C17—H17B109.5
O8—N7—C6118.7 (3)H17A—C17—H17B109.5
C11—C10—C15118.5 (3)O16—C17—H17C109.5
C11—C10—C1122.7 (3)H17A—C17—H17C109.5
C15—C10—C1118.6 (3)H17B—C17—H17C109.5
C6—C1—N2—C32.7 (6)N2—C1—C10—C1537.3 (5)
C10—C1—N2—C3175.2 (4)C6—C1—C10—C15145.0 (4)
C1—N2—C3—C40.3 (7)C15—C10—C11—C121.2 (6)
N2—C3—C4—C51.7 (8)C1—C10—C11—C12175.4 (4)
C3—C4—C5—C60.0 (7)C10—C11—C12—C131.1 (6)
C4—C5—C6—C13.0 (6)C11—C12—C13—O16179.7 (4)
C4—C5—C6—N7175.2 (4)C11—C12—C13—C140.4 (5)
N2—C1—C6—C54.4 (6)O16—C13—C14—C15179.2 (3)
C10—C1—C6—C5173.3 (4)C12—C13—C14—C150.1 (5)
N2—C1—C6—N7173.6 (3)O16—C13—C14—Br13.5 (4)
C10—C1—C6—N78.7 (6)C12—C13—C14—Br1177.2 (3)
C5—C6—N7—O934.8 (5)C13—C14—C15—C100.1 (6)
C1—C6—N7—O9147.0 (4)Br1—C14—C15—C10177.4 (3)
C5—C6—N7—O8143.1 (4)C11—C10—C15—C140.7 (5)
C1—C6—N7—O835.1 (5)C1—C10—C15—C14175.1 (3)
N2—C1—C10—C11136.9 (4)C12—C13—O16—C171.8 (5)
C6—C1—C10—C1140.9 (6)C14—C13—O16—C17178.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O8i0.952.503.293 (5)141
Symmetry code: (i) x, y+1, z.
 

References

First citationCadogan, J. I. G. (1962). Q. Rev. Chem. Soc. 16, 208–239.  CrossRef CAS Web of Science Google Scholar
First citationLetessier, J., Geffe, M., Schollmeyer, D. & Detert, H. (2013). Synthesis, 45, 3173–3178.  CAS Google Scholar
First citationSekine, A., Ohashi, Y., Yoshimura, K., Yagi, M. & Higuchi, J. (1994). Acta Cryst. C50, 1101–1104.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2006). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]