organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(1E,5E)-2,5-Di­bromo­cyclo­dodeca-1,5-dien-9-yne

CROSSMARK_Color_square_no_text.svg

aUniversity of Mainz, Institut of Organic Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 11 September 2017; accepted 24 October 2017; online 27 October 2017)

The title compound, C12H14Br2, was prepared by bromination/de­hydro­bromination of E,E,Z-cyclo­dodeca­triene. The crystal is composed of C2-symmetrical mol­ecules with an E conformation of the bromo­alkene fragments and nearly linear alkyne units. The torsion angles in the ring suggest significant ring strain.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Di­bromo­cyclo­dodeca­triene has been prepared as inter­mediate for the selective synthesis of (Z,Z,Z)-cyclo­dodeca­triene (Trauer & Haufe, 1988[Trauer, H. & Haufe, G. (1988). Z. Chem. 28, 290-291.]) and cyclo­trideca­trienes (Trauer & Haufe, 1990[Trauer, H. & Haufe, G. (1990). J. Chem. Res. (S), 7, 210-211.]). The former is a valuable inter­mediate for the preparation of cyclo­dodeca­triyne (Barkovich & Vollhardt, 1976[Barkovich, A. J. & Vollhardt, K. P. C. (1976). J. Am. Chem. Soc. 98, 2667-2668.]) and hexa­radialene (Barkovich et al. 1980[Barkovich, A. J., Strauss, E. S. & Vollhardt, K. P. C. (1980). Isr. J. Chem. 20, 225-232.]). Currently, strained alkynes are central coupling partners in click chemistry. Even medium-sized cyclo­alkynes can be highly strained (Meier et al. 1982[Meier, H., Molz, T., Merkle, U., Echter, T. & Lorch, M. (1982). Liebigs Ann. Chem. pp. 914-923.]; Bissinger et al. 1988[Bissinger, H. J., Detert, H. & Meier, H. (1988). Liebigs Ann. Chem. pp. 221-224.]).

The ortho­rhom­bic unit cell of the title compound (Fig. 1[link]) is filled with four identical mol­ecules of C2 symmetry: the X-ray analysis gives proof for the E-conformation of the bromo­vinyl­ene units. The C2-symmetrical mol­ecule shows a nearly perfect linearity of the alkyne unit with bond angles at the sp carbon atoms of 178.4 (4)°. Whereas the ethyl­ene unit C1—C1i [symmetry code: (i) −x, y, −z + [{1\over 2}]] possesses quasi ideal bond and torsion angles, the bond angles at C4 [C3—C4—C5 = 112.0 (6)°] and C5 [C4—C5—C6 = 113.9 (6)°] are slightly opened. The same holds for the sp2 carbon atoms [C3—C2—C1 = 128.0 (6)°]. These deformations and the torsion angles C2—C3—C4—C5 = −102.7 (8) and C3—C4—C5—C6 = 73.4 (8)° indicate geometrical ring strain even in a macrocyclic alkyne. In the crystal (Fig. 2[link]), no directional inter­actions beyond normal van der Waals contacts could be identified.

[Figure 1]
Figure 1
View of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Atoms with the suffix a are generated by the symmetry operation −x, y, −z + [{1\over 2}].
[Figure 2]
Figure 2
Part of the packing diagram. View along b-axis direction.

Synthesis and crystallization

The title compound was prepared in a two-step procedure. First, 40.5 g (0.25 mol) of E,E,Z-1,5,9-cyclo­dodeca­triene in a Morton flask (2 l) containing 1 l anhydrous ether was cooled in an ice bath (CaCl2 tube). A solution of 120.0 g, of bromine (0.75 mol) in di­chloro­methane in a constant addition funnel with Mariott tube (NORMAG) was added dropwise to the heavily stirred solution. When the colour vanished, 100 ml of petroleum ether was added slowly and the precipitate was collected on a Büchner funnel, yield: 132.8 g (83%) of a white powder with m.p. 471 K. De­hydro­bromination of 6.4 g of the hexabromocyclododecane with sodium ethano­late in ethanol was performed according to Trauer & Haufe (1988[Trauer, H. & Haufe, G. (1988). Z. Chem. 28, 290-291.]) and yielded 2.13 g (65%) of an off-white powder with m.p. 431 K. Colourless blocks were grown via slow evaporation of a solution in chloro­form and 2-propanol (1:1).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C12H14Br2
Mr 318.05
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 120
a, b, c (Å) 16.8714 (12), 7.7191 (4), 9.1556 (5)
V3) 1192.35 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 6.76
Crystal size (mm) 0.27 × 0.23 × 0.22
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Integration (X-RED32; Stoe & Cie, 2006[Stoe & Cie (2006). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]b)
Tmin, Tmax 0.190, 0.356
No. of measured, independent and observed [I > 2σ(I)] reflections 7295, 1465, 1204
Rint 0.031
(sin θ/λ)max−1) 0.665
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.193, 1.20
No. of reflections 1465
No. of parameters 64
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.54, −0.69
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2006[Stoe & Cie (2006). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2006); cell refinement: X-AREA (Stoe & Cie, 2006); data reduction: X-RED32 (Stoe & Cie, 2006); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: SHELXL2017 (Sheldrick, 2015b); software used to prepare material for publication: SHELXL2017 (Sheldrick, 2015b).

(1E,5E)-2,5-Dibromocyclododeca-1,5-dien-9-yne top
Crystal data top
C12H14Br2Dx = 1.772 Mg m3
Mr = 318.05Melting point: 431 K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
a = 16.8714 (12) ÅCell parameters from 9463 reflections
b = 7.7191 (4) Åθ = 2.4–28.4°
c = 9.1556 (5) ŵ = 6.76 mm1
V = 1192.35 (12) Å3T = 120 K
Z = 4Block, colourless
F(000) = 6240.27 × 0.23 × 0.22 mm
Data collection top
Stoe IPDS 2T
diffractometer
1465 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1204 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.031
Detector resolution: 6.67 pixels mm-1θmax = 28.2°, θmin = 2.4°
rotation method scansh = 2222
Absorption correction: integration
(X-RED32; Stoe & Cie, 2006b)
k = 1010
Tmin = 0.190, Tmax = 0.356l = 1112
7295 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.193 w = 1/[σ2(Fo2) + (0.0757P)2 + 11.4374P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max < 0.001
1465 reflectionsΔρmax = 1.54 e Å3
64 parametersΔρmin = 0.69 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (sp2) or 0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.15412 (3)0.49337 (7)0.37567 (6)0.0204 (3)
C10.0288 (3)0.3816 (8)0.1832 (7)0.0243 (12)
H1A0.0105940.2956620.1103140.029*
H1B0.0284470.4972590.1364540.029*
C20.1119 (3)0.3376 (8)0.2315 (7)0.0223 (12)
C30.1575 (3)0.2044 (9)0.1877 (8)0.0265 (13)
H30.2085380.1937890.2305940.032*
C40.1342 (4)0.0716 (9)0.0768 (8)0.0300 (14)
H4A0.1792790.0510560.0097960.036*
H4B0.0893570.1164790.0182630.036*
C50.1100 (5)0.1000 (9)0.1478 (8)0.0339 (16)
H5A0.1090770.1912120.0717890.041*
H5B0.1507430.1326930.2206150.041*
C60.0324 (4)0.0948 (8)0.2201 (8)0.0305 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0147 (4)0.0213 (4)0.0251 (4)0.00532 (19)0.0026 (2)0.00172 (19)
C10.017 (2)0.026 (3)0.031 (3)0.001 (2)0.002 (3)0.001 (3)
C20.020 (3)0.025 (3)0.022 (3)0.002 (2)0.001 (2)0.005 (2)
C30.018 (3)0.031 (3)0.031 (3)0.002 (2)0.001 (2)0.005 (3)
C40.025 (3)0.039 (4)0.025 (3)0.005 (3)0.002 (3)0.001 (3)
C50.033 (4)0.027 (3)0.042 (4)0.009 (3)0.004 (3)0.001 (3)
C60.038 (3)0.025 (3)0.029 (3)0.001 (3)0.002 (3)0.000 (3)
Geometric parameters (Å, º) top
Br1—C21.922 (6)C4—C51.531 (11)
C1—C21.509 (8)C4—H4A0.9900
C1—C1i1.562 (12)C4—H4B0.9900
C1—H1A0.9900C5—C61.469 (10)
C1—H1B0.9900C5—H5A0.9900
C2—C31.346 (9)C5—H5B0.9900
C3—C41.495 (10)C6—C6i1.222 (14)
C3—H30.9500
C2—C1—C1i110.4 (6)C3—C4—H4A109.2
C2—C1—H1A109.6C5—C4—H4A109.2
C1i—C1—H1A109.6C3—C4—H4B109.2
C2—C1—H1B109.6C5—C4—H4B109.2
C1i—C1—H1B109.6H4A—C4—H4B107.9
H1A—C1—H1B108.1C6—C5—C4113.9 (6)
C3—C2—C1128.0 (6)C6—C5—H5A108.8
C3—C2—Br1118.1 (5)C4—C5—H5A108.8
C1—C2—Br1113.9 (4)C6—C5—H5B108.8
C2—C3—C4125.2 (6)C4—C5—H5B108.8
C2—C3—H3117.4H5A—C5—H5B107.7
C4—C3—H3117.4C6i—C6—C5178.4 (4)
C3—C4—C5112.0 (6)
C1i—C1—C2—C3120.5 (6)Br1—C2—C3—C4179.9 (5)
C1i—C1—C2—Br158.5 (4)C2—C3—C4—C5102.7 (8)
C1—C2—C3—C41.2 (11)C3—C4—C5—C673.4 (8)
Symmetry code: (i) x, y, z+1/2.
 

References

First citationBarkovich, A. J., Strauss, E. S. & Vollhardt, K. P. C. (1980). Isr. J. Chem. 20, 225–232.  CrossRef CAS Google Scholar
First citationBarkovich, A. J. & Vollhardt, K. P. C. (1976). J. Am. Chem. Soc. 98, 2667–2668.  CrossRef CAS Google Scholar
First citationBissinger, H. J., Detert, H. & Meier, H. (1988). Liebigs Ann. Chem. pp. 221–224.  CrossRef Google Scholar
First citationMeier, H., Molz, T., Merkle, U., Echter, T. & Lorch, M. (1982). Liebigs Ann. Chem. pp. 914–923.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2006). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTrauer, H. & Haufe, G. (1988). Z. Chem. 28, 290–291.  CrossRef CAS Google Scholar
First citationTrauer, H. & Haufe, G. (1990). J. Chem. Res. (S), 7, 210–211.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]