

ISSN 2414-3146

Received 25 August 2017 Accepted 25 August 2017

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

Keywords: crystal structure; centrosymmetric dimer; layer structure; organochlorine compound; alkyne.

CCDC reference: 1570830

Structural data: full structural data are available from iucrdata.iucr.org

rac-1,1,1,6,6,6-Hexachlorohex-3-yne-2,5-diol hemihydrate

Heiner Detert* and Dieter Schollmeyer

University of Mainz, Institut of Organic Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany. *Correspondence e-mail: detert@uni-mainz.de

The asymmetric unit of the title compound, $C_6H_4Cl_6O_2\cdot 0.5H_2O$, contains one molecule of 1,1,1,6,6,6-hexachlorohex-3-yne-2,5-diol and half a water molecule located on a twofold rotation axis. In the crystal, pairs of hexachlorohexynediol molecules form centrosymmetric dimers connected *via* pairwise $O-H\cdots O$ hydrogen bonds. These dimers are connected by water molecules, resulting in layers parallel to the *ab* plane.

Structure description

Highly chlorinated compounds are of current interest because they are intermediates in the formation of environmental pollutants (Taylor *et al.*, 2000) and they are useful as chemical substrates (Rahimi *et al.*, 2009; Schmidt *et al.*, 2009). Furthermore, their rearrangements (McIntosh *et al.*, 2014; Schollmeyer & Detert, 2017; Detert *et al.*, 2009) are a topic in its own right. The monoclinic unit cell contains four centrosymmetric dimers composed of one molecule with an *R*,*R*-configuration, one with an *S*,*S*-configuration and four water molecules, the latter is located on a twofold rotation axis.

In the monoclinic crystal, the hexachlorohexynediol molecules adopt a *gauche* conformation $[C1-C2\cdots C5-C6 = 30.4 (2)^{\circ}]$ with a nonperfect C2 symmetry (Fig. 1). The C-Cl bonds of the trichloromethyl groups vary between 1.756 (3) (C6-Cl4) and 1.776 (3) Å (C1-Cl2). With bond angles of 176.9 (3) and 175.8 (3)° and a torsion angle of 3 (10)°, the alkyne unit is not perfectly linear. An *R*,*R*- and an *S*,*S*-configured diole are connected *via* short hydrogen bonds $[O1-H10\cdots O2^{ii} = 2.725$ (3) Å] to a centrosymmetric dimer (Table 1). A C-H···O hydrogen bond $[C5-H5\cdots O1^{i} = 3.297$ (4) Å] forms a chain parallel to the *b* axis. Hydrogen bonds between atoms O1 and O2 to the water molecule $[O2-H20\cdots O3^{i} = 2.773$ (3) Å and $O3-H30\cdots O1 = 2.999$ (3) Å] connect these chains into layers in the *ab* plane (Fig. 2).

Synthesis and crystallization

The title compound was prepared from ethyl magnesium bromide, acetylene and chloral according to Gorgues *et al.* (1986) and Dupont (1910) followed by aqueous work-up. A mixture of three stereoisomers was obtained. Recrystallization from ethanol solution gave the title compound. ¹H NMR: (CDCl₃/DMSO-*d*₆, 400 MHz): δ 7.05 (2*H*, OH), 4.79 (2*H*, CH, ¹*J*_{CH} = 154 Hz). Recrystallization from chloroform solution yielded colourless crystals (m.p. 408 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were located in difference Fourier maps and were refined with isotropic displacement parameters.

Figure

R,R- and an S,S-configured diole are connected via short hydrogen bonds $[O1-H1O\cdots O2^{ii} = 2.725 (3) \text{ Å}]$ to a centrosymmetric dimer (Table 1). A C-H···O hydrogen bond $[C5-H5\cdots O1^{i} = 3.297 (4) \text{ Å}]$ forms a chain parallel to the b axis. Hydrogen bonds between atoms O1 and O2 to the water molecule $[O2-H2O\cdots O3^{i} = 2.773 (3) \text{ Å} and O3-H3O\cdots O1 = 2.999 (3) \text{ Å}]$ connect these chains into layers in the ab plane.

Synthesis and crystallization

The title compound was prepared from ethyl magnesium bromide, acetylene and chloral according to Gorgues *et al.* (1986) and Dupont (1910) followed by aqueous work-up. A mixture of three stereoisomers was obtained. Recrystallization from ethanol solution gave the title compound. ¹H NMR: (CDCl₃/DMSO- d_6 , 400 MHz): δ 7.05 (2*H*, OH), 4.79 (2*H*, CH,

View of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data	
Chemical formula	$2C_6H_4Cl_6O_2\cdot H_2O$
Mr	659.60
Crystal system, space group	Monoclinic, I2/a
Temperature (K)	193
a, b, c (Å)	19.8354 (11), 5.8480 (2),
$\rho(\circ)$	21.7082(13)
p()	108.521(4)
V (A')	2390.5 (2)
	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	1.41
Crystal size (mm)	$0.39 \times 0.07 \times 0.06$
Data collection	
Diffractometer	Stoe IPDS 21
Absorption correction	Integration (X-RED32; Stoe & Cie, 2006b)
T_{\min}, T_{\max}	0.714, 0.933
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	6305, 2965, 2202
R _{int}	0.026
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.668
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.039, 0.090, 1.03
No. of reflections	2965
No. of parameters	152
H-atom treatment	All H-atom parameters refined
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.59, -0.57

Computer programs: X-AREA (Stoe & Cie, 2006a), X-RED32 (Stoe & Cie, 2006b), SIR2004 (Altomare et al., 1999) and SHELXL2014 (Sheldrick, 2015).

 ${}^{1}J_{CH} = 154$ Hz). Recrystallization from chloroform solution yielded colourless crystals (m.p. 408 K).

Refinement

Table 2

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were located in difference

Figure 2

Part of the packing diagram, viewed along the b axis. Hydrogen bonds are shown with dashed lines.

full crystallographic data

IUCrData (2017). 2, x171236 [https://doi.org/10.1107/S2414314617012366]

rac-1,1,1,6,6,6-Hexachlorohex-3-yne-2,5-diol hemihydrate

Heiner Detert and Dieter Schollmeyer

rac-1,1,1,6,6,6-Hexachlorohex-3-yne-2,5-diol hemihydrate

Crystal data 2C6H4Cl6O2·H2O $D_{\rm x} = 1.833 {\rm Mg} {\rm m}^{-3}$ $M_r = 659.60$ Melting point: 408 K Mo *K* α radiation, $\lambda = 0.71073$ Å Monoclinic, I2/a *a* = 19.8354 (11) Å Cell parameters from 5782 reflections b = 5.8480(2) Å $\theta = 3.4 - 28.3^{\circ}$ $\mu = 1.41 \text{ mm}^{-1}$ c = 21.7082 (13) Å $\beta = 108.321 \ (4)^{\circ}$ T = 193 K $V = 2390.5 (2) \text{ Å}^3$ Column. colourless Z = 4 $0.39 \times 0.07 \times 0.06 \text{ mm}$ F(000) = 1304Data collection Stoe IPDS 2T 6305 measured reflections diffractometer 2965 independent reflections Radiation source: sealed X-ray tube, 12 x 0.4 2202 reflections with $I > 2\sigma(I)$ mm long-fine focus $R_{\rm int} = 0.026$ Detector resolution: 6.67 pixels mm⁻¹ $\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} = 2.4^{\circ}$ $h = -26 \rightarrow 26$ rotation method scans $k = -7 \rightarrow 6$ Absorption correction: integration (X-RED32; Stoe & Cie, 2006b) $l = -24 \rightarrow 28$ $T_{\rm min} = 0.714, T_{\rm max} = 0.933$ Refinement Refinement on F^2 Hydrogen site location: difference Fourier map Least-squares matrix: full All H-atom parameters refined

Least-squares matrix: fullAll H-atom parameters refined $R[F^2 > 2\sigma(F^2)] = 0.039$ $w = 1/[\sigma^2(F_o^2) + (0.0295P)^2 + 6.4827P]$ $wR(F^2) = 0.090$ where $P = (F_o^2 + 2F_c^2)/3$ S = 1.03 $(\Delta/\sigma)_{max} < 0.001$ 2965 reflections $\Delta\rho_{max} = 0.59$ e Å⁻³152 parameters $\Delta\rho_{min} = -0.57$ e Å⁻³0 restraints $\Delta\rho_{min} = -0.57$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.58326 (13)	0.4054 (5)	0.37414 (13)	0.0269 (5)	
C2	0.56624 (13)	0.4444 (5)	0.43828 (13)	0.0268 (5)	
H2	0.5573 (14)	0.608 (5)	0.4386 (13)	0.026 (7)*	
C3	0.50278 (14)	0.3142 (5)	0.43757 (12)	0.0296 (6)	
C4	0.45026 (15)	0.2097 (5)	0.43394 (13)	0.0314 (6)	
C5	0.38356 (15)	0.0835 (5)	0.42428 (13)	0.0303 (6)	
Н5	0.3951 (17)	-0.077 (6)	0.4347 (16)	0.046 (9)*	
C6	0.34051 (13)	0.0815 (5)	0.35171 (13)	0.0270 (5)	
01	0.62524 (11)	0.3777 (4)	0.49119 (10)	0.0345 (5)	
H1O	0.637 (2)	0.484 (7)	0.5082 (19)	0.051 (12)*	
O2	0.34423 (13)	0.1915 (5)	0.46020 (11)	0.0489 (7)	
H2O	0.319 (2)	0.114 (7)	0.4692 (19)	0.059 (13)*	
03	0.7500	0.0752 (6)	0.5000	0.0380 (7)	
H3O	0.717 (3)	0.171 (10)	0.475 (3)	0.12 (2)*	
Cl1	0.59756 (4)	0.11144 (12)	0.36352 (4)	0.03662 (17)	
Cl2	0.66181 (4)	0.55802 (13)	0.37759 (4)	0.04003 (19)	
C13	0.51257 (4)	0.50491 (14)	0.30818 (3)	0.04010 (19)	
Cl4	0.38978 (5)	-0.05417 (17)	0.30774 (4)	0.0551 (3)	
C15	0.26084 (4)	-0.07339 (13)	0.34107 (4)	0.03746 (18)	
C16	0.31978 (4)	0.36244 (14)	0.32294 (5)	0.0547 (2)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

U^{11}	T 722				
8	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0242 (12)	0.0244 (12)	0.0341 (13)	0.0017 (10)	0.0119 (10)	0.0002 (11)
0.0232 (12)	0.0271 (14)	0.0300 (13)	-0.0016 (10)	0.0083 (10)	0.0002 (11)
0.0268 (13)	0.0357 (15)	0.0257 (12)	-0.0011 (11)	0.0075 (10)	0.0015 (11)
0.0302 (14)	0.0358 (15)	0.0292 (13)	-0.0032 (12)	0.0109 (11)	0.0016 (12)
0.0311 (14)	0.0315 (15)	0.0312 (14)	-0.0084 (12)	0.0138 (11)	-0.0003 (12)
0.0251 (12)	0.0271 (13)	0.0312 (13)	-0.0024 (10)	0.0123 (10)	-0.0012 (11)
0.0297 (10)	0.0338 (12)	0.0349 (11)	-0.0043 (9)	0.0028 (8)	-0.0005 (9)
0.0507 (14)	0.0622 (16)	0.0484 (13)	-0.0332 (13)	0.0367 (11)	-0.0271 (12)
0.0278 (15)	0.0455 (18)	0.0381 (16)	0.000	0.0066 (12)	0.000
0.0322 (3)	0.0265 (3)	0.0517 (4)	0.0022 (3)	0.0140 (3)	-0.0071 (3)
0.0346 (4)	0.0347 (4)	0.0601 (5)	-0.0071 (3)	0.0282 (3)	-0.0022 (3)
0.0384 (4)	0.0489 (4)	0.0334 (3)	0.0119 (3)	0.0118 (3)	0.0097 (3)
0.0544 (5)	0.0652 (6)	0.0615 (5)	-0.0178 (4)	0.0408 (4)	-0.0298 (5)
0.0301 (3)	0.0397 (4)	0.0436 (4)	-0.0134 (3)	0.0130 (3)	-0.0058 (3)
0.0418 (4)	0.0358 (4)	0.0742 (6)	-0.0033 (3)	0.0004 (4)	0.0202 (4)
	0.0242 (12) 0.0232 (12) 0.0268 (13) 0.0302 (14) 0.0311 (14) 0.0251 (12) 0.0297 (10) 0.0507 (14) 0.0322 (3) 0.0346 (4) 0.0384 (4) 0.0301 (3) 0.0418 (4)	$\begin{array}{ccccccc} 0.0242 \ (12) & 0.0244 \ (12) \\ 0.0232 \ (12) & 0.0271 \ (14) \\ 0.0268 \ (13) & 0.0357 \ (15) \\ 0.0302 \ (14) & 0.0358 \ (15) \\ 0.0311 \ (14) & 0.0315 \ (15) \\ 0.0251 \ (12) & 0.0271 \ (13) \\ 0.0297 \ (10) & 0.0338 \ (12) \\ 0.0507 \ (14) & 0.0622 \ (16) \\ 0.0278 \ (15) & 0.0455 \ (18) \\ 0.0322 \ (3) & 0.0265 \ (3) \\ 0.0346 \ (4) & 0.0347 \ (4) \\ 0.0384 \ (4) & 0.0489 \ (4) \\ 0.0544 \ (5) & 0.0652 \ (6) \\ 0.0301 \ (3) & 0.0397 \ (4) \\ 0.0358 \ (4) \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Geometric parameters (Å, °)

C1—C2	1.549 (4)	C5—O2	1.414 (3)
C1—C13	1.758 (3)	С5—С6	1.538 (4)
C1—C11	1.769 (3)	С5—Н5	0.98 (4)

1.776 (3) 1.413 (3) 1.467 (4)	C6—Cl4 C6—Cl6 C6—Cl5	1.756 (3) 1.760 (3) 1.772 (3)
0.97(3) 1 189(4)	01—H10 02—H20	0.72(4) 0.75(4)
1.471 (4)	03—H3O	0.90 (5)
109.87 (17)	O2—C5—C4	108.9 (2)
110.43 (19)	O2—C5—C6	110.1 (2)
109.56 (15)	C4—C5—C6	109.5 (2)
108.92 (18)	O2—C5—H5	116 (2)
109.42 (14)	С4—С5—Н5	108 (2)
108.62 (14)	С6—С5—Н5	104 (2)
110.7 (2)	C5—C6—Cl4	109.60 (19)
109.4 (2)	C5—C6—Cl6	110.4 (2)
110.1 (2)	Cl4—C6—Cl6	109.69 (15)
111.8 (17)	C5—C6—C15	108.81 (18)
110.6 (17)	Cl4—C6—Cl5	108.90 (15)
104.0 (17)	Cl6—C6—Cl5	109.37 (14)
176.9 (3)	C2	104 (3)
175.8 (3)	С5—02—Н2О	114 (3)
-176.19 (18)	O2—C5—C6—Cl4	-179.75 (18)
62.8 (2)	C4—C5—C6—Cl4	60.5 (3)
-56.3 (3)	O2—C5—C6—Cl6	59.3 (3)
62.0 (3)	C4—C5—C6—Cl6	-60.5 (3)
-59.0 (3)	O2—C5—C6—C15	-60.8 (3)
-178.21 (19)	C4—C5—C6—Cl5	179.5 (2)
	1.776 (3) 1.413 (3) 1.467 (4) 0.97 (3) 1.189 (4) 1.471 (4) 109.87 (17) 110.43 (19) 109.56 (15) 108.92 (18) 109.42 (14) 108.62 (14) 110.7 (2) 109.4 (2) 110.1 (2) 111.8 (17) 110.6 (17) 104.0 (17) 176.9 (3) 175.8 (3) -176.19 (18) 62.8 (2) -56.3 (3) 62.0 (3) -59.0 (3) -178.21 (19)	1.776(3) $C6Cl4$ $1.413(3)$ $C6Cl5$ $1.467(4)$ $C6Cl5$ $0.97(3)$ $O1H1O$ $1.189(4)$ $O2H2O$ $1.471(4)$ $O3H3O$ $109.87(17)$ $O2C5C4$ $110.43(19)$ $O2C5C6$ $109.56(15)$ $C4C5C6$ $108.92(18)$ $O2C5H5$ $109.42(14)$ $C4C5H5$ $108.62(14)$ $C6C5H5$ $108.62(14)$ $C6C5H5$ $109.4(2)$ $C5C6Cl6$ $110.1(2)$ $Cl4C6Cl6$ $111.8(17)$ $C5C6Cl5$ $104.0(17)$ $Cl6C6Cl5$ $104.0(17)$ $Cl6C6Cl5$ $176.9(3)$ $C2O1H1O$ $175.8(3)$ $O2C5C6Cl4$ $62.8(2)$ $C4C5C6Cl4$ $-176.19(18)$ $O2C5C6Cl4$ $62.0(3)$ $C4C5C6Cl6$ $-178.21(19)$ $C4C5C6Cl5$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C5—H5…O1 ⁱ	0.98 (4)	2.50 (4)	3.297 (4)	139 (3)
01—H1 <i>O</i> ···O2 ⁱⁱ	0.72 (4)	2.01 (4)	2.725 (3)	168 (4)
O2—H2 <i>O</i> ···O3 ⁱ	0.75 (4)	2.02 (4)	2.773 (3)	175 (4)
O3—H3 <i>O</i> …O1	0.90 (5)	2.29 (5)	2.999 (3)	135 (5)
O3—H3 <i>O</i> …Cl1	0.90 (5)	2.83 (5)	3.5120 (8)	134 (4)
O3—H3 <i>O</i> ···Cl2	0.90 (5)	3.06 (5)	3.895 (3)	155 (5)

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1.