ISSN 2414-3146

Received 29 September 2017 Accepted 2 October 2017

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; carbocyclic nucleosides; hydrogen bonding.

CCDC reference: 1577701

Structural data: full structural data are available from iucrdata.iucr.org

data reports

tert-Butyl *N*-[(1*R**,2*R**,4*R**,5*S**)-*rel*-4-*tert*-butoxybicyclo[3.1.0]hex-2-yl]-*N*-hydroxycarbamate

Alan J. Lough,^a* Katrina Tait,^b Alysia Horvath^b and William Tam^b

^aDepartment of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada, and ^bDepartment of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada. *Correspondence e-mail: alough@chem.utoronto.ca

In the title compound, $C_{15}H_{27}NO_4$, the cyclopentane ring adopts an envelope conformation with the methylene group as the flap. The dihedral angle between the cyclopropane ring and the cyclopentane ring (all atoms) is 77.54 (13)°. In the crystal, molecules are linked *via* O–H···O hydrogen bonds, forming *C*(7) chains propagating along [010].

Structure description

Carbocyclic nucleosides are increasingly interesting compounds for their antiviral and antitumor effects (Ji & Miller, 2010). Replacing the oxygen atom of the parent furanose ring with a methylene unit increases stability towards certain cleaving enzymes but also decreases structural rigidity, which lowers bioactivity (Crimmons, 1998; Altona & Sundaralingam, 1972). The creation of structurally rigid carbocyclic nucleoside analogs are therefore synthetically useful targets. The cyclopropanation of 3-aza-2-oxabicyclic alkenes adds increased structural rigidity upon ring opening while creating new stereo-centers to make diverse organic frameworks. The acid-catalysed ring-opening reaction (Fig. 1) of cyclopropanated 3-aza-2-oxabicylic I with an alcohol nucleophile thereby created the title fused bicyclic amino alcohol, **II**.

The molecular structure of **II** is shown in Fig. 2. In the arbitrarily chosen asymmetric molecule of the racemic crystal the stereogenic centres are as follows: C1 *R*; C2 S; C4 *R*; C5 *R*. The conformation of the cyclopentane ring is well described as an envelope on C6 (the methylene group), which lies to the same side of the C1/C2/C4/C5 plane as does C3. The dihedral angle between the cyclopropane ring (C2/C3/C4) and the cyclopentane ring (all atoms) is 77.54 (13)°. In the crystal, $O-H \cdots O$ hydrogen bonds link the molecules, forming *C*(7) chains propagating along [010] (Fig. 3, Table 1), with adjacent molecules related by translation.

Figure 1

Acid-catalysed nucleophilic ring opening of cyclopropanated 3-aza-2-oxabicyclic substrate **I** with an alcohol.

Figure 2

The molecular structure of \mathbf{II} , with displacement ellipsoids shown at the 30% probability level.

Synthesis and crystallization

In a small screw-cap vial containing a stir bar, the catalyst pyridinium *p*-toluenesulfonate (PPTS) (4.4 mg, 0.018 mmol, 0.10 equiv) was added. The cyclopropanated 3-aza-2-oxabicyclic substrate I (35.1 mg, 0.166 mmol, 1.0 equiv) was added

Figure 3

Part of the crystal structure of (II), with $O-H\cdots O$ hydrogen bonds shown as dashed lines.

Table 1 Hydrogen-bond ge	cometry (Å, °)				
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$		$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$O1-H1O\cdots O4^{i}$	0.94 (2)	1.87 (2)	2.7926 (12)	164.9 (17)
Symmetry code: (i) x,	y - 1, z.				
Table 2 Experimental deta	ils.				
Crystal data Chemical formula M_r Crystal system, spac Temperature (K) a, b, c (Å) β (°) V (Å ³) Z Radiation type μ (mm ⁻¹) Crystal size (mm)	e group		C ₁₅ H ₂ 285.37 Mono 150 30.433 117.31 3192.9 3 Cu <i>Ka</i> 0.69 0.20 ×	$_{7}^{7}NO_{4}$ clinic, <i>C2/c</i> 60 (8), 6.0885 (1) 6 (1) 77 (16) α α α 0.02 × 0.02	2), 19.3949 (5)
Data collection Diffractometer Absorption correcti T_{\min}, T_{\max} No. of measured, in observed $[I > 2\sigma(R_{\min})]$ $(\sin \theta/\lambda)_{\max}$ $(Å^{-1})$	on dependent and [I] reflections		Bruke Multi- 201).669, 31096).046).598	r Kappa APE scan (<i>SADAB</i> 4) 0.753 , 2841, 2438	X DUO CCD \$; Bruker,
Refinement $R[F^2 > 2\sigma(F^2)]$, wR No. of reflections No. of parameters H-atom treatment	e(F ²), S		0.032, 2841 191 H ato: indo refi	0.079, 1.04 ms treated by ependent and nement	a mixture of constrained

Computer programs: *APEX2* and *SAINT* (Bruker, 2014), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2016* (Sheldrick, 2015*b*), *PLATON* (Spek, 2009) and *SHELXTL* (Sheldrick, 2008).

0.17, -0.19

to the same vial and reagents were dissolved in the nucleophile *tert*-butyl alcohol (0.5 ml). The vial was sealed and heated to 90°C with continuous stirring for 47 h. The crude product was purified by column chromatography using a gradient (EtOAc:hexanes = 1:9 to 1:1), followed by recrystallization using slow evaporation of mixed solvents of 1:3 EtOAc:hexanes to give clear, colourless crystals of **II**.

Refinement

 $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

AJL thanks NSERC Canada for funding.

References

Altona, C. & Sundaralingam, M. (1972). J. Am. Chem. Soc. 94, 8205–8212.

- Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Crimmons, M. T. (1998). Tetrahedron, 54, 9229–9272.
- Ji, C. & Miller, M. J. (2010). Tetrahedron Lett. 51, 3789–3791.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015*a*). Acta Cryst. A**71**, 3–8. Sheldrick, G. M. (2015*b*). Acta Cryst. C**71**, 3–8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

full crystallographic data

IUCrData (2017). **2**, x171419 [https://doi.org/10.1107/S2414314617014195]

tert-Butyl *N*-[(1*R**,2*R**,4*R**,5*S**)-*rel*-4-*tert*-butoxybicyclo[3.1.0]hex-2-yl]-*N*-hy-droxycarbamate

Alan J. Lough, Katrina Tait, Alysia Horvath and William Tam

tert-Butyl N-[(1R*,2R*,4R*,5S*)-rel-4-tert-butoxybicyclo[3.1.0]hex-2-yl]-N-hydroxycarbamate

Crystal data

C₁₅H₂₇NO₄ $M_r = 285.37$ Monoclinic, C2/c a = 30.4330 (8) Å b = 6.0885 (2) Å c = 19.3949 (5) Å $\beta = 117.316$ (1)° V = 3192.97 (16) Å³ Z = 8

Data collection

Bruker Kappa APEX DUO CCD diffractometer Radiation source: Bruker ImuS with multi-layer optics φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2014) $T_{\min} = 0.669, T_{\max} = 0.753$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.079$ S = 1.042841 reflections 191 parameters 0 restraints F(000) = 1248 $D_x = 1.187 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 8804 reflections $\theta = 3.3-66.5^{\circ}$ $\mu = 0.69 \text{ mm}^{-1}$ T = 150 KNeedle, colourless $0.20 \times 0.02 \times 0.02 \text{ mm}$

31096 measured reflections 2841 independent reflections 2438 reflections with $I > 2\sigma(I)$ $R_{int} = 0.046$ $\theta_{max} = 67.2^{\circ}, \theta_{min} = 3.3^{\circ}$ $h = -36 \rightarrow 35$ $k = -6 \rightarrow 7$ $l = -22 \rightarrow 23$

Primary atom site location: structure-invariant direct methods Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0325P)^2 + 2.2411P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.17$ e Å⁻³ $\Delta\rho_{min} = -0.19$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were placed in calculated positions with C-H = 0.95-1.00\%A and included in the refinement with $U_{iso}(H)=1.2U_{eq}(C)$ or $1.5U_{eq}(C_{methyl})$.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.62521 (3)	0.04110 (15)	0.55279 (5)	0.0254 (2)
O2	0.61508 (3)	0.12952 (16)	0.72223 (5)	0.0316 (2)
03	0.57295 (3)	-0.08261 (14)	0.61525 (5)	0.0261 (2)
O4	0.66930 (3)	0.69189 (13)	0.51429 (4)	0.0235 (2)
N1	0.64312 (4)	0.08435 (17)	0.63300 (5)	0.0223 (2)
C1	0.66942 (5)	0.47437 (19)	0.54309 (7)	0.0213 (3)
H1A	0.647444	0.377948	0.498916	0.026*
C2	0.71989 (5)	0.3697 (2)	0.58472 (7)	0.0246 (3)
H2A	0.734864	0.301410	0.553512	0.030*
C3	0.75326 (5)	0.4479 (3)	0.66554 (8)	0.0347 (3)
H3A	0.743755	0.583547	0.683521	0.042*
H3B	0.789309	0.426698	0.685590	0.042*
C4	0.72183 (5)	0.2465 (2)	0.65364 (7)	0.0270 (3)
H4A	0.737951	0.098813	0.666975	0.032*
C5	0.67375 (4)	0.2832 (2)	0.65730 (7)	0.0227 (3)
H5A	0.680931	0.322490	0.711531	0.027*
C6	0.64988 (5)	0.4809 (2)	0.60336 (7)	0.0245 (3)
H6A	0.613378	0.468312	0.577668	0.029*
H6B	0.659443	0.619979	0.633065	0.029*
C7	0.60933 (4)	0.0513 (2)	0.66110 (7)	0.0222 (3)
C8	0.53621 (5)	-0.1602 (2)	0.63979 (7)	0.0282 (3)
С9	0.50339 (6)	-0.3055 (3)	0.57224 (9)	0.0459 (4)
H9A	0.488527	-0.217813	0.524572	0.069*
H9B	0.477189	-0.368744	0.582086	0.069*
H9C	0.523226	-0.423911	0.566358	0.069*
C10	0.50715 (6)	0.0317 (3)	0.64721 (10)	0.0455 (4)
H10A	0.528927	0.123914	0.691053	0.068*
H10B	0.479865	-0.023094	0.656027	0.068*
H10C	0.493823	0.118615	0.599364	0.068*
C11	0.56154 (6)	-0.2929 (3)	0.71356 (8)	0.0395 (4)
H11A	0.582298	-0.195949	0.756585	0.059*
H11B	0.582192	-0.406312	0.707037	0.059*
H11C	0.536558	-0.362710	0.724908	0.059*
C12	0.65385 (4)	0.71127 (19)	0.43108 (6)	0.0208 (3)
C13	0.60068 (5)	0.6342 (2)	0.38409 (8)	0.0311 (3)
H13A	0.580048	0.699460	0.405381	0.047*
H13B	0.599380	0.473737	0.386730	0.047*
H13C	0.588355	0.679736	0.329901	0.047*
C14	0.65735 (5)	0.9550 (2)	0.41865 (7)	0.0279 (3)
H14A	0.633297	1.034279	0.429788	0.042*
H14B	0.650232	0.981387	0.364683	0.042*
H14C	0.690773	1.006978	0.453451	0.042*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

data reports

C15	0.68833 (5)	0.5845 (2)	0.40857 (7)	0.0276 (3)
H15A	0.722359	0.635327	0.439964	0.041*
H15B	0.678617	0.608928	0.353505	0.041*
H15C	0.686251	0.427409	0.417722	0.041*
H1O	0.6432 (7)	-0.081 (3)	0.5493 (11)	0.065 (6)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U ¹²	<i>U</i> ¹³	U ²³
01	0.0354 (5)	0.0249 (5)	0.0201 (4)	0.0002 (4)	0.0165 (4)	-0.0015 (3)
O2	0.0402 (5)	0.0366 (5)	0.0260 (5)	-0.0080 (4)	0.0220 (4)	-0.0063 (4)
O3	0.0281 (5)	0.0296 (5)	0.0254 (4)	-0.0057 (4)	0.0165 (4)	-0.0027 (4)
O4	0.0380 (5)	0.0170 (4)	0.0191 (4)	-0.0015 (4)	0.0162 (4)	0.0003 (3)
N1	0.0294 (5)	0.0227 (5)	0.0188 (5)	-0.0017 (4)	0.0144 (4)	-0.0003 (4)
C1	0.0290 (6)	0.0165 (6)	0.0216 (6)	0.0002 (5)	0.0145 (5)	0.0012 (5)
C2	0.0275 (6)	0.0257 (7)	0.0249 (6)	0.0004 (5)	0.0156 (5)	0.0023 (5)
C3	0.0276 (7)	0.0472 (9)	0.0280 (7)	-0.0095 (6)	0.0115 (6)	0.0013 (6)
C4	0.0257 (6)	0.0311 (7)	0.0246 (6)	0.0018 (5)	0.0119 (5)	0.0064 (5)
C5	0.0276 (6)	0.0229 (6)	0.0193 (6)	-0.0028 (5)	0.0122 (5)	0.0000 (5)
C6	0.0320 (7)	0.0205 (6)	0.0270 (7)	0.0008 (5)	0.0188 (6)	0.0010 (5)
C7	0.0264 (6)	0.0207 (6)	0.0217 (6)	0.0017 (5)	0.0130 (5)	0.0022 (5)
C8	0.0276 (7)	0.0311 (7)	0.0319 (7)	-0.0032 (5)	0.0188 (6)	0.0026 (6)
C9	0.0402 (8)	0.0558 (10)	0.0426 (9)	-0.0205 (8)	0.0198 (7)	-0.0073 (7)
C10	0.0408 (9)	0.0434 (9)	0.0669 (11)	0.0069 (7)	0.0372 (8)	0.0076 (8)
C11	0.0424 (8)	0.0388 (9)	0.0404 (8)	-0.0043 (7)	0.0218 (7)	0.0098 (7)
C12	0.0274 (6)	0.0205 (6)	0.0162 (6)	0.0009 (5)	0.0116 (5)	0.0007 (5)
C13	0.0283 (7)	0.0310 (7)	0.0309 (7)	0.0002 (6)	0.0109 (6)	0.0024 (6)
C14	0.0422 (8)	0.0215 (7)	0.0245 (6)	0.0000 (6)	0.0190 (6)	0.0020 (5)
C15	0.0338 (7)	0.0281 (7)	0.0259 (7)	0.0049 (5)	0.0179 (6)	0.0018 (5)

Geometric parameters (Å, °)

01—N1	1.4172 (12)	C8—C11	1.5108 (19)
01—H10	0.94 (2)	C8—C10	1.511 (2)
O2—C7	1.2135 (14)	C8—C9	1.515 (2)
O3—C7	1.3333 (15)	С9—Н9А	0.9800
O3—C8	1.4791 (14)	С9—Н9В	0.9800
O4—C1	1.4367 (14)	С9—Н9С	0.9800
O4—C12	1.4639 (13)	C10—H10A	0.9800
N1—C7	1.3818 (15)	C10—H10B	0.9800
N1—C5	1.4676 (15)	C10—H10C	0.9800
C1—C2	1.5097 (17)	C11—H11A	0.9800
C1—C6	1.5362 (16)	C11—H11B	0.9800
C1—H1A	1.0000	C11—H11C	0.9800
C2—C3	1.5013 (18)	C12—C14	1.5149 (17)
C2—C4	1.5098 (17)	C12—C15	1.5192 (17)
C2—H2A	1.0000	C12—C13	1.5218 (17)
C3—C4	1.5061 (19)	С13—Н13А	0.9800

С3—НЗА	0.9900	C13—H13B	0.9800
С3—Н3В	0.9900	С13—Н13С	0.9800
C4—C5	1.5139 (17)	C14—H14A	0.9800
C4—H4A	1.0000	C14—H14B	0.9800
C5—C6	1.5404 (17)	C14—H14C	0.9800
C5—H5A	1.0000	С15—Н15А	0.9800
С6—Н6А	0.9900	C15—H15B	0.9800
С6—Н6В	0.9900	С15—Н15С	0.9800
N1-01-H10	106.4 (11)	C11—C8—C10	112.95 (12)
С7—О3—С8	119.98 (9)	O3—C8—C9	101.77 (10)
C1	116.43 (9)	C11—C8—C9	110.72 (12)
C7—N1—O1	115.14 (9)	C10—C8—C9	110.57 (13)
C7—N1—C5	118.12 (10)	С8—С9—Н9А	109.5
O1—N1—C5	111.94 (9)	С8—С9—Н9В	109.5
O4—C1—C2	114.69 (10)	H9A—C9—H9B	109.5
O4—C1—C6	109.83 (9)	С8—С9—Н9С	109.5
C2—C1—C6	104.95 (10)	Н9А—С9—Н9С	109.5
O4—C1—H1A	109.1	H9B—C9—H9C	109.5
C2—C1—H1A	109.1	C8—C10—H10A	109.5
C6—C1—H1A	109.1	C8-C10-H10B	109.5
C3—C2—C1	117.34 (11)	H10A—C10—H10B	109.5
C3—C2—C4	60.02 (9)	C8—C10—H10C	109.5
C1—C2—C4	107.47 (10)	H10A—C10—H10C	109.5
C3—C2—H2A	119.1	H10B—C10—H10C	109.5
C1—C2—H2A	119.1	C8—C11—H11A	109.5
C4—C2—H2A	119.1	C8—C11—H11B	109.5
C2—C3—C4	60.27 (8)	H11A—C11—H11B	109.5
С2—С3—НЗА	117.7	C8—C11—H11C	109.5
С4—С3—НЗА	117.7	H11A—C11—H11C	109.5
С2—С3—Н3В	117.7	H11B—C11—H11C	109.5
C4—C3—H3B	117.7	O4—C12—C14	104.11 (9)
H3A—C3—H3B	114.9	O4—C12—C15	111.16 (9)
C3—C4—C2	59.71 (8)	C14—C12—C15	110.11 (10)
C3—C4—C5	115.60 (12)	O4—C12—C13	110.53 (10)
C2—C4—C5	108.80 (10)	C14—C12—C13	109.87 (11)
C3—C4—H4A	119.4	C15—C12—C13	110.86 (10)
C2—C4—H4A	119.4	С12—С13—Н13А	109.5
C5—C4—H4A	119.4	C12—C13—H13B	109.5
N1—C5—C4	110.37 (10)	H13A—C13—H13B	109.5
N1—C5—C6	113.23 (10)	C12—C13—H13C	109.5
C4—C5—C6	104.36 (10)	H13A—C13—H13C	109.5
N1—C5—H5A	109.6	H13B—C13—H13C	109.5
С4—С5—Н5А	109.6	C12—C14—H14A	109.5
С6—С5—Н5А	109.6	C12—C14—H14B	109.5
C1—C6—C5	105.68 (10)	H14A—C14—H14B	109.5
С1—С6—Н6А	110.6	C12—C14—H14C	109.5
С5—С6—Н6А	110.6	H14A—C14—H14C	109.5

C1—C6—H6B	110.6	H14B—C14—H14C	109.5
C5—C6—H6B	110.6	C12—C15—H15A	109.5
H6A—C6—H6B	108.7	C12—C15—H15B	109.5
02-07-03	126 50 (11)	H15A—C15—H15B	109.5
02 - C7 - N1	121.89 (11)	C12-C15-H15C	109.5
03-C7-N1	111 51 (10)	H_{15A} $-C_{15}$ $-H_{15C}$	109.5
03 - C8 - C11	110.06 (10)	H_{15B} C_{15} H_{15C}	109.5
$O_3 C_8 C_{10}$	110.00(10) 110.21(11)		109.5
05-06-010	110.21 (11)		
C12—O4—C1—C2	102.14 (12)	C2—C4—C5—C6	-15.46 (13)
C12—O4—C1—C6	-139.98 (10)	O4—C1—C6—C5	-153.26 (10)
O4—C1—C2—C3	75.76 (13)	C2—C1—C6—C5	-29.48 (12)
C6—C1—C2—C3	-44.85 (14)	N1—C5—C6—C1	-92.48 (12)
O4—C1—C2—C4	140.48 (10)	C4C5C1	27.59 (12)
C6—C1—C2—C4	19.87 (13)	C8—O3—C7—O2	-3.74(19)
C1—C2—C3—C4	95.27 (12)	C8—O3—C7—N1	172.72 (10)
C2—C3—C4—C5	-97.70 (12)	O1—N1—C7—O2	-162.08 (11)
C1—C2—C4—C3	-111.98 (12)	C5—N1—C7—O2	-26.13 (17)
C3—C2—C4—C5	109.26 (12)	O1—N1—C7—O3	21.27 (14)
C1—C2—C4—C5	-2.72 (14)	C5—N1—C7—O3	157.22 (10)
C7—N1—C5—C4	154.03 (10)	C7—O3—C8—C11	-61.96 (15)
O1—N1—C5—C4	-68.71 (12)	C7—O3—C8—C10	63.27 (15)
C7—N1—C5—C6	-89.39 (12)	C7—O3—C8—C9	-179.40 (11)
O1—N1—C5—C6	47.87 (13)	C1—O4—C12—C14	179.81 (10)
C3-C4-C5-N1	171.18 (10)	C1-04-C12-C15	-61.67(13)
$C_{2}-C_{4}-C_{5}-N_{1}$	106.50 (11)	C1 - O4 - C12 - C13	61.88 (13)
$C_{3}-C_{4}-C_{5}-C_{6}$	49 21 (13)		
	19.21 (19)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1 <i>O</i> …O4 ⁱ	0.94 (2)	1.87 (2)	2.7926 (12)	164.9 (17)

Symmetry code: (i) x, y-1, z.