metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di-μ-chlorido-bis­­{bis­­[N,N-bis­­(tri­methyl­sil­yl)amido]­titanium(III)}

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
*Correspondence e-mail: Erwan.LeRoux@uib.no

Edited by M. Weil, Vienna University of Technology, Austria (Received 9 September 2017; accepted 13 October 2017; online 24 October 2017)

The mol­ecular structure of the title compound, [Ti2Cl2(C6H18NSi2)4], shows a binuclear motif of TiIII atoms, formulated as [Ti(μ-Cl)(N(SiMe3)2)2]2, with two μ-Cl atoms bridging two ((Me3Si)2N)2Ti moieties. The coordination environment of both central TiIII atoms is distorted tetra­hedral, with a nearly planar four-membered Ti2Cl2 core [Ti—Cl—Ti—Cl = 2.796 (15)°].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Group 4 metal silyl­amide chlorides are versatile starting materials for many inorganic and organometallic compounds, and have been widely used as catalysts (Lappert et al., 1980[Lappert, M. F., Power, P. P., Sanger, A. R. & Srivastava, R. C. (1980). In Metal and Metalloid Amide, Synthesis, Structures, and Physical and Chemical Properties. New York: John Wiley & Sons Ltd.],2009[Lappert, M. F., Power, P. P., Protchenko, A. V. & Seeber, A. (2009). In Metal Amide Chemistry. Chichester: John Wiley & Sons Ltd.]) and as precursors in chemical vapor deposition (CVD) (Just & Rees, 2000[Just, O. & Rees, W. S. Jr (2000). Adv. Mater. Opt. Electron. 10, 213-221.]; Carmalt et al., 2005[Carmalt, C. J., Newport, A. C., O'Neill, S. A., Parkin, I. P., White, A. J. P. & Williams, D. J. (2005). Inorg. Chem. 44, 615-619.]) and atomic layer deposition (ALD) of microelectronic films (Fix et al., 1990[Fix, R. M., Gordon, R. G. & Hoffman, D. M. (1990). Chem. Mater. 2, 235-241.],1991[Fix, R. M., Gordon, R. G. & Hoffman, D. M. (1991). Chem. Mater. 3, 1138-1148.]; Winter et al., 1994[Winter, C. H., Proscia, J. W., Rheingold, A. L. & Lewkebandara, T. S. (1994). Inorg. Chem. 33, 1227-1229.]). The use of halide ligands has been established to enhance the volatility of the group 4 silyl­amide precursors for CVD/ALD processes (Vaartstra et al., 2006[Vaartstra, B. A., Westmoreland, D., Marsh, E. P. & Uhlenbrock, S. (2006). US Patent 2006046521.]). Although analogous compounds such as [Ti(Cl)4–x(N(SiMe3)2)x] (with x = 4, 3, 2 and 1) of titanium(IV) (Alcock et al., 1976[Alcock, N. W., Pierce-Butler, M. & Willey, G. R. (1976). J. Chem. Soc. Dalton Trans. pp. 707-713.]; Planalp et al., 1983[Planalp, R. P., Andersen, R. A. & Zalkin, A. (1983). Organometallics, 2, 16-20.]; Airoldi & Bradley, 1975[Airoldi, C. & Bradley, D. C. (1975). Inorg. Nucl. Chem. Lett. 11, 155.]; Airoldi et al., 1980[Airoldi, C., Bradley, D. C., Chudzynska, H., Hursthouse, M. B., Malik, K. M. A. & Raithby, P. R. J. (1980). J. Chem. Soc. Dalton Trans. pp. 2010.]), [Ti(N(SiMe3)2)3] (Bradley & Copperthwaite, 1971[Bradley, D. C. & Copperthwaite, R. G. (1971). J. Chem. Soc. D, pp. 764.]; Alyea et al., 1972[Alyea, E. C., Bradley, D. C. & Copperthwaite, R. G. (1972). J. Chem. Soc. Dalton Trans. pp. 1580.]; Bradley et al., 1978[Bradley, D. C., Copperthwaite, R. G., Extine, M. W., Reichert, W. W. & Chisholm, M. H. (1978). Inorg. Synth. 18, 112-120.]; Minhas et al., 1992[Minhas, R., Duchateau, R., Gambarotta, S. & Bensimon, C. (1992). Inorg. Chem. 31, 4933-4938.]) and [Ti(Cl)2(N(SiMe3)2)(THF)2] (Putzer et al., 1996[Putzer, M. A., Magull, J., Goesmann, H., Neumüller, B. & Dehnicke, K. (1996). Chem. Ber. 129, 1401-1405.]) of titanium(III) have been synthesized, there is so far no other report of titanium(III) silyl­amide chloride compounds.

The title compound crystallizes as a chloride-bridged dimer [Ti(μ-Cl)(N(SiMe3)2)2]2 with two four-coordinate titanium(III) atoms. It is isostructural with the mol­ecular compounds [M(μ-Cl)(N(SiMe3)2)2]2 with M = Yb (Niemeyer, 2002[Niemeyer, M. (2002). Z. Anorg. Allg. Chem. 628, 647-657.]) and In (Yamashita et al., 2014[Yamashita, Y., Saito, Y., Imaizumi, T. & Kobayashi, S. (2014). Chem. Sci. 5, 3958-3962.]). The titanium(III) atoms occupy a pseudo-tetra­hedral environment with two bonded {(Me3Si)2N} moieties and two bridging chloride atoms bonded to each titanium(III) atom resulting in the formation of a characteristic edge-sharing di­tetra­hedral configuration (Fig. 1[link]). The four-membered Ti2Cl2 core is nearly planar [torsion angle Ti1—Cl1—Ti2—Cl2 = 2.796 (15)°] with the four nitro­gen atoms in a trigonal–planar coordination geometry [deviation from the N(silyl­amide)-centroid (Si—Ti—Si) ring ranges from 0.077 to 0.116 Å], suggesting a possible π-overlap between the N lone pair and the vacant Ti orbitals. The Ti—Cl bond lengths (Table 1[link]) are shorter than those observed in the TiIII,TiIII-chloride bridged dimers [Ti(μ-Cl)(η-C5H5)2]2 (Jungst et al., 1977[Jungst, R., Sekutowski, D., Davis, J., Luly, M. & Stucky, J. (1977). Inorg. Chem. 16, 1645-1655.]), [Ti(μ-Cl)(η-C5H4Me)2]2 (Bradley & Copperthwaite, 1971[Bradley, D. C. & Copperthwaite, R. G. (1971). J. Chem. Soc. D, pp. 764.]; Alyea et al., 1972[Alyea, E. C., Bradley, D. C. & Copperthwaite, R. G. (1972). J. Chem. Soc. Dalton Trans. pp. 1580.]; Bradley et al., 1978[Bradley, D. C., Copperthwaite, R. G., Extine, M. W., Reichert, W. W. & Chisholm, M. H. (1978). Inorg. Synth. 18, 112-120.]; Minhas et al., 1992[Minhas, R., Duchateau, R., Gambarotta, S. & Bensimon, C. (1992). Inorg. Chem. 31, 4933-4938.]), [Ti(μ-Cl){(η5-C5H4NSiMe3)2Fe}]22+ (Shafir & Arnold, 2001[Shafir, A. & Arnold, J. (2001). J. Am. Chem. Soc. 123, 9212-9213.]), [Ti(μ-Cl){(Me3SiNCH2CH2)2NSiMe3}]2 (Love et al., 1999[Love, J. B., Clark, H. C. S., Cloke, F. G. N., Green, J. C. & Hitchcock, P. B. (1999). J. Am. Chem. Soc. 121, 6843-6849.]) ranging from 2.566 (2)–2.4414 (10) Å. This is most probably the result of a better rearrangement between the less-bulky silyl­amide ligands bonded to each titanium(III) atom with torsion angles, N3—Ti1—Ti2—N1 and N2—Ti1—Ti2—N4, of −24.05 (7) and −26.50 (8)°, respectively, which deviates from perfect alignment following the non-crystallographic plane perpendicular to the four-membered Ti2Cl2 plane and through the pseudo-C2 axis Ti1—Ti2. The Ti—N bond lengths (Table 1[link]) are similar to those found in other TiIII silyl­amide complexes (davg ≃ 1.94 Å) (Alcock et al., 1976[Alcock, N. W., Pierce-Butler, M. & Willey, G. R. (1976). J. Chem. Soc. Dalton Trans. pp. 707-713.]; Planalp et al., 1983[Planalp, R. P., Andersen, R. A. & Zalkin, A. (1983). Organometallics, 2, 16-20.]; Airoldi & Bradley, 1975[Airoldi, C. & Bradley, D. C. (1975). Inorg. Nucl. Chem. Lett. 11, 155.]; Airoldi et al., 1980[Airoldi, C., Bradley, D. C., Chudzynska, H., Hursthouse, M. B., Malik, K. M. A. & Raithby, P. R. J. (1980). J. Chem. Soc. Dalton Trans. pp. 2010.]).

Table 1
Selected geometric parameters (Å, °)

Ti1—N1 1.9371 (13) Ti2—N3 1.9459 (13)
Ti1—N4 1.9379 (14) Ti2—N2 1.9534 (13)
Ti1—Cl1 2.4226 (5) Ti2—Cl2 2.4094 (5)
Ti1—Cl2 2.4227 (5) Ti2—Cl1 2.4190 (5)
       
N1—Ti1—N4 118.42 (6) N3—Ti2—Cl2 114.38 (4)
N1—Ti1—Cl1 121.02 (4) N2—Ti2—Cl2 102.71 (4)
N4—Ti1—Cl1 102.91 (4) N3—Ti2—Cl1 103.24 (4)
N1—Ti1—Cl2 100.57 (4) N2—Ti2—Cl1 115.13 (4)
N4—Ti1—Cl2 123.75 (4) Cl2—Ti2—Cl1 87.938 (16)
Cl1—Ti1—Cl2 87.550 (16) Ti2—Cl1—Ti1 92.070 (16)
N3—Ti2—N2 126.91 (6) Ti2—Cl2—Ti1 92.306 (16)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with anisotropic displacement parameters set at the 50% probability level. Hydrogen atoms are omitted for clarity.

The packing of the mol­ecules in the title compound is displayed in Fig. 2[link].

[Figure 2]
Figure 2
The crystal packing of the title compound seen down the b axis, showing four mol­ecules, three of which are related to the unique one via inversion centres at (½, ½, ½) and (0, ½, ½). The packing is essentially based on van der Waals inter­actions only.

Synthesis and crystallization

In an argon-filled glove-box, to a solution of 1M titanium tetra­chloride in toluene (1 mmol) in 5 ml of toluene at 243 K was added a pre-cooled solution at 243 K of lithium bis­(tri­methyl­sil­yl)amide (334.6 mg, 2 mmol) in pentane (5 ml). The mixture was warmed to room temperature and stirred at that temperature overnight. The green solution was then centrifuged, filtered and dried under vacuum. Single crystals were obtained by preparing a concentrated solution of the reaction mixture in di­chloro­methane and cooling it for two days at 243 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Ti2Cl2(C6H18NSi2)4]
Mr 808.27
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 103
a, b, c (Å) 8.8550 (5), 11.7359 (7), 24.0066 (14)
α, β, γ (°) 93.199 (1), 97.370 (1), 111.684 (1)
V3) 2284.6 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.70
Crystal size (mm) 0.45 × 0.20 × 0.02
 
Data collection
Diffractometer Bruker TXS Rotating anode, Pt135 CCD
Absorption correction Numerical (SADABS; Bruker, 2013[Bruker (2013). SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.])
Tmin, Tmax 0.820, 0.986
No. of measured, independent and observed [I > 2σ(I)] reflections 39360, 13897, 11154
Rint 0.051
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.112, 1.04
No. of reflections 13897
No. of parameters 385
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.87, −0.36
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2. Bruker AXS, Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2017 (Sheldrick, 2015b).

Di-µ-chlorido-bis{bis[N,N-bis(trimethylsilyl)amido]titanium(III)} top
Crystal data top
[Ti2Cl2(C6H18NSi2)4]Z = 2
Mr = 808.27F(000) = 868
Triclinic, P1Dx = 1.175 Mg m3
a = 8.8550 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.7359 (7) ÅCell parameters from 9927 reflections
c = 24.0066 (14) Åθ = 2.4–30.4°
α = 93.199 (1)°µ = 0.70 mm1
β = 97.370 (1)°T = 103 K
γ = 111.684 (1)°Thin plate, blue
V = 2284.6 (2) Å30.45 × 0.20 × 0.02 mm
Data collection top
Bruker TXS Rotating anode, Pt135 CCD
diffractometer
11154 reflections with I > 2σ(I)
Radiation source: Bruker TXS Rotating anodeRint = 0.051
ω scansθmax = 30.5°, θmin = 1.9°
Absorption correction: numerical
(SADABS; Bruker, 2013)
h = 1212
Tmin = 0.820, Tmax = 0.986k = 1616
39360 measured reflectionsl = 3434
13897 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0605P)2 + 0.0514P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
13897 reflectionsΔρmax = 0.87 e Å3
385 parametersΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.39441 (3)0.30081 (2)0.18633 (2)0.01492 (7)
Ti20.61439 (3)0.34925 (2)0.32250 (2)0.01526 (7)
Cl10.35239 (5)0.35207 (4)0.28076 (2)0.01844 (8)
Cl20.66257 (5)0.30888 (4)0.22823 (2)0.01891 (8)
Si10.13473 (5)0.01105 (4)0.17059 (2)0.01756 (9)
Si20.39903 (6)0.10306 (4)0.09651 (2)0.01876 (10)
Si30.98553 (5)0.51034 (4)0.35013 (2)0.01995 (10)
Si40.76984 (6)0.65233 (4)0.36573 (2)0.01897 (10)
Si50.44682 (6)0.22235 (4)0.41948 (2)0.01771 (9)
Si60.57789 (5)0.06572 (4)0.35238 (2)0.01837 (10)
Si70.15997 (6)0.39762 (4)0.11156 (2)0.02084 (10)
Si80.51671 (6)0.57332 (4)0.14338 (2)0.01976 (10)
N10.29662 (16)0.13254 (12)0.15026 (6)0.0158 (2)
N20.78674 (16)0.51130 (12)0.34860 (6)0.0160 (3)
N30.55174 (16)0.20568 (12)0.36416 (6)0.0156 (2)
N40.36078 (16)0.42951 (12)0.14546 (6)0.0176 (3)
C10.0578 (2)0.03685 (18)0.11736 (8)0.0283 (4)
H1A0.0722710.0366970.1043470.042*
H1B0.1525910.0843980.1347680.042*
H1C0.0493110.0878970.0851130.042*
C20.0888 (2)0.05425 (16)0.24066 (8)0.0258 (4)
H2A0.1876900.0770640.2691870.039*
H2B0.0000810.0160580.2513650.039*
H2C0.0544190.1244370.2381950.039*
C30.1844 (2)0.12943 (16)0.17834 (9)0.0268 (4)
H3A0.1996650.1606390.1416330.040*
H3B0.0936800.1931050.1919190.040*
H3C0.2857460.1081840.2055330.040*
C40.2520 (3)0.00131 (19)0.03467 (8)0.0324 (4)
H4A0.1920940.0799150.0462200.049*
H4B0.3129700.0078540.0045630.049*
H4C0.1735950.0382780.0207680.049*
C50.5248 (2)0.25066 (17)0.07026 (8)0.0258 (4)
H5A0.4525110.2917510.0552470.039*
H5B0.5807720.2325610.0402960.039*
H5C0.6068410.3048260.1015070.039*
C60.5450 (2)0.02861 (17)0.12106 (8)0.0252 (4)
H6A0.6263170.0814990.1528050.038*
H6B0.6015300.0168540.0900050.038*
H6C0.4839620.0516290.1332740.038*
C71.1301 (2)0.6014 (2)0.41457 (9)0.0341 (4)
H7A1.1472750.6886850.4140210.051*
H7B1.2357180.5918540.4152810.051*
H7C1.0834160.5714340.4482970.051*
C81.0782 (2)0.56924 (17)0.28657 (8)0.0266 (4)
H8A0.9978370.5296460.2523370.040*
H8B1.1765120.5501350.2852050.040*
H8C1.1087060.6587890.2888640.040*
C90.9760 (2)0.34943 (17)0.35218 (10)0.0315 (4)
H9A0.9261570.3152090.3847580.047*
H9B1.0875880.3496470.3555310.047*
H9C0.9092780.2987780.3173370.047*
C100.9034 (2)0.77735 (16)0.32842 (9)0.0294 (4)
H10A1.0192290.7917380.3412200.044*
H10B0.8849080.8533690.3368990.044*
H10C0.8761070.7525240.2875660.044*
C110.8290 (3)0.70627 (18)0.44330 (8)0.0328 (4)
H11A0.7727750.6386760.4647060.049*
H11B0.7967140.7759880.4516470.049*
H11C0.9483860.7323440.4540960.049*
C120.5572 (2)0.64757 (17)0.34511 (10)0.0314 (4)
H12A0.5201190.6189430.3047440.047*
H12B0.5568770.7304100.3526460.047*
H12C0.4827880.5908620.3671110.047*
C130.6293 (2)0.04081 (17)0.28093 (8)0.0278 (4)
H13A0.5463360.0490090.2520030.042*
H13B0.6308050.0420730.2751390.042*
H13C0.7379240.1024210.2780920.042*
C140.3826 (2)0.06827 (15)0.35585 (9)0.0257 (4)
H14A0.3575930.0675460.3944430.038*
H14B0.3958440.1454400.3451600.038*
H14C0.2920990.0618900.3297580.038*
C150.7441 (2)0.05277 (18)0.40522 (9)0.0287 (4)
H15A0.8518010.1077720.3977380.043*
H15B0.7377880.0325460.4021780.043*
H15C0.7297130.0763080.4434020.043*
C160.5171 (3)0.16823 (19)0.48585 (8)0.0312 (4)
H16A0.4803310.0781080.4808140.047*
H16B0.4703490.1931160.5169970.047*
H16C0.6375680.2050330.4945930.047*
C170.4886 (3)0.38942 (17)0.43672 (9)0.0327 (4)
H17A0.6077220.4359630.4458050.049*
H17B0.4367390.3999200.4692780.049*
H17C0.4432940.4200610.4041120.049*
C180.2185 (2)0.14155 (17)0.40172 (8)0.0250 (4)
H18A0.1793030.1654420.3659180.037*
H18B0.1668140.1646650.4318200.037*
H18C0.1896580.0521110.3981030.037*
C190.0103 (2)0.30239 (18)0.15467 (9)0.0289 (4)
H19A0.0271500.2253190.1594100.043*
H19B0.1021400.2835380.1354630.043*
H19C0.0269470.3481530.1918340.043*
C200.1197 (2)0.3118 (2)0.03996 (8)0.0342 (4)
H20A0.1999610.3600630.0172280.051*
H20B0.0082290.2983650.0214570.051*
H20C0.1296170.2320560.0435890.051*
C210.1100 (3)0.53780 (19)0.10321 (11)0.0381 (5)
H21A0.1226580.5816630.1405320.057*
H21B0.0038130.5129850.0840980.057*
H21C0.1849230.5922480.0806170.057*
C220.7226 (2)0.57858 (17)0.17584 (10)0.0329 (4)
H22A0.7216100.5647990.2156980.049*
H22B0.8068640.6595550.1730270.049*
H22C0.7474600.5141620.1558250.049*
C230.4826 (3)0.70071 (17)0.18345 (9)0.0341 (4)
H23A0.4041000.7256090.1597160.051*
H23B0.5873970.7713970.1938970.051*
H23C0.4384530.6718510.2177250.051*
C240.5339 (3)0.60785 (19)0.06891 (8)0.0363 (5)
H24A0.5635210.5459180.0489740.054*
H24B0.6190790.6899240.0688350.054*
H24C0.4280750.6058250.0498320.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.01427 (13)0.01257 (13)0.01745 (13)0.00477 (10)0.00199 (10)0.00148 (10)
Ti20.01249 (13)0.01240 (12)0.01828 (14)0.00156 (10)0.00260 (10)0.00260 (10)
Cl10.01564 (17)0.02084 (18)0.01963 (18)0.00765 (14)0.00376 (13)0.00135 (14)
Cl20.01367 (16)0.02160 (18)0.02062 (18)0.00591 (14)0.00325 (13)0.00018 (14)
Si10.0133 (2)0.01390 (19)0.0234 (2)0.00310 (16)0.00236 (16)0.00136 (17)
Si20.0189 (2)0.0202 (2)0.0177 (2)0.00803 (18)0.00401 (17)0.00034 (17)
Si30.01163 (19)0.0191 (2)0.0268 (2)0.00370 (17)0.00232 (17)0.00030 (18)
Si40.0164 (2)0.0135 (2)0.0258 (2)0.00352 (16)0.00683 (18)0.00027 (17)
Si50.0183 (2)0.0160 (2)0.0182 (2)0.00470 (17)0.00558 (16)0.00310 (16)
Si60.0145 (2)0.0140 (2)0.0268 (2)0.00547 (16)0.00364 (17)0.00304 (17)
Si70.0166 (2)0.0204 (2)0.0267 (2)0.00833 (18)0.00247 (18)0.00567 (18)
Si80.0204 (2)0.0152 (2)0.0218 (2)0.00422 (17)0.00358 (18)0.00435 (17)
N10.0142 (6)0.0142 (6)0.0187 (6)0.0052 (5)0.0025 (5)0.0012 (5)
N20.0118 (6)0.0143 (6)0.0210 (6)0.0036 (5)0.0038 (5)0.0007 (5)
N30.0130 (6)0.0135 (6)0.0197 (6)0.0042 (5)0.0032 (5)0.0023 (5)
N40.0150 (6)0.0163 (6)0.0214 (7)0.0051 (5)0.0043 (5)0.0041 (5)
C10.0157 (8)0.0279 (9)0.0363 (10)0.0048 (7)0.0013 (7)0.0009 (8)
C20.0265 (9)0.0202 (8)0.0293 (9)0.0046 (7)0.0110 (7)0.0051 (7)
C30.0226 (8)0.0164 (8)0.0402 (10)0.0062 (7)0.0037 (8)0.0036 (7)
C40.0326 (10)0.0362 (11)0.0239 (9)0.0112 (9)0.0005 (8)0.0086 (8)
C50.0279 (9)0.0300 (9)0.0240 (8)0.0130 (8)0.0119 (7)0.0078 (7)
C60.0253 (9)0.0266 (9)0.0290 (9)0.0146 (7)0.0095 (7)0.0024 (7)
C70.0209 (9)0.0390 (11)0.0354 (11)0.0069 (8)0.0024 (8)0.0049 (9)
C80.0173 (8)0.0269 (9)0.0351 (10)0.0061 (7)0.0100 (7)0.0031 (7)
C90.0182 (8)0.0250 (9)0.0532 (13)0.0098 (7)0.0061 (8)0.0067 (8)
C100.0298 (10)0.0175 (8)0.0394 (11)0.0043 (7)0.0143 (8)0.0049 (7)
C110.0400 (11)0.0269 (9)0.0297 (10)0.0101 (8)0.0105 (8)0.0053 (8)
C120.0227 (9)0.0180 (8)0.0555 (13)0.0095 (7)0.0074 (9)0.0057 (8)
C130.0304 (9)0.0197 (8)0.0352 (10)0.0104 (7)0.0106 (8)0.0007 (7)
C140.0186 (8)0.0152 (7)0.0409 (10)0.0040 (6)0.0044 (7)0.0040 (7)
C150.0202 (8)0.0271 (9)0.0411 (11)0.0114 (7)0.0036 (8)0.0097 (8)
C160.0342 (10)0.0356 (10)0.0218 (9)0.0110 (8)0.0024 (8)0.0071 (8)
C170.0447 (12)0.0203 (8)0.0332 (10)0.0078 (8)0.0220 (9)0.0007 (7)
C180.0200 (8)0.0272 (9)0.0279 (9)0.0079 (7)0.0081 (7)0.0020 (7)
C190.0190 (8)0.0291 (9)0.0415 (11)0.0105 (7)0.0094 (8)0.0086 (8)
C200.0266 (10)0.0432 (12)0.0284 (10)0.0112 (9)0.0030 (8)0.0007 (8)
C210.0296 (10)0.0298 (10)0.0588 (14)0.0162 (8)0.0022 (10)0.0139 (10)
C220.0208 (9)0.0218 (9)0.0494 (12)0.0024 (7)0.0011 (8)0.0051 (8)
C230.0440 (12)0.0191 (8)0.0398 (11)0.0126 (8)0.0078 (9)0.0025 (8)
C240.0405 (12)0.0307 (10)0.0279 (10)0.0003 (9)0.0093 (8)0.0096 (8)
Geometric parameters (Å, º) top
Ti1—N11.9371 (13)C6—H6A0.9800
Ti1—N41.9379 (14)C6—H6B0.9800
Ti1—Cl12.4226 (5)C6—H6C0.9800
Ti1—Cl22.4227 (5)C7—H7A0.9800
Ti1—Si23.0937 (5)C7—H7B0.9800
Ti2—N31.9459 (13)C7—H7C0.9800
Ti2—N21.9534 (13)C8—H8A0.9800
Ti2—Cl22.4094 (5)C8—H8B0.9800
Ti2—Cl12.4190 (5)C8—H8C0.9800
Ti2—Si53.0790 (5)C9—H9A0.9800
Ti2—Si33.0861 (5)C9—H9B0.9800
Si1—N11.7530 (14)C9—H9C0.9800
Si1—C21.8668 (19)C10—H10A0.9800
Si1—C31.8693 (18)C10—H10B0.9800
Si1—C11.8731 (18)C10—H10C0.9800
Si2—N11.7576 (14)C11—H11A0.9800
Si2—C61.8652 (18)C11—H11B0.9800
Si2—C41.8661 (19)C11—H11C0.9800
Si2—C51.8746 (19)C12—H12A0.9800
Si3—N21.7601 (14)C12—H12B0.9800
Si3—C91.8627 (19)C12—H12C0.9800
Si3—C71.863 (2)C13—H13A0.9800
Si3—C81.8705 (19)C13—H13B0.9800
Si4—N21.7474 (14)C13—H13C0.9800
Si4—C121.8638 (19)C14—H14A0.9800
Si4—C101.8681 (19)C14—H14B0.9800
Si4—C111.875 (2)C14—H14C0.9800
Si5—N31.7570 (14)C15—H15A0.9800
Si5—C161.8656 (19)C15—H15B0.9800
Si5—C181.8666 (18)C15—H15C0.9800
Si5—C171.8672 (19)C16—H16A0.9800
Si6—N31.7544 (14)C16—H16B0.9800
Si6—C131.8651 (19)C16—H16C0.9800
Si6—C151.8725 (19)C17—H17A0.9800
Si6—C141.8743 (18)C17—H17B0.9800
Si7—N41.7513 (14)C17—H17C0.9800
Si7—C191.8610 (19)C18—H18A0.9800
Si7—C201.865 (2)C18—H18B0.9800
Si7—C211.869 (2)C18—H18C0.9800
Si8—N41.7499 (14)C19—H19A0.9800
Si8—C221.866 (2)C19—H19B0.9800
Si8—C241.868 (2)C19—H19C0.9800
Si8—C231.871 (2)C20—H20A0.9800
C1—H1A0.9800C20—H20B0.9800
C1—H1B0.9800C20—H20C0.9800
C1—H1C0.9800C21—H21A0.9800
C2—H2A0.9800C21—H21B0.9800
C2—H2B0.9800C21—H21C0.9800
C2—H2C0.9800C22—H22A0.9800
C3—H3A0.9800C22—H22B0.9800
C3—H3B0.9800C22—H22C0.9800
C3—H3C0.9800C23—H23A0.9800
C4—H4A0.9800C23—H23B0.9800
C4—H4B0.9800C23—H23C0.9800
C4—H4C0.9800C24—H24A0.9800
C5—H5A0.9800C24—H24B0.9800
C5—H5B0.9800C24—H24C0.9800
C5—H5C0.9800
N1—Ti1—N4118.42 (6)Si2—C5—H5A109.5
N1—Ti1—Cl1121.02 (4)Si2—C5—H5B109.5
N4—Ti1—Cl1102.91 (4)H5A—C5—H5B109.5
N1—Ti1—Cl2100.57 (4)Si2—C5—H5C109.5
N4—Ti1—Cl2123.75 (4)H5A—C5—H5C109.5
Cl1—Ti1—Cl287.550 (16)H5B—C5—H5C109.5
N1—Ti1—Si231.37 (4)Si2—C6—H6A109.5
N4—Ti1—Si2106.50 (4)Si2—C6—H6B109.5
Cl1—Ti1—Si2148.298 (17)H6A—C6—H6B109.5
Cl2—Ti1—Si285.901 (15)Si2—C6—H6C109.5
N3—Ti2—N2126.91 (6)H6A—C6—H6C109.5
N3—Ti2—Cl2114.38 (4)H6B—C6—H6C109.5
N2—Ti2—Cl2102.71 (4)Si3—C7—H7A109.5
N3—Ti2—Cl1103.24 (4)Si3—C7—H7B109.5
N2—Ti2—Cl1115.13 (4)H7A—C7—H7B109.5
Cl2—Ti2—Cl187.938 (16)Si3—C7—H7C109.5
N3—Ti2—Si531.84 (4)H7A—C7—H7C109.5
N2—Ti2—Si5112.35 (4)H7B—C7—H7C109.5
Cl2—Ti2—Si5142.757 (17)Si3—C8—H8A109.5
Cl1—Ti2—Si588.334 (15)Si3—C8—H8B109.5
N3—Ti2—Si3112.82 (4)H8A—C8—H8B109.5
N2—Ti2—Si331.85 (4)Si3—C8—H8C109.5
Cl2—Ti2—Si386.479 (15)H8A—C8—H8C109.5
Cl1—Ti2—Si3142.490 (17)H8B—C8—H8C109.5
Si5—Ti2—Si3117.236 (16)Si3—C9—H9A109.5
Ti2—Cl1—Ti192.070 (16)Si3—C9—H9B109.5
Ti2—Cl2—Ti192.306 (16)H9A—C9—H9B109.5
N1—Si1—C2111.33 (7)Si3—C9—H9C109.5
N1—Si1—C3112.16 (7)H9A—C9—H9C109.5
C2—Si1—C3106.10 (9)H9B—C9—H9C109.5
N1—Si1—C1111.65 (8)Si4—C10—H10A109.5
C2—Si1—C1108.60 (9)Si4—C10—H10B109.5
C3—Si1—C1106.71 (9)H10A—C10—H10B109.5
N1—Si2—C6112.71 (7)Si4—C10—H10C109.5
N1—Si2—C4111.91 (8)H10A—C10—H10C109.5
C6—Si2—C4107.62 (9)H10B—C10—H10C109.5
N1—Si2—C5110.54 (7)Si4—C11—H11A109.5
C6—Si2—C5106.29 (8)Si4—C11—H11B109.5
C4—Si2—C5107.47 (9)H11A—C11—H11B109.5
C6—Si2—Ti1113.02 (6)Si4—C11—H11C109.5
C4—Si2—Ti1135.70 (7)H11A—C11—H11C109.5
C5—Si2—Ti177.57 (6)H11B—C11—H11C109.5
N2—Si3—C9109.52 (8)Si4—C12—H12A109.5
N2—Si3—C7112.45 (8)Si4—C12—H12B109.5
C9—Si3—C7105.95 (10)H12A—C12—H12B109.5
N2—Si3—C8112.74 (8)Si4—C12—H12C109.5
C9—Si3—C8107.37 (9)H12A—C12—H12C109.5
C7—Si3—C8108.46 (9)H12B—C12—H12C109.5
C9—Si3—Ti275.79 (6)Si6—C13—H13A109.5
C7—Si3—Ti2135.46 (7)Si6—C13—H13B109.5
C8—Si3—Ti2113.34 (6)H13A—C13—H13B109.5
N2—Si4—C12112.97 (7)Si6—C13—H13C109.5
N2—Si4—C10111.77 (8)H13A—C13—H13C109.5
C12—Si4—C10105.39 (9)H13B—C13—H13C109.5
N2—Si4—C11112.83 (8)Si6—C14—H14A109.5
C12—Si4—C11106.38 (10)Si6—C14—H14B109.5
C10—Si4—C11106.99 (9)H14A—C14—H14B109.5
N3—Si5—C16112.68 (8)Si6—C14—H14C109.5
N3—Si5—C18113.65 (7)H14A—C14—H14C109.5
C16—Si5—C18107.98 (9)H14B—C14—H14C109.5
N3—Si5—C17109.08 (8)Si6—C15—H15A109.5
C16—Si5—C17106.48 (10)Si6—C15—H15B109.5
C18—Si5—C17106.56 (9)H15A—C15—H15B109.5
C16—Si5—Ti2134.95 (7)Si6—C15—H15C109.5
C18—Si5—Ti2114.66 (6)H15A—C15—H15C109.5
C17—Si5—Ti275.09 (6)H15B—C15—H15C109.5
N3—Si6—C13112.98 (8)Si5—C16—H16A109.5
N3—Si6—C15112.70 (8)Si5—C16—H16B109.5
C13—Si6—C15106.99 (9)H16A—C16—H16B109.5
N3—Si6—C14110.68 (7)Si5—C16—H16C109.5
C13—Si6—C14105.39 (9)H16A—C16—H16C109.5
C15—Si6—C14107.67 (9)H16B—C16—H16C109.5
N4—Si7—C19109.43 (8)Si5—C17—H17A109.5
N4—Si7—C20111.34 (8)Si5—C17—H17B109.5
C19—Si7—C20108.73 (10)H17A—C17—H17B109.5
N4—Si7—C21114.02 (8)Si5—C17—H17C109.5
C19—Si7—C21105.32 (10)H17A—C17—H17C109.5
C20—Si7—C21107.72 (10)H17B—C17—H17C109.5
N4—Si8—C22111.84 (8)Si5—C18—H18A109.5
N4—Si8—C24110.95 (8)Si5—C18—H18B109.5
C22—Si8—C24106.25 (10)H18A—C18—H18B109.5
N4—Si8—C23111.98 (9)Si5—C18—H18C109.5
C22—Si8—C23106.17 (10)H18A—C18—H18C109.5
C24—Si8—C23109.37 (10)H18B—C18—H18C109.5
Si1—N1—Si2119.76 (8)Si7—C19—H19A109.5
Si1—N1—Ti1126.34 (8)Si7—C19—H19B109.5
Si2—N1—Ti1113.63 (7)H19A—C19—H19B109.5
Si4—N2—Si3117.90 (7)Si7—C19—H19C109.5
Si4—N2—Ti2129.66 (7)H19A—C19—H19C109.5
Si3—N2—Ti2112.31 (7)H19B—C19—H19C109.5
Si6—N3—Si5117.87 (8)Si7—C20—H20A109.5
Si6—N3—Ti2129.67 (8)Si7—C20—H20B109.5
Si5—N3—Ti2112.41 (7)H20A—C20—H20B109.5
Si8—N4—Si7120.13 (8)Si7—C20—H20C109.5
Si8—N4—Ti1123.47 (8)H20A—C20—H20C109.5
Si7—N4—Ti1116.36 (7)H20B—C20—H20C109.5
Si1—C1—H1A109.5Si7—C21—H21A109.5
Si1—C1—H1B109.5Si7—C21—H21B109.5
H1A—C1—H1B109.5H21A—C21—H21B109.5
Si1—C1—H1C109.5Si7—C21—H21C109.5
H1A—C1—H1C109.5H21A—C21—H21C109.5
H1B—C1—H1C109.5H21B—C21—H21C109.5
Si1—C2—H2A109.5Si8—C22—H22A109.5
Si1—C2—H2B109.5Si8—C22—H22B109.5
H2A—C2—H2B109.5H22A—C22—H22B109.5
Si1—C2—H2C109.5Si8—C22—H22C109.5
H2A—C2—H2C109.5H22A—C22—H22C109.5
H2B—C2—H2C109.5H22B—C22—H22C109.5
Si1—C3—H3A109.5Si8—C23—H23A109.5
Si1—C3—H3B109.5Si8—C23—H23B109.5
H3A—C3—H3B109.5H23A—C23—H23B109.5
Si1—C3—H3C109.5Si8—C23—H23C109.5
H3A—C3—H3C109.5H23A—C23—H23C109.5
H3B—C3—H3C109.5H23B—C23—H23C109.5
Si2—C4—H4A109.5Si8—C24—H24A109.5
Si2—C4—H4B109.5Si8—C24—H24B109.5
H4A—C4—H4B109.5H24A—C24—H24B109.5
Si2—C4—H4C109.5Si8—C24—H24C109.5
H4A—C4—H4C109.5H24A—C24—H24C109.5
H4B—C4—H4C109.5H24B—C24—H24C109.5
C2—Si1—N1—Si2163.08 (9)C13—Si6—N3—Si5161.93 (9)
C3—Si1—N1—Si244.37 (12)C15—Si6—N3—Si576.63 (11)
C1—Si1—N1—Si275.35 (11)C14—Si6—N3—Si544.01 (11)
C2—Si1—N1—Ti110.50 (12)C13—Si6—N3—Ti215.17 (13)
C3—Si1—N1—Ti1129.22 (10)C15—Si6—N3—Ti2106.27 (11)
C1—Si1—N1—Ti1111.07 (10)C14—Si6—N3—Ti2133.09 (10)
C6—Si2—N1—Si176.23 (11)C16—Si5—N3—Si645.52 (11)
C4—Si2—N1—Si145.24 (12)C18—Si5—N3—Si677.73 (10)
C5—Si2—N1—Si1164.99 (9)C17—Si5—N3—Si6163.54 (10)
Ti1—Si2—N1—Si1174.36 (14)Ti2—Si5—N3—Si6177.58 (13)
C6—Si2—N1—Ti198.13 (9)C16—Si5—N3—Ti2136.90 (9)
C4—Si2—N1—Ti1140.40 (9)C18—Si5—N3—Ti299.86 (9)
C5—Si2—N1—Ti120.65 (10)C17—Si5—N3—Ti218.88 (11)
C12—Si4—N2—Si3165.48 (10)C22—Si8—N4—Si7173.96 (10)
C10—Si4—N2—Si346.82 (12)C24—Si8—N4—Si755.51 (12)
C11—Si4—N2—Si373.81 (11)C23—Si8—N4—Si767.00 (12)
C12—Si4—N2—Ti210.18 (14)C22—Si8—N4—Ti18.39 (13)
C10—Si4—N2—Ti2128.84 (11)C24—Si8—N4—Ti1126.83 (11)
C11—Si4—N2—Ti2110.54 (11)C23—Si8—N4—Ti1110.65 (11)
C9—Si3—N2—Si4162.97 (10)C19—Si7—N4—Si8142.94 (10)
C7—Si3—N2—Si445.45 (12)C20—Si7—N4—Si896.82 (11)
C8—Si3—N2—Si477.55 (11)C21—Si7—N4—Si825.30 (13)
Ti2—Si3—N2—Si4176.38 (14)C19—Si7—N4—Ti134.87 (11)
C9—Si3—N2—Ti220.65 (11)C20—Si7—N4—Ti185.36 (11)
C7—Si3—N2—Ti2138.16 (9)C21—Si7—N4—Ti1152.52 (10)
C8—Si3—N2—Ti298.83 (9)
 

Funding information

Funding for this research was provided by: Norges Forskningsråd (contract No. FRINATEK 240333 to E. Le Roux); Universitetet i Bergen (grant to E. Le Roux, C. C. Quadri); L. Meltzers Høyskolefond (bursary to K. W. Törnroos).

References

First citationAiroldi, C. & Bradley, D. C. (1975). Inorg. Nucl. Chem. Lett. 11, 155.  CrossRef Google Scholar
First citationAiroldi, C., Bradley, D. C., Chudzynska, H., Hursthouse, M. B., Malik, K. M. A. & Raithby, P. R. J. (1980). J. Chem. Soc. Dalton Trans. pp. 2010.  Google Scholar
First citationAlcock, N. W., Pierce-Butler, M. & Willey, G. R. (1976). J. Chem. Soc. Dalton Trans. pp. 707–713.  CSD CrossRef Google Scholar
First citationAlyea, E. C., Bradley, D. C. & Copperthwaite, R. G. (1972). J. Chem. Soc. Dalton Trans. pp. 1580.  Google Scholar
First citationBradley, D. C. & Copperthwaite, R. G. (1971). J. Chem. Soc. D, pp. 764.  Google Scholar
First citationBradley, D. C., Copperthwaite, R. G., Extine, M. W., Reichert, W. W. & Chisholm, M. H. (1978). Inorg. Synth. 18, 112–120.  CrossRef CAS Google Scholar
First citationBruker (2013). SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationCarmalt, C. J., Newport, A. C., O'Neill, S. A., Parkin, I. P., White, A. J. P. & Williams, D. J. (2005). Inorg. Chem. 44, 615–619.  CSD CrossRef PubMed CAS Google Scholar
First citationFix, R. M., Gordon, R. G. & Hoffman, D. M. (1990). Chem. Mater. 2, 235–241.  CrossRef CAS Web of Science Google Scholar
First citationFix, R. M., Gordon, R. G. & Hoffman, D. M. (1991). Chem. Mater. 3, 1138–1148.  CrossRef CAS Google Scholar
First citationJungst, R., Sekutowski, D., Davis, J., Luly, M. & Stucky, J. (1977). Inorg. Chem. 16, 1645–1655.  CSD CrossRef CAS Google Scholar
First citationJust, O. & Rees, W. S. Jr (2000). Adv. Mater. Opt. Electron. 10, 213–221.  CrossRef CAS Google Scholar
First citationLappert, M. F., Power, P. P., Protchenko, A. V. & Seeber, A. (2009). In Metal Amide Chemistry. Chichester: John Wiley & Sons Ltd.  Google Scholar
First citationLappert, M. F., Power, P. P., Sanger, A. R. & Srivastava, R. C. (1980). In Metal and Metalloid Amide, Synthesis, Structures, and Physical and Chemical Properties. New York: John Wiley & Sons Ltd.  Google Scholar
First citationLove, J. B., Clark, H. C. S., Cloke, F. G. N., Green, J. C. & Hitchcock, P. B. (1999). J. Am. Chem. Soc. 121, 6843–6849.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMinhas, R., Duchateau, R., Gambarotta, S. & Bensimon, C. (1992). Inorg. Chem. 31, 4933–4938.  CSD CrossRef CAS Google Scholar
First citationNiemeyer, M. (2002). Z. Anorg. Allg. Chem. 628, 647–657.  CSD CrossRef CAS Google Scholar
First citationPlanalp, R. P., Andersen, R. A. & Zalkin, A. (1983). Organometallics, 2, 16–20.  CSD CrossRef CAS Google Scholar
First citationPutzer, M. A., Magull, J., Goesmann, H., Neumüller, B. & Dehnicke, K. (1996). Chem. Ber. 129, 1401–1405.  CSD CrossRef CAS Google Scholar
First citationShafir, A. & Arnold, J. (2001). J. Am. Chem. Soc. 123, 9212–9213.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVaartstra, B. A., Westmoreland, D., Marsh, E. P. & Uhlenbrock, S. (2006). US Patent 2006046521.  Google Scholar
First citationWinter, C. H., Proscia, J. W., Rheingold, A. L. & Lewkebandara, T. S. (1994). Inorg. Chem. 33, 1227–1229.  CSD CrossRef CAS Google Scholar
First citationYamashita, Y., Saito, Y., Imaizumi, T. & Kobayashi, S. (2014). Chem. Sci. 5, 3958–3962.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]