organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-n-Pentyl-5,5-di­phenyl­imidazolidine-2,4-dione

CROSSMARK_Color_square_no_text.svg

aLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: gerrab_walid@yahoo.com

Edited by H. Ishida, Okayama University, Japan (Received 14 November 2017; accepted 23 November 2017; online 28 November 2017)

In the title compound, C20H22N2O2, the central five-membered imidazolidine ring makes dihedral angles of 63.85 (6) and 70.38 (6)° with the two substituent phenyl rings. In the crystal, mol­ecules form an inversion dimer through a pair of N—H⋯O hydrogen bonds. These are linked into a three-dimensional network via C—H⋯O hydrogen bonds. The n-pentyl chain is disordered over two sites, with an occupancy ratio of 0.876 (2):0.124 (2).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As part of our ongoing studies of 5,5-di­phenyl­imidazolidine-2,4-dione derivatives (Ramli, Akrad et al., 2017[Ramli, Y., Akrad, R., Guerrab, W., Taoufik, J., Ansar, M. & Mague, J. T. (2017). IUCrData, 2, x170098.]; Ramli, Guerrab et al., 2017[Ramli, Y., Guerrab, W., Moussaif, A., Taoufik, J., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171041.]; Akrad et al., 2017[Akrad, R., Mague, J. T., Guerrab, W., Taoufik, J., Ansar, M. & Ramli, Y. (2017). IUCrData, 2, x170033.]; Guerrab et al., 2017a[Guerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017a). IUCrData, 2, x171534.],b[Guerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017b). IUCrData, 2, x171591.]), the title compound was prepared and its crystal structure is reported here. The imidazolidine-2,4-dione ring has two phenyl groups attached at the 5-position (Fig. 1[link]). The C4–C9 and C10–C15 rings are inclined to the five-membered ring by 70.38 (6) and 63.85 (6)°, respectively. In the crystal, a pair of N—H⋯O hydrogen bonds (N1—H1⋯O1i; symmetry code as in Table 1[link]) link the mol­ecules into an inversion dimer. The dimers are further linked into a three-dimensional network via C—H⋯O hydrogen bonds (C12—H12⋯O2ii and C14—H14⋯O2iii; Table 1[link] and Fig. 2[link]). The structure consists of channels running along the a axis and having an approximately oval cross-section of ca 16.8 × 7.8 Å2 (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.884 (16) 1.972 (16) 2.8538 (12) 175.9 (15)
C12—H12⋯O2ii 0.95 2.47 3.3960 (14) 166
C14—H14⋯O2iii 0.95 2.56 3.4475 (15) 156
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom-labelling scheme and 50% probability displacement ellipsoids for non-H atoms. Only the major component of the disordered n-pentyl chain is shown.
[Figure 2]
Figure 2
A packing diagram of the title compound, viewed along the a axis. N—H⋯O and C—H⋯O hydrogen bonds are shown as dashed lines. H atoms not involved in the inter­actions have been omitted.
[Figure 3]
Figure 3
A packing diagram, viewed along the b axis, showing inter­molecular inter­actions (dashed lines). One complete channel is shown in the lower centre of the drawing. H atoms not involved in the inter­actions have been omitted.

Synthesis and crystallization

To a solution of 5,5-di­phenyl­imidazolidine-2,4-dione (1 g, 3.96 mmol), one equivalent of pentyl bromide in absolute di­methyl­formamide (DMF) was added and the resulting solution heated under reflux for 3 h in the presence of 1.3 equivalents of K2CO3. The reaction mixture was filtered while hot, and the solvent evaporated under reduced pressure. The residue obtained was dried and crystallized from an ethanol solution to yield colourless block-shaped single crystals of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The n-pentyl chain is disordered over two sites and the occupancy ratio was refined to 0.876 (2):0.124 (2). The geometries of the disordered components were restrained to be comparable. Constraints of the same anisotropic displacement parameters were also applied for the disordered non-H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C20H22N2O2
Mr 322.39
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 8.5949 (9), 8.5931 (9), 23.276 (2)
β (°) 90.348 (2)
V3) 1719.1 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.46 × 0.43 × 0.13
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.91, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 32274, 4644, 3849
Rint 0.032
(sin θ/λ)max−1) 0.688
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.136, 1.10
No. of reflections 4644
No. of parameters 236
No. of restraints 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.54, −0.38
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3, SADABS, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Bruker, 2016[Bruker (2016). APEX3, SADABS, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Bruker, 2016).

3-n-Pentyl-5,5-diphenylimidazolidine-2,4-dione top
Crystal data top
C20H22N2O2F(000) = 688
Mr = 322.39Dx = 1.246 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.5949 (9) ÅCell parameters from 9926 reflections
b = 8.5931 (9) Åθ = 2.4–29.2°
c = 23.276 (2) ŵ = 0.08 mm1
β = 90.348 (2)°T = 100 K
V = 1719.1 (3) Å3Plate, colourless
Z = 40.46 × 0.43 × 0.13 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4644 independent reflections
Radiation source: fine-focus sealed tube3849 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 8.3333 pixels mm-1θmax = 29.3°, θmin = 1.8°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1111
Tmin = 0.91, Tmax = 0.99l = 3131
32274 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: mixed
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0803P)2 + 0.3238P]
where P = (Fo2 + 2Fc2)/3
4644 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.54 e Å3
8 restraintsΔρmin = 0.38 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 15 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.70156 (9)0.59673 (10)0.50462 (3)0.02237 (19)
O20.87704 (9)0.41015 (10)0.33272 (4)0.02262 (19)
N10.58128 (10)0.44972 (11)0.43413 (4)0.0180 (2)
H10.4913 (18)0.4382 (18)0.4518 (6)0.027 (4)*
N20.82575 (10)0.52328 (11)0.42027 (4)0.0178 (2)
C10.69930 (12)0.52957 (12)0.45825 (5)0.0168 (2)
C20.61887 (11)0.38545 (12)0.37780 (4)0.0158 (2)
C30.78989 (12)0.43843 (12)0.37198 (5)0.0170 (2)
C40.61088 (11)0.20752 (12)0.37723 (5)0.0171 (2)
C50.61400 (12)0.12283 (13)0.42812 (5)0.0212 (2)
H50.6211070.1755260.4639210.025*
C60.60671 (14)0.03919 (14)0.42677 (5)0.0254 (3)
H60.6091220.0966490.4616350.030*
C70.59598 (14)0.11648 (14)0.37474 (6)0.0262 (3)
H70.5887950.2267850.3739620.031*
C80.59569 (14)0.03291 (14)0.32362 (6)0.0257 (3)
H80.5904290.0861100.2878850.031*
C90.60312 (13)0.12879 (13)0.32486 (5)0.0215 (2)
H90.6029140.1858520.2899070.026*
C100.51272 (12)0.45835 (12)0.33207 (4)0.0160 (2)
C110.35237 (13)0.44099 (13)0.33893 (5)0.0213 (2)
H110.3137380.3809590.3700020.026*
C120.24873 (13)0.51060 (15)0.30077 (5)0.0253 (2)
H120.1398380.4980980.3057870.030*
C130.30454 (14)0.59832 (15)0.25538 (6)0.0274 (3)
H130.2339930.6476020.2296030.033*
C140.46365 (14)0.61397 (15)0.24768 (5)0.0282 (3)
H140.5018790.6727760.2162170.034*
C150.56768 (13)0.54401 (14)0.28578 (5)0.0229 (2)
H150.6765170.5548370.2801350.027*
C160.97712 (12)0.59637 (14)0.43206 (5)0.0234 (2)0.876 (2)
H16A1.0602630.5260780.4183480.028*0.876 (2)
H16B0.9899240.6075090.4741540.028*0.876 (2)
C170.99889 (15)0.75387 (15)0.40460 (7)0.0243 (3)0.876 (2)
H17A0.9127260.8234960.4160730.029*0.876 (2)
H17B0.9956670.7428570.3622730.029*0.876 (2)
C181.15373 (14)0.82592 (16)0.42272 (7)0.0253 (3)0.876 (2)
H18A1.1575650.8333380.4651440.030*0.876 (2)
H18B1.2393950.7566590.4104730.030*0.876 (2)
C191.17926 (16)0.98717 (18)0.39724 (7)0.0315 (3)0.876 (2)
H19A1.1701140.9805640.3548960.038*0.876 (2)
H19B1.2862421.0219560.4066250.038*0.876 (2)
C201.0637 (3)1.1084 (2)0.41924 (13)0.0403 (5)0.876 (2)
H20A1.0860081.2093600.4015480.061*0.876 (2)
H20B1.0735261.1171970.4610860.061*0.876 (2)
H20C0.9576001.0762190.4091940.061*0.876 (2)
C16A0.97712 (12)0.59637 (14)0.43206 (5)0.0234 (2)0.124 (2)
H16C1.0622810.5197060.4278700.028*0.124 (2)
H16D0.9803640.6390190.4715570.028*0.124 (2)
C17A0.9931 (9)0.7259 (9)0.3882 (3)0.0243 (3)0.124 (2)
H17C0.9100110.8035380.3947270.029*0.124 (2)
H17D0.9771410.6817520.3492780.029*0.124 (2)
C18A1.1499 (8)0.8083 (8)0.3900 (4)0.0253 (3)0.124 (2)
H18C1.2321600.7306820.3982150.030*0.124 (2)
H18D1.1709220.8532760.3516300.030*0.124 (2)
C19A1.1596 (11)0.9373 (10)0.4346 (4)0.0315 (3)0.124 (2)
H19C1.2698770.9526700.4457140.038*0.124 (2)
H19D1.1024790.9041360.4693680.038*0.124 (2)
C20A1.093 (3)1.0922 (12)0.4137 (10)0.0403 (5)0.124 (2)
H20D1.1508941.1276500.3800780.061*0.124 (2)
H20E1.1016651.1697950.4444230.061*0.124 (2)
H20F0.9830341.0784670.4032730.061*0.124 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0187 (4)0.0286 (4)0.0199 (4)0.0031 (3)0.0018 (3)0.0075 (3)
O20.0168 (4)0.0281 (4)0.0230 (4)0.0014 (3)0.0074 (3)0.0041 (3)
N10.0139 (4)0.0234 (5)0.0169 (4)0.0037 (3)0.0042 (3)0.0052 (3)
N20.0128 (4)0.0208 (4)0.0200 (4)0.0026 (3)0.0029 (3)0.0030 (3)
C10.0139 (4)0.0180 (5)0.0185 (5)0.0003 (3)0.0019 (4)0.0014 (4)
C20.0137 (4)0.0185 (5)0.0151 (5)0.0021 (3)0.0040 (3)0.0031 (4)
C30.0143 (4)0.0174 (5)0.0193 (5)0.0008 (3)0.0025 (4)0.0003 (4)
C40.0130 (4)0.0183 (5)0.0200 (5)0.0009 (3)0.0022 (4)0.0004 (4)
C50.0190 (5)0.0241 (5)0.0206 (5)0.0010 (4)0.0003 (4)0.0015 (4)
C60.0241 (6)0.0240 (6)0.0280 (6)0.0011 (4)0.0023 (4)0.0068 (4)
C70.0242 (6)0.0187 (5)0.0357 (7)0.0021 (4)0.0032 (5)0.0005 (4)
C80.0289 (6)0.0207 (6)0.0276 (6)0.0021 (4)0.0019 (5)0.0054 (4)
C90.0239 (5)0.0204 (5)0.0203 (5)0.0008 (4)0.0022 (4)0.0017 (4)
C100.0166 (5)0.0150 (5)0.0165 (5)0.0013 (3)0.0015 (4)0.0028 (4)
C110.0168 (5)0.0245 (5)0.0226 (5)0.0016 (4)0.0036 (4)0.0017 (4)
C120.0171 (5)0.0312 (6)0.0277 (6)0.0009 (4)0.0009 (4)0.0002 (5)
C130.0260 (6)0.0285 (6)0.0278 (6)0.0014 (4)0.0043 (5)0.0039 (5)
C140.0286 (6)0.0311 (6)0.0249 (6)0.0077 (5)0.0008 (5)0.0086 (5)
C150.0186 (5)0.0271 (6)0.0230 (6)0.0059 (4)0.0029 (4)0.0018 (4)
C160.0137 (5)0.0272 (6)0.0293 (6)0.0034 (4)0.0004 (4)0.0044 (5)
C170.0178 (5)0.0221 (6)0.0330 (8)0.0044 (5)0.0019 (5)0.0039 (6)
C180.0157 (5)0.0267 (7)0.0334 (8)0.0048 (5)0.0028 (5)0.0018 (6)
C190.0198 (6)0.0308 (7)0.0440 (9)0.0077 (5)0.0029 (6)0.0045 (6)
C200.0269 (13)0.0265 (7)0.0677 (13)0.0030 (6)0.0068 (9)0.0033 (8)
C16A0.0137 (5)0.0272 (6)0.0293 (6)0.0034 (4)0.0004 (4)0.0044 (5)
C17A0.0178 (5)0.0221 (6)0.0330 (8)0.0044 (5)0.0019 (5)0.0039 (6)
C18A0.0157 (5)0.0267 (7)0.0334 (8)0.0048 (5)0.0028 (5)0.0018 (6)
C19A0.0198 (6)0.0308 (7)0.0440 (9)0.0077 (5)0.0029 (6)0.0045 (6)
C20A0.0269 (13)0.0265 (7)0.0677 (13)0.0030 (6)0.0068 (9)0.0033 (8)
Geometric parameters (Å, º) top
O1—C11.2238 (13)C14—H140.9500
O2—C31.2098 (13)C15—H150.9500
N1—C11.3447 (13)C16—C171.5088 (18)
N1—C21.4608 (13)C16—H16A0.9900
N1—H10.884 (16)C16—H16B0.9900
N2—C31.3732 (14)C17—C181.5250 (17)
N2—C11.4062 (13)C17—H17A0.9900
N2—C16A1.4690 (13)C17—H17B0.9900
N2—C161.4690 (13)C18—C191.523 (2)
C2—C41.5305 (15)C18—H18A0.9900
C2—C101.5316 (15)C18—H18B0.9900
C2—C31.5455 (14)C19—C201.529 (2)
C4—C51.3904 (15)C19—H19A0.9900
C4—C91.3953 (15)C19—H19B0.9900
C5—C61.3940 (17)C20—H20A0.9800
C5—H50.9500C20—H20B0.9800
C6—C71.3839 (18)C20—H20C0.9800
C6—H60.9500C16A—C17A1.518 (3)
C7—C81.3898 (18)C16A—H16C0.9900
C7—H70.9500C16A—H16D0.9900
C8—C91.3913 (16)C17A—C18A1.523 (3)
C8—H80.9500C17A—H17C0.9900
C9—H90.9500C17A—H17D0.9900
C10—C151.3899 (15)C18A—C19A1.521 (4)
C10—C111.3964 (14)C18A—H18C0.9900
C11—C121.3894 (16)C18A—H18D0.9900
C11—H110.9500C19A—C20A1.528 (4)
C12—C131.3859 (18)C19A—H19C0.9900
C12—H120.9500C19A—H19D0.9900
C13—C141.3868 (17)C20A—H20D0.9800
C13—H130.9500C20A—H20E0.9800
C14—C151.3920 (17)C20A—H20F0.9800
C1—N1—C2113.42 (8)N2—C16—H16B108.6
C1—N1—H1121.5 (10)C17—C16—H16B108.6
C2—N1—H1125.0 (10)H16A—C16—H16B107.6
C3—N2—C1111.38 (8)C16—C17—C18110.94 (11)
C3—N2—C16125.03 (9)C16—C17—H17A109.5
C1—N2—C16123.58 (9)C18—C17—H17A109.5
O1—C1—N1128.08 (10)C16—C17—H17B109.5
O1—C1—N2124.36 (9)C18—C17—H17B109.5
N1—C1—N2107.56 (9)H17A—C17—H17B108.0
N1—C2—C4112.04 (9)C19—C18—C17112.90 (11)
N1—C2—C10109.58 (8)C19—C18—H18A109.0
C4—C2—C10112.09 (8)C17—C18—H18A109.0
N1—C2—C3100.53 (8)C19—C18—H18B109.0
C4—C2—C3109.64 (8)C17—C18—H18B109.0
C10—C2—C3112.43 (8)H18A—C18—H18B107.8
O2—C3—N2126.02 (10)C18—C19—C20113.19 (15)
O2—C3—C2126.90 (10)C18—C19—H19A108.9
N2—C3—C2107.07 (8)C20—C19—H19A108.9
C5—C4—C9119.41 (10)C18—C19—H19B108.9
C5—C4—C2121.00 (10)C20—C19—H19B108.9
C9—C4—C2119.59 (9)H19A—C19—H19B107.8
C4—C5—C6120.20 (11)C19—C20—H20A109.5
C4—C5—H5119.9C19—C20—H20B109.5
C6—C5—H5119.9H20A—C20—H20B109.5
C7—C6—C5120.12 (11)C19—C20—H20C109.5
C7—C6—H6119.9H20A—C20—H20C109.5
C5—C6—H6119.9H20B—C20—H20C109.5
C6—C7—C8120.07 (11)N2—C16A—C17A105.8 (3)
C6—C7—H7120.0N2—C16A—H16C110.6
C8—C7—H7120.0C17A—C16A—H16C110.6
C7—C8—C9119.90 (11)N2—C16A—H16D110.6
C7—C8—H8120.1C17A—C16A—H16D110.6
C9—C8—H8120.1H16C—C16A—H16D108.7
C8—C9—C4120.29 (11)C16A—C17A—C18A114.0 (4)
C8—C9—H9119.9C16A—C17A—H17C108.8
C4—C9—H9119.9C18A—C17A—H17C108.8
C15—C10—C11119.04 (10)C16A—C17A—H17D108.8
C15—C10—C2123.47 (9)C18A—C17A—H17D108.8
C11—C10—C2117.46 (9)H17C—C17A—H17D107.7
C12—C11—C10120.69 (10)C19A—C18A—C17A113.7 (4)
C12—C11—H11119.7C19A—C18A—H18C108.8
C10—C11—H11119.7C17A—C18A—H18C108.8
C13—C12—C11119.86 (11)C19A—C18A—H18D108.8
C13—C12—H12120.1C17A—C18A—H18D108.8
C11—C12—H12120.1H18C—C18A—H18D107.7
C12—C13—C14119.83 (11)C18A—C19A—C20A113.5 (5)
C12—C13—H13120.1C18A—C19A—H19C108.9
C14—C13—H13120.1C20A—C19A—H19C108.9
C13—C14—C15120.39 (11)C18A—C19A—H19D108.9
C13—C14—H14119.8C20A—C19A—H19D108.9
C15—C14—H14119.8H19C—C19A—H19D107.7
C10—C15—C14120.17 (10)C19A—C20A—H20D109.5
C10—C15—H15119.9C19A—C20A—H20E109.5
C14—C15—H15119.9H20D—C20A—H20E109.5
N2—C16—C17114.61 (10)C19A—C20A—H20F109.5
N2—C16—H16A108.6H20D—C20A—H20F109.5
C17—C16—H16A108.6H20E—C20A—H20F109.5
C2—N1—C1—O1179.44 (11)C4—C5—C6—C70.15 (17)
C2—N1—C1—N20.74 (12)C5—C6—C7—C81.34 (17)
C3—N2—C1—O1179.30 (10)C6—C7—C8—C91.27 (17)
C16A—N2—C1—O10.42 (17)C7—C8—C9—C40.01 (17)
C16—N2—C1—O10.42 (17)C5—C4—C9—C81.17 (16)
C3—N2—C1—N10.53 (12)C2—C4—C9—C8179.95 (10)
C16A—N2—C1—N1179.41 (10)N1—C2—C10—C15119.65 (11)
C16—N2—C1—N1179.41 (10)C4—C2—C10—C15115.31 (11)
C1—N1—C2—C4117.89 (10)C3—C2—C10—C158.75 (14)
C1—N1—C2—C10117.03 (10)N1—C2—C10—C1158.20 (12)
C1—N1—C2—C31.52 (11)C4—C2—C10—C1166.84 (12)
C1—N2—C3—O2178.01 (11)C3—C2—C10—C11169.10 (9)
C16A—N2—C3—O20.85 (18)C15—C10—C11—C121.22 (17)
C16—N2—C3—O20.85 (18)C2—C10—C11—C12176.73 (10)
C1—N2—C3—C21.48 (12)C10—C11—C12—C130.02 (18)
C16A—N2—C3—C2179.66 (10)C11—C12—C13—C141.11 (19)
C16—N2—C3—C2179.66 (10)C12—C13—C14—C151.0 (2)
N1—C2—C3—O2177.74 (11)C11—C10—C15—C141.37 (17)
C4—C2—C3—O259.60 (14)C2—C10—C15—C14176.45 (10)
C10—C2—C3—O265.80 (14)C13—C14—C15—C100.29 (19)
N1—C2—C3—N21.74 (11)C3—N2—C16—C1783.71 (14)
C4—C2—C3—N2119.88 (9)C1—N2—C16—C1797.57 (13)
C10—C2—C3—N2114.71 (10)N2—C16—C17—C18175.78 (10)
N1—C2—C4—C517.72 (13)C16—C17—C18—C19178.55 (12)
C10—C2—C4—C5141.40 (10)C17—C18—C19—C2065.5 (2)
C3—C2—C4—C593.00 (11)C3—N2—C16A—C17A67.9 (5)
N1—C2—C4—C9163.42 (9)C1—N2—C16A—C17A113.4 (5)
C10—C2—C4—C939.74 (13)N2—C16A—C17A—C18A175.2 (5)
C3—C2—C4—C985.86 (11)C16A—C17A—C18A—C19A84.2 (9)
C9—C4—C5—C61.10 (16)C17A—C18A—C19A—C20A83.6 (13)
C2—C4—C5—C6179.96 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.884 (16)1.972 (16)2.8538 (12)175.9 (15)
C12—H12···O2ii0.952.473.3960 (14)166
C14—H14···O2iii0.952.563.4475 (15)156
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAkrad, R., Mague, J. T., Guerrab, W., Taoufik, J., Ansar, M. & Ramli, Y. (2017). IUCrData, 2, x170033.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017a). IUCrData, 2, x171534.  Google Scholar
First citationGuerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017b). IUCrData, 2, x171591.  Google Scholar
First citationRamli, Y., Akrad, R., Guerrab, W., Taoufik, J., Ansar, M. & Mague, J. T. (2017). IUCrData, 2, x170098.  Google Scholar
First citationRamli, Y., Guerrab, W., Moussaif, A., Taoufik, J., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171041.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]