organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N′-[(1Z)-1-(3-Methyl-5-oxo-1-phenyl-4,5-di­hydro-1H-pyrazol-4-yl­­idene)eth­yl]-2-[(4-methyl­phen­yl)sulfan­yl]acetohydrazide

CROSSMARK_Color_square_no_text.svg

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt, and fKirkuk University, College of Education, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 November 2017; accepted 19 November 2017; online 28 November 2017)

In the title compound, C21H22N4O2S, the dihedral angle between the pyrazole ring and adjacent benzene ring is 6.4 (1)°. The mol­ecular conformation is influenced by intra­molecular N—H⋯O and C—H⋯O hydrogen bonds. In the crystal, N—H⋯O hydrogen bonds plus C—H⋯π and ππ stacking inter­actions form chains extending in the a-axis direction. The chains are linked by complementary pairs of C—H⋯π inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrazolone derivatives are important components of numerous pharmaceuticals, agrochemicals, dyes and pigments, chelating and extracting agents (e.g. Himly et al., 2003[Himly, M., Jahn-Schmid, B., Pittertschatscher, K., Bohle, B., Grubmayr, K., Ferreira, F., Ebner, H. & Ebner, C. J. (2003). J. Allergy Clin. Immunol. 111, 882-888.]; Shweta et al., 2013[Shweta, S., Bule, M. R. & Kumbhare, P. R. D. (2013). J. Chem. Biol. Phys. Sci. Sect. B, 3, 1996-2005.]). As part of our studies in this area, we now describe the synthesis and structure of the title compound. A related compound, (Z)-4-[1-(4-acetyl­anilino) ethyl­idene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one derived from acyl pyrazolone and aromatic amine was reported to possess the keto–amine tautomer in the solid state (Mahfouz et al. 2015[Mahfouz, R. M., Demircioğlu, Z., Abbady, M. S. & Büyükgüngör, O. (2015). Acta Cryst. E71, 94-96.]).

The conformation of the substituents on the 5-membered heterocyclic ring in the title compound is determined, in part, by the intra­molecular N3—H3A⋯O1 hydrogen bond and, to a lesser extent, the intra­molecular C2—H2⋯O1 hydrogen bond (Table 1[link] and Fig. 1[link]). The dihedral angle between the mean planes of the C1–C6 and the N1/N2/C7–C9 rings is thus 6.4 (1)°, while that between the latter ring and the C15–C20 ring is 2.4 (1)°. Despite this, the mol­ecule is not entirely planar as indicated by the C11—N3—N4—C13 torsion angle of 138.79 (19)°.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg3 are the centroids of the N1/N2/C7–C9 and C15–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1 0.95 (3) 1.82 (3) 2.627 (2) 141 (2)
N4—H4A⋯O2i 0.90 (3) 1.96 (3) 2.858 (2) 174 (2)
C2—H2⋯O1 0.96 (2) 2.30 (2) 2.937 (2) 123.1 (18)
C10—H10BCg1i 0.99 (3) 2.80 (3) 3.740 (2) 159 (2)
C14—H14ACg3ii 1.00 (2) 2.99 (2) 3.947 (3) 161 (2)
C16—H16⋯O2iii 0.94 (3) 2.65 (3) 3.436 (3) 143 (2)
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+1, -z; (iii) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure, with 50% probability displacement ellipsoids. The intra­molecular N—H⋯O and C—H⋯O hydrogen bonds are shown as blue and black dashed lines, respectively.

In the crystal, N4—H4A⋯O2 hydrogen bonds accompanied by C—H⋯π (C10—H10BCg1; Table 1[link] and Fig. 2[link]) and ππ-stacking inter­actions [Cg1⋯Cg2(−1 + x, y, z) = 3.667 (1) Å, Cg1 and Cg2 are the centroids of the N1/N2/C7–C9 and C1–C6 rings, respectively] form chains propagating along the a-axis direction (Fig. 2[link]). These chains are linked through pairwise C—H⋯π [C14—H14ACg3; Cg3 is the centroid of the C15–C20 ring at −x, −y + 1, −z] inter­actions (Fig. 3[link] and Table 1[link]).

[Figure 2]
Figure 2
Plan view of the packing, showing the layers formed by inter­molecular N—H⋯O hydrogen bonds (blue dashed lines) and C—H⋯π and ππ stacking inter­actions (green and orange dashed lines respectively).
[Figure 3]
Figure 3
Elevation view of the packing along the a-axis direction, showing the connecting of two layers through C—H⋯π inter­actions.

Synthesis and crystallization

The title compound was obtained by refluxing equimolar qu­anti­ties of 4-acetyl-3-methyl-1-phenyl-2-pyrazolin-5-one (1.081 g m, 5 mmol) and 2-(4-tolyl­thio)­acethydrazide (0.981 g m, 5 mmol) in 30 ml ethanol for 2 h. On cooling, the yellow precipitate was collected by filtration and recrystallized from di­methyl­formamide (DMF) solution as colourless plates. Yield (89%); m.p. 443–445 K; IR (KBr, cm−1); 3232 (NH), 1656,1633 (2 C=O).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H22N4O2S
Mr 394.48
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 4.8687 (2), 46.7634 (16), 8.4173 (3)
β (°) 100.232 (1)
V3) 1885.95 (12)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.73
Crystal size (mm) 0.19 × 0.08 × 0.04
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.78, 0.94
No. of measured, independent and observed [I > 2σ(I)] reflections 16199, 3723, 3404
Rint 0.044
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.103, 1.12
No. of reflections 3723
No. of parameters 341
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.23, −0.27
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

N'-[(1Z)-1-(3-Methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-ylidene)ethyl]-2-[(4-methylphenyl)sulfanyl]acetohydrazide top
Crystal data top
C21H22N4O2SF(000) = 832
Mr = 394.48Dx = 1.389 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 4.8687 (2) ÅCell parameters from 9883 reflections
b = 46.7634 (16) Åθ = 3.8–74.5°
c = 8.4173 (3) ŵ = 1.73 mm1
β = 100.232 (1)°T = 150 K
V = 1885.95 (12) Å3Plate, colourless
Z = 40.19 × 0.08 × 0.04 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3723 independent reflections
Radiation source: INCOATEC IµS micro-focus source3404 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.044
Detector resolution: 10.4167 pixels mm-1θmax = 74.5°, θmin = 3.8°
ω scansh = 65
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 5753
Tmin = 0.78, Tmax = 0.94l = 109
16199 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.103All H-atom parameters refined
S = 1.12 w = 1/[σ2(Fo2) + (0.023P)2 + 1.718P]
where P = (Fo2 + 2Fc2)/3
3723 reflections(Δ/σ)max = 0.002
341 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.23101 (10)0.51189 (2)0.34557 (6)0.03032 (14)
O10.4863 (3)0.63157 (3)0.66802 (17)0.0278 (3)
O20.3695 (3)0.57155 (3)0.37885 (19)0.0324 (3)
N10.4559 (3)0.68151 (3)0.69106 (19)0.0229 (3)
N20.2746 (3)0.70331 (3)0.6214 (2)0.0247 (3)
N30.0537 (3)0.61217 (3)0.4649 (2)0.0268 (4)
H3A0.222 (6)0.6101 (5)0.541 (3)0.043 (7)*
N40.0633 (3)0.58791 (3)0.3844 (2)0.0262 (4)
H4A0.243 (6)0.5838 (5)0.388 (3)0.036 (6)*
C10.6842 (4)0.68887 (4)0.8128 (2)0.0231 (4)
C20.8821 (4)0.66859 (4)0.8780 (2)0.0275 (4)
H20.869 (5)0.6493 (5)0.840 (3)0.034 (6)*
C31.1042 (4)0.67684 (5)0.9954 (3)0.0312 (4)
H31.244 (6)0.6623 (6)1.040 (3)0.045 (7)*
C41.1317 (5)0.70485 (5)1.0504 (3)0.0337 (5)
H41.298 (5)0.7096 (5)1.136 (3)0.037 (6)*
C50.9319 (5)0.72481 (5)0.9863 (3)0.0335 (5)
H50.944 (5)0.7449 (5)1.026 (3)0.039 (6)*
C60.7097 (4)0.71708 (4)0.8682 (3)0.0295 (4)
H60.569 (5)0.7305 (5)0.821 (3)0.035 (6)*
C70.3680 (4)0.65506 (4)0.6301 (2)0.0224 (4)
C80.1170 (4)0.66065 (4)0.5138 (2)0.0227 (4)
C90.0774 (4)0.69108 (4)0.5178 (2)0.0233 (4)
C100.1466 (4)0.70947 (5)0.4262 (3)0.0301 (4)
H10A0.149 (6)0.7090 (6)0.308 (3)0.046 (7)*
H10B0.334 (6)0.7035 (6)0.443 (3)0.047 (7)*
H10C0.110 (5)0.7297 (6)0.467 (3)0.043 (7)*
C110.0348 (4)0.63867 (4)0.4278 (2)0.0234 (4)
C120.2844 (4)0.64281 (5)0.2995 (3)0.0310 (4)
H12A0.263 (7)0.6320 (7)0.200 (4)0.071 (10)*
H12B0.449 (8)0.6345 (7)0.331 (4)0.078 (10)*
H12C0.326 (7)0.6624 (8)0.279 (4)0.081 (11)*
C130.1168 (4)0.56754 (4)0.3541 (2)0.0242 (4)
C140.0179 (4)0.54011 (4)0.2839 (3)0.0277 (4)
H14A0.052 (5)0.5424 (5)0.164 (3)0.029 (6)*
H14B0.189 (5)0.5365 (5)0.317 (3)0.036 (6)*
C150.0623 (4)0.48142 (4)0.2500 (2)0.0258 (4)
C160.1980 (5)0.45551 (5)0.2878 (3)0.0356 (5)
H160.366 (6)0.4553 (6)0.362 (3)0.052 (8)*
C170.0904 (5)0.43032 (5)0.2146 (3)0.0367 (5)
H170.191 (6)0.4126 (6)0.243 (3)0.044 (7)*
C180.1533 (5)0.43025 (4)0.1019 (2)0.0315 (4)
C190.2882 (5)0.45609 (5)0.0662 (3)0.0402 (5)
H190.460 (6)0.4568 (6)0.013 (3)0.051 (8)*
C200.1826 (5)0.48153 (5)0.1387 (3)0.0373 (5)
H200.279 (6)0.4986 (6)0.113 (3)0.054 (8)*
C210.2696 (7)0.40302 (5)0.0196 (3)0.0431 (6)
H21A0.323 (7)0.3891 (7)0.093 (4)0.074 (10)*
H21B0.123 (8)0.3934 (7)0.028 (4)0.077 (11)*
H21C0.433 (8)0.4066 (8)0.065 (5)0.087 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0232 (2)0.0279 (3)0.0363 (3)0.00029 (18)0.00429 (19)0.00213 (19)
O10.0256 (7)0.0216 (7)0.0337 (8)0.0005 (5)0.0012 (6)0.0002 (5)
O20.0155 (7)0.0340 (8)0.0468 (9)0.0025 (5)0.0032 (6)0.0049 (6)
N10.0211 (8)0.0218 (7)0.0256 (8)0.0012 (6)0.0033 (6)0.0003 (6)
N20.0233 (8)0.0231 (8)0.0287 (9)0.0026 (6)0.0073 (7)0.0027 (6)
N30.0207 (8)0.0256 (8)0.0321 (9)0.0032 (6)0.0010 (7)0.0045 (7)
N40.0142 (8)0.0265 (8)0.0373 (10)0.0043 (6)0.0033 (7)0.0062 (7)
C10.0206 (9)0.0269 (9)0.0231 (10)0.0049 (7)0.0071 (7)0.0016 (7)
C20.0260 (10)0.0278 (10)0.0285 (10)0.0025 (8)0.0039 (8)0.0015 (8)
C30.0251 (10)0.0383 (11)0.0292 (11)0.0022 (8)0.0022 (8)0.0012 (8)
C40.0272 (11)0.0459 (12)0.0277 (11)0.0100 (9)0.0037 (9)0.0069 (9)
C50.0332 (11)0.0328 (11)0.0363 (12)0.0103 (9)0.0109 (9)0.0102 (9)
C60.0281 (10)0.0272 (10)0.0344 (11)0.0032 (8)0.0092 (9)0.0044 (8)
C70.0206 (9)0.0235 (9)0.0237 (9)0.0020 (7)0.0057 (7)0.0006 (7)
C80.0187 (9)0.0261 (9)0.0239 (9)0.0005 (7)0.0060 (7)0.0012 (7)
C90.0212 (9)0.0262 (9)0.0246 (10)0.0003 (7)0.0094 (7)0.0026 (7)
C100.0261 (10)0.0305 (11)0.0346 (12)0.0058 (8)0.0078 (9)0.0065 (8)
C110.0164 (8)0.0285 (9)0.0265 (10)0.0006 (7)0.0074 (7)0.0002 (7)
C120.0242 (10)0.0363 (11)0.0307 (11)0.0002 (8)0.0003 (9)0.0018 (9)
C130.0171 (9)0.0279 (9)0.0268 (10)0.0016 (7)0.0021 (7)0.0002 (7)
C140.0154 (9)0.0295 (10)0.0369 (12)0.0006 (7)0.0013 (8)0.0065 (8)
C150.0249 (9)0.0271 (10)0.0259 (10)0.0005 (7)0.0056 (8)0.0001 (7)
C160.0378 (12)0.0315 (11)0.0330 (12)0.0008 (9)0.0065 (10)0.0052 (9)
C170.0452 (13)0.0262 (10)0.0368 (12)0.0037 (9)0.0022 (10)0.0049 (8)
C180.0410 (12)0.0272 (10)0.0269 (10)0.0028 (9)0.0079 (9)0.0007 (8)
C190.0380 (12)0.0323 (11)0.0437 (14)0.0003 (9)0.0109 (11)0.0037 (9)
C200.0299 (11)0.0275 (11)0.0494 (14)0.0037 (9)0.0068 (10)0.0049 (9)
C210.0645 (17)0.0283 (11)0.0348 (13)0.0053 (11)0.0037 (12)0.0030 (9)
Geometric parameters (Å, º) top
S1—C151.765 (2)C8—C91.437 (3)
S1—C141.805 (2)C9—C101.492 (3)
O1—C71.255 (2)C10—H10A0.99 (3)
O2—C131.225 (2)C10—H10B0.99 (3)
N1—C71.378 (2)C10—H10C1.01 (3)
N1—N21.407 (2)C11—C121.488 (3)
N1—C11.414 (2)C12—H12A1.00 (3)
N2—C91.308 (3)C12—H12B0.97 (4)
N3—C111.331 (2)C12—H12C0.95 (4)
N3—N41.391 (2)C13—C141.512 (3)
N3—H3A0.95 (3)C14—H14A1.00 (2)
N4—C131.349 (2)C14—H14B0.94 (3)
N4—H4A0.90 (3)C15—C201.380 (3)
C1—C21.393 (3)C15—C161.390 (3)
C1—C61.397 (3)C16—C171.388 (3)
C2—C31.384 (3)C16—H160.94 (3)
C2—H20.96 (2)C17—C181.382 (3)
C3—C41.388 (3)C17—H170.97 (3)
C3—H30.98 (3)C18—C191.383 (3)
C4—C51.387 (3)C18—C211.511 (3)
C4—H41.01 (3)C19—C201.393 (3)
C5—C61.381 (3)C19—H190.97 (3)
C5—H51.00 (2)C20—H200.93 (3)
C6—H60.96 (3)C21—H21A0.96 (4)
C7—C81.448 (3)C21—H21B0.99 (4)
C8—C111.391 (3)C21—H21C0.98 (4)
C15—S1—C14103.00 (9)H10B—C10—H10C109 (2)
C7—N1—N2111.40 (15)N3—C11—C8116.50 (17)
C7—N1—C1129.83 (16)N3—C11—C12118.68 (18)
N2—N1—C1118.70 (15)C8—C11—C12124.83 (18)
C9—N2—N1107.04 (15)C11—C12—H12A110.4 (19)
C11—N3—N4123.90 (17)C11—C12—H12B111 (2)
C11—N3—H3A117.1 (15)H12A—C12—H12B104 (3)
N4—N3—H3A118.5 (15)C11—C12—H12C112 (2)
C13—N4—N3116.36 (16)H12A—C12—H12C113 (3)
C13—N4—H4A121.5 (16)H12B—C12—H12C106 (3)
N3—N4—H4A118.3 (16)O2—C13—N4121.79 (17)
C2—C1—C6119.79 (19)O2—C13—C14123.27 (17)
C2—C1—N1121.30 (17)N4—C13—C14114.92 (16)
C6—C1—N1118.91 (18)C13—C14—S1106.59 (13)
C3—C2—C1119.33 (19)C13—C14—H14A106.7 (13)
C3—C2—H2119.8 (15)S1—C14—H14A110.7 (13)
C1—C2—H2120.9 (15)C13—C14—H14B112.5 (15)
C2—C3—C4121.2 (2)S1—C14—H14B111.4 (15)
C2—C3—H3118.4 (16)H14A—C14—H14B109 (2)
C4—C3—H3120.4 (16)C20—C15—C16118.48 (19)
C5—C4—C3119.1 (2)C20—C15—S1125.64 (16)
C5—C4—H4123.2 (14)C16—C15—S1115.83 (16)
C3—C4—H4117.7 (14)C17—C16—C15120.8 (2)
C6—C5—C4120.6 (2)C17—C16—H16120.2 (17)
C6—C5—H5118.6 (15)C15—C16—H16119.0 (17)
C4—C5—H5120.8 (15)C18—C17—C16121.2 (2)
C5—C6—C1119.9 (2)C18—C17—H17119.9 (16)
C5—C6—H6122.5 (15)C16—C17—H17118.9 (16)
C1—C6—H6117.5 (15)C17—C18—C19117.6 (2)
O1—C7—N1126.39 (18)C17—C18—C21121.6 (2)
O1—C7—C8128.62 (17)C19—C18—C21120.8 (2)
N1—C7—C8104.99 (15)C18—C19—C20121.8 (2)
C11—C8—C9133.06 (18)C18—C19—H19119.8 (16)
C11—C8—C7121.66 (17)C20—C19—H19118.4 (16)
C9—C8—C7105.27 (16)C15—C20—C19120.1 (2)
N2—C9—C8111.30 (17)C15—C20—H20119.8 (18)
N2—C9—C10118.37 (17)C19—C20—H20120.1 (18)
C8—C9—C10130.34 (18)C18—C21—H21A113 (2)
C9—C10—H10A112.6 (16)C18—C21—H21B109 (2)
C9—C10—H10B111.7 (16)H21A—C21—H21B104 (3)
H10A—C10—H10B107 (2)C18—C21—H21C112 (2)
C9—C10—H10C107.2 (15)H21A—C21—H21C108 (3)
H10A—C10—H10C109 (2)H21B—C21—H21C109 (3)
C7—N1—N2—C90.5 (2)C7—C8—C9—N20.1 (2)
C1—N1—N2—C9177.73 (15)C11—C8—C9—C100.7 (3)
C11—N3—N4—C13138.79 (19)C7—C8—C9—C10179.26 (19)
C7—N1—C1—C28.0 (3)N4—N3—C11—C8175.98 (17)
N2—N1—C1—C2175.34 (16)N4—N3—C11—C124.0 (3)
C7—N1—C1—C6171.82 (18)C9—C8—C11—N3174.60 (19)
N2—N1—C1—C64.8 (2)C7—C8—C11—N33.8 (3)
C6—C1—C2—C31.0 (3)C9—C8—C11—C125.4 (3)
N1—C1—C2—C3179.13 (18)C7—C8—C11—C12176.18 (18)
C1—C2—C3—C40.7 (3)N3—N4—C13—O28.4 (3)
C2—C3—C4—C50.1 (3)N3—N4—C13—C14173.28 (17)
C3—C4—C5—C60.6 (3)O2—C13—C14—S129.7 (2)
C4—C5—C6—C10.3 (3)N4—C13—C14—S1152.02 (15)
C2—C1—C6—C50.6 (3)C15—S1—C14—C13177.22 (14)
N1—C1—C6—C5179.58 (18)C14—S1—C15—C208.0 (2)
N2—N1—C7—O1179.70 (17)C14—S1—C15—C16174.65 (17)
C1—N1—C7—O13.5 (3)C20—C15—C16—C170.3 (3)
N2—N1—C7—C80.57 (19)S1—C15—C16—C17177.29 (18)
C1—N1—C7—C8177.41 (17)C15—C16—C17—C180.3 (4)
O1—C7—C8—C111.7 (3)C16—C17—C18—C190.9 (3)
N1—C7—C8—C11179.19 (16)C16—C17—C18—C21179.0 (2)
O1—C7—C8—C9179.53 (18)C17—C18—C19—C200.9 (4)
N1—C7—C8—C90.42 (19)C21—C18—C19—C20179.0 (2)
N1—N2—C9—C80.2 (2)C16—C15—C20—C190.3 (4)
N1—N2—C9—C10179.68 (16)S1—C15—C20—C19177.05 (19)
C11—C8—C9—N2178.71 (19)C18—C19—C20—C150.3 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the N1/N2/C7–C9 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.95 (3)1.82 (3)2.627 (2)141 (2)
N4—H4A···O2i0.90 (3)1.96 (3)2.858 (2)174 (2)
C2—H2···O10.96 (2)2.30 (2)2.937 (2)123.1 (18)
C10—H10B···Cg1i0.99 (3)2.80 (3)3.740 (2)159 (2)
C14—H14A···Cg3ii1.00 (2)2.99 (2)3.947 (3)161 (2)
C16—H16···O2iii0.94 (3)2.65 (3)3.436 (3)143 (2)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHimly, M., Jahn-Schmid, B., Pittertschatscher, K., Bohle, B., Grubmayr, K., Ferreira, F., Ebner, H. & Ebner, C. J. (2003). J. Allergy Clin. Immunol. 111, 882–888.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMahfouz, R. M., Demircioğlu, Z., Abbady, M. S. & Büyükgüngör, O. (2015). Acta Cryst. E71, 94–96.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShweta, S., Bule, M. R. & Kumbhare, P. R. D. (2013). J. Chem. Biol. Phys. Sci. Sect. B, 3, 1996–2005.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]