metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

cis-Chlorido­bis­­(4,4′-di­methyl-2,2′-bi­pyridine)­nitro­sylruthenium(II) bis­­(hexa­fluoro­phosphate)

aLaboratoire de Chimie de Coordination, UPR-CNRS 8241, 205, route de Narbonne, 31077 Toulouse cedex, France
*Correspondence e-mail: laure.vendier@lcc-toulouse.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 30 June 2017; accepted 7 July 2017; online 13 July 2017)

In the cation of the title complex, [RuCl(NO)(C12H12N2)2](PF6)2, the central RuII ion is sixfold coordinated by a chloride ion and a nitrosyl ligand, which are cis to one another, and by four N atoms of two 4,4′-dimethyl-2,2′-bi­pyridine ligands, in a slightly distorted octa­hedral geometry. One of the PF6 anions is located in a general position, while the other is composed of two half PF6 anions located on twofold rotation axes. The crystal packing is dominated by C—H⋯F hydrogen bonds, leading to the formation of a three-dimensional supra­molecular structure. There are also C—H⋯Cl hydrogen bonds present.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Ruthenium nitrosyl complexes have attracted significant attention over the last two decades, mainly due to their inter­esting photoreactivity properties. Ruthenium nitrosyl complexes can either induce photochromism (Schaniel et al., 2007b[Schaniel, D., Imlau, M., Weisemoeller, T., Woike, T., Krämer, K. W. & Güdel, H. U. (2007b). Adv. Mater. 19, 723-726.]) or NO photorelease (Rose & Mascharak, 2008[Rose, M. J. & Mascharak, P. K. (2008). Coord. Chem. Rev. 252, 2093-2114.]). In the first case, photoisomerization along the ruthenium–nitrosyl bond (Ru—NO/Ru—ON) is observed in the solid state when the compounds are irradiated in the blue region (Schaniel et al., 2007a[Schaniel, D., Cormary, B., Malfant, I., Valade, L., Woike, T., Delley, B., Krämer, K. W. & Güdel, H. U. (2007a). Phys. Chem. Chem. Phys. 99, 3717-3724.]; Cormary et al., 2009[Cormary, B., Malfant, I., Buron-Le Cointe, M., Toupet, L., Delley, B., Schaniel, D., Mockus, N., Woike, T., Fejfarová, K., Petříček, V. & Dušek, M. (2009). Acta Cryst. B65, 612-623.], 2012[Cormary, B., Mallet-Ladeira, S., Jacob, K., Lacroix, P. G., Woike, T., Schaniel, D. & Malfant, I. (2012). Inorg. Chem. 51, 7492-7501.]). It offers technological applications as optical high-capacity storage devices (Imlau et al., 1999[Imlau, M., Woike, T., Schieder, R. & Rupp, R. A. (1999). Appl. Phys. B, 68, 877-885.]). In the latter case, irradiation at room temperature in the UV–visible region of solutions of ruthenium nitrosyl complexes gives rise to NO photorelease (Tfouni et al., 2003[Tfouni, E., Krieger, M., McGarvey, B. R. & Franco, D. W. (2003). Coord. Chem. Rev. 236, 57-69.]; Fry & Mascharak, 2011[Fry, N. L. & Mascharak, P. K. (2011). Acc. Chem. Res. 44, 289-298.]; Akl et al., 2014[Akl, J., Sasaki, I., Lacroix, P. G., Malfant, I. S., Vicendo, P., Farfán, N. & Santillan, R. (2014). Dalton Trans. 43, 12721-12733.]). This is very appealing because the nitric oxide has a significant role in various biological processes. It shows an ability to induce apoptosis and is involved in blood-pressure control, and also has anti­microbial activity (Hirst & Robson, 2007[Hirst, D. & Robson, T. (2007). J. Pharm. Pharmacol. 59, 3-13.]). Ruthenium nitrosyl complexes based on bi­pyridine ligands are of great inter­est because of their photoreactive properties (Togniolo et al., 2001[Togniolo, V., da Silva, R. S. & Tedesco, A. C. (2001). Inorg. Chim. Acta, 316, 7-12.]). In the search for new systems, we have synthesized the title complex and report herein its crystal structure.

The cation of the title complex has a central RuII ion which is sixfold coordinated by a chloride ion and a nitrosyl ligand (Fig. 1[link]), which are cis to one another, and by four N atoms of two 4,4′-dimethyl-2,2′-bi­pyridine ligands, in a slightly distorted octa­hedral geometry. One of the PF6 anions is located in a general position, while the other is composed of two half PF6 anions located on twofold rotation axes. The Ru1—N1—O1 angle is 178.6 (3)°, which is close to 180°, in agreement with the Enemark–Feltham notation for {RuNO}6 with RuII—NO+ and with the characteristic range of (NO) absorption around 1940 cm−1 (Lahiri & Kaim, 2010[Lahiri, G. K. & Kaim, W. (2010). Dalton Trans. 39, 4471-4478.]).

[Figure 1]
Figure 1
The mol­ecular structure of the [RuCl(NO)(dimethyl-2,2′-bi­pyridine)2]2+ cation of the title complex, showing the atom labelling and 30% probability displacement ellipsoids.

The crystal packing is dominated by C—H⋯F hydrogen bonds, leading to the formation of a three-dimensional supra­molecular structure (Table 1[link] and Fig. 2[link]). There are also C—H⋯Cl hydrogen bonds present (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F2i 0.95 2.54 3.328 (5) 141
C5—H5⋯F9ii 0.95 2.51 3.310 (5) 141
C8—H8⋯Cl1 0.95 2.75 3.353 (4) 122
C15—H15⋯Cl1iii 0.95 2.80 3.660 (4) 152
C18—H18⋯F11iv 0.95 2.49 3.215 (5) 133
C18—H18⋯F4v 0.95 2.32 3.064 (5) 135
C19—H19⋯F13vi 0.95 2.54 3.208 (5) 127
C21—H21⋯F8vii 0.95 2.53 3.433 (5) 159
C22—H22⋯F1ii 0.95 2.32 3.253 (5) 166
C25—H25A⋯F4ii 0.98 2.50 3.358 (6) 147
C25—H25C⋯F9 0.98 2.39 3.228 (6) 143
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) x, y+1, z; (v) [x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y+1, -z+{\script{3\over 2}}]; (vii) x, y-1, z.
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title complex. The C—H⋯F hydrogen bonds are shown as dashed lines (see Table 1[link]) and only the H atoms involved in these inter­actions have been included.

Synthesis and crystallization

Synthesis of [RuCl2(4,4′-dimethyl-2,2′-bi­pyridine)2], (I)

DMF (15 ml) was bubbled with argon for 15 min. Lithium chloride (406 mg, 9.6 mmol) was dissolved in DMF (5 ml) with stirring for 15 min. Ruthenium chloride, (III) (250 mg, 1.2 mmol), was dissolved in DMF (5 ml). 4,4′-Dimethyl-2,2′-bi­pyridine (406 mg, 2.4 mmol) was dissolved in DMF (5 ml). The lithium chloride solution was added to the ruthenium chloride solution via cannula under argon. The 4,4′-dimethyl-2,2′-bi­pyridine solution was added to the above solution dropwise via cannula under argon. The reaction mixture was refluxed for 6 h at 413 K. The volume of the solution was decreased to half using a rotary evaporator. Acetone (50 ml) was added to the mixture and it was placed in an ice bath for 4 h. The dark-red precipitate that formed was filtered off, washed with distilled water and dried (yield 392 mg, 60.4%). Analysis calculated for C24H24Cl2N4Ru: C 53.34, H 4.48, N 10.37%; found: C 53.44, H 4.53, N 10.30%. IR (KBr) cm−1: 3041 (C—H aromatic), 2910 (C—H aliphatic), 1615 (C=N), 1446 (C=C), 825 (C—H rock), 551 (C—H rock).

Synthesis of [Ru(NO2)2(4,4′-dimethyl-2,2′-bi­pyridine)2], (II)

Compound (I) (305 mg, 0.56 mmol) was dissolved in distilled water (20 ml) and the red solution was refluxed for 30 min, then filtered. NaNO2 (156.5 mg, 2.24 mmol) dissolved in distilled water (5 ml) and was added to the filtrate and the reaction mixture was refluxed for 1 h at 373 K. The mixture was placed in an ice bath for 1 h then filtered. The brown precipitate obtained was washed with distilled water and dried (yield 203 mg, 64.5%). Analysis calculated for C24H24N6O4Ru: C 51.33, H 4.31, N 14.97%; found: C 51.41, H 4.37, N 14.84%. 1H NMR (300 MHz, DMSO-d6, 298 K): δ 9.50 (2H1,1′, d, J = 5.85 Hz), 8.51 (2H3,3′, s), 8.41 (2H4,4′, s), 7.64 (2H2,2′, dd, J = 5.71, 1.18 Hz), 7.32 (2H6,6′, d, J = 5.74 Hz), 7.08 (2H5,5′, dd, J = 5.72, 1.00 Hz), 2.61 (6H, s, 2CH3), 2.38 (6H, s, 2CH3). IR (KBr) cm−1: 3071 (C—H aromatic), 2920 (C—H aliphatic), 1616 (C=N), 1447 (C=C), 1320 (NO2)asy, 1272 (NO2)sy, 1039, 825, 551 due to (C—H) deformation.

Synthesis of [RuCl(NO)(dimethyl-2,2′-bi­pyridine)2](PF6)2

Compound (II) (170 mg, 0.30 mmol) was dissolved in HCl (24 ml, 37%). The reaction mixture was refluxed for 1 h at 373 K and then left to cool to room temperature. NH4PF6 (195 mg, 1.2 mmol) dissolved in distilled water (2 ml) was added to the reaction mixture. The orange precipitate that formed was filtered off, washed with distilled water, then diethyl ether and dried (yield 154 mg, 62%). IR (KBr) cm−1: 3088 (C—H aromatic), 2905 (C—H aliphatic), 1940 (N=O), 1618 (C=N), 1428(C=C), 835 (P—F).

Analysis calculated for C24H24ClF12N5OP2Ru: C 34.94, H 2.93, N 8.49%; found: C 34.84, H 2.85, N 8.40%. 1H NMR (300 MHz, DMSO-d6, 298 K): δ 9.23 (1H1, d, J = 5.99 Hz), 9.11 (1H1`, d, J = 5.92 Hz), 9.00 (1H3, d, 1.88), 8.92 (1H3`, d, J = 1.76 Hz), 8.86 (1H4, d, J = 1.86 Hz), 8.82 (1H4`, d, J = 1.82 Hz), 8.06 (1H2, d, J = 6.11 Hz), 8.00 (1H2`, d, J = 6.22 Hz), 7.82 (1H6, d, J = 5.94 Hz), 7.54 (1H5, dd, J = 6.10, 1.77 Hz), 7.43 (1H5`, J = 5.96, 1.80 Hz), 7.26 (1H6`, d, J = 6.02 Hz), 2.76 (3H, s, CH3), 2.74 (3H, s, CH3), 2.56 (3H, s, CH3), 2.53 (3H, s, CH3). UV–Vis in aceto­nitrile at 298 K, λ nm ( M−1 cm−1): 295 (24273), 323 (16554). Yellow plate-like crystals of the title complex were obtained by slow diffusion of diethyl ether into an acetone solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [RuCl(NO)(C12H12N2)2](PF6)2
Mr 824.94
Crystal system, space group Monoclinic, P2/n
Temperature (K) 173
a, b, c (Å) 18.6926 (12), 8.1573 (5), 20.3841 (13)
β (°) 102.828 (3)
V3) 3030.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.82
Crystal size (mm) 0.15 × 0.08 × 0.02
 
Data collection
Diffractometer Bruker Kappa APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.847, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 127079, 6196, 5805
Rint 0.042
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.108, 1.32
No. of reflections 6196
No. of parameters 421
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.19, −0.73
Computer programs: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

cis-Chloridobis(4,4'-dimethyl-2,2'-bipyridine)nitrosylruthenium(II) bis(hexafluorophosphate) top
Crystal data top
[RuCl(NO)(C12H12N2)2](PF6)2F(000) = 1640
Mr = 824.94Dx = 1.808 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 9501 reflections
a = 18.6926 (12) Åθ = 2.7–29.2°
b = 8.1573 (5) ŵ = 0.82 mm1
c = 20.3841 (13) ÅT = 173 K
β = 102.828 (3)°Plate, yellow
V = 3030.6 (3) Å30.15 × 0.08 × 0.02 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
6196 independent reflections
Radiation source: microsource5805 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ωφ scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 2323
Tmin = 0.847, Tmax = 0.989k = 1010
127079 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.32 w = 1/[σ2(Fo2) + (0.0177P)2 + 13.0961P]
where P = (Fo2 + 2Fc2)/3
6196 reflections(Δ/σ)max < 0.001
421 parametersΔρmax = 1.19 e Å3
0 restraintsΔρmin = 0.73 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.295920 (17)0.32238 (4)0.480073 (15)0.01836 (9)
F120.22407 (15)0.3588 (3)0.66961 (12)0.0334 (6)
Cl10.39303 (6)0.13222 (13)0.51121 (6)0.0283 (2)
P20.250.8827 (2)0.250.0294 (4)
P10.03457 (6)0.28288 (15)0.36131 (6)0.0278 (3)
F80.251.0779 (5)0.250.0410 (10)
F70.250.6866 (7)0.250.094 (2)
F40.00952 (17)0.3316 (4)0.28780 (14)0.0471 (8)
F20.03599 (15)0.1995 (4)0.37854 (14)0.0390 (7)
F60.01399 (17)0.4528 (4)0.39047 (17)0.0491 (8)
F10.10714 (15)0.3653 (4)0.34570 (13)0.0402 (7)
F30.08241 (15)0.2338 (4)0.43490 (12)0.0373 (7)
F50.05578 (15)0.1119 (4)0.33278 (14)0.0375 (6)
F100.29501 (17)0.8830 (5)0.32644 (14)0.0504 (8)
F90.32424 (18)0.8816 (5)0.22524 (15)0.0562 (10)
N10.21674 (17)0.5015 (4)0.46897 (16)0.0175 (7)
N20.24267 (18)0.2538 (4)0.55481 (16)0.0197 (7)
N30.35224 (18)0.4258 (4)0.41381 (16)0.0210 (7)
F110.30891 (14)0.2203 (3)0.74521 (13)0.0292 (6)
C10.1747 (2)0.4963 (5)0.51577 (18)0.0177 (8)
C20.1216 (2)0.6127 (5)0.5158 (2)0.0232 (8)
H20.09390.60940.54960.028*
C30.1077 (3)0.7348 (6)0.4675 (2)0.0294 (10)
C40.0469 (3)0.8564 (6)0.4652 (3)0.0465 (14)
H4A0.00580.80290.47920.07*
H4B0.03040.8980.41920.07*
H4C0.06480.94780.49560.07*
C50.1509 (2)0.7352 (5)0.4195 (2)0.0257 (9)
H50.14280.81560.38490.031*
C60.2047 (2)0.6205 (5)0.42230 (19)0.0227 (8)
H60.23460.6250.39020.027*
C70.1877 (2)0.3556 (5)0.56216 (18)0.0175 (8)
C80.2559 (2)0.1187 (5)0.5928 (2)0.0264 (9)
H80.29440.04770.58730.032*
C90.2157 (2)0.0788 (5)0.6395 (2)0.0283 (9)
H90.22590.01930.6650.034*
C100.1600 (2)0.1834 (5)0.6493 (2)0.0237 (9)
C110.1467 (2)0.3241 (5)0.60945 (19)0.0205 (8)
H110.10930.39840.61480.025*
C120.1158 (3)0.1481 (6)0.7011 (2)0.0304 (10)
H12A0.07190.21730.69260.046*
H12B0.14560.17150.74610.046*
H12C0.10130.03240.69840.046*
N40.36093 (17)0.4951 (4)0.54082 (16)0.0193 (7)
C140.4023 (2)0.5919 (5)0.50946 (19)0.0174 (8)
C150.4448 (2)0.7176 (5)0.5430 (2)0.0216 (8)
H150.47350.78320.52010.026*
C160.4458 (2)0.7483 (5)0.6106 (2)0.0224 (8)
C170.4901 (3)0.8868 (6)0.6478 (2)0.0315 (10)
H17A0.45750.97850.65190.047*
H17B0.52660.92280.6230.047*
H17C0.51510.84960.69280.047*
C180.4032 (2)0.6491 (5)0.6418 (2)0.0238 (9)
H180.40240.66630.68770.029*
C190.3620 (2)0.5251 (5)0.60590 (19)0.0224 (8)
H190.33320.4580.62810.027*
C200.3978 (2)0.5509 (5)0.43805 (19)0.0193 (8)
C210.3468 (2)0.3789 (6)0.3495 (2)0.0281 (10)
H210.31560.28960.33230.034*
C220.3850 (2)0.4564 (6)0.3079 (2)0.0301 (10)
H220.37960.420.26280.036*
C230.4310 (2)0.5868 (6)0.3311 (2)0.0262 (9)
C240.4372 (2)0.6333 (5)0.3981 (2)0.0192 (8)
H240.46840.72170.41630.023*
C250.4720 (3)0.6781 (6)0.2869 (2)0.0346 (11)
H25A0.4770.60810.24910.052*
H25B0.52080.70810.31310.052*
H25C0.44480.77760.26970.052*
N50.24250 (18)0.1847 (5)0.42268 (17)0.0234 (7)
O10.20981 (18)0.0961 (5)0.38590 (18)0.0408 (9)
P30.250.35977 (18)0.750.0220 (3)
F130.19066 (17)0.4991 (3)0.75495 (14)0.0386 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01756 (16)0.02110 (17)0.01676 (15)0.00024 (13)0.00453 (11)0.00084 (13)
F120.0493 (16)0.0329 (15)0.0176 (12)0.0077 (12)0.0071 (11)0.0033 (11)
Cl10.0214 (5)0.0274 (5)0.0362 (6)0.0041 (4)0.0063 (4)0.0019 (4)
P20.0402 (9)0.0288 (9)0.0226 (8)00.0140 (7)0
P10.0281 (6)0.0351 (7)0.0197 (5)0.0093 (5)0.0043 (4)0.0013 (5)
F80.047 (2)0.029 (2)0.044 (2)00.0035 (19)0
F70.159 (7)0.030 (3)0.094 (5)00.030 (4)0
F40.0472 (17)0.054 (2)0.0311 (15)0.0047 (15)0.0106 (13)0.0051 (14)
F20.0322 (14)0.0447 (17)0.0429 (16)0.0089 (13)0.0139 (12)0.0072 (14)
F60.0451 (17)0.0423 (18)0.060 (2)0.0054 (15)0.0108 (15)0.0110 (16)
F10.0362 (15)0.0566 (19)0.0266 (13)0.0175 (14)0.0047 (11)0.0056 (13)
F30.0426 (16)0.0464 (17)0.0205 (13)0.0140 (13)0.0021 (11)0.0029 (12)
F50.0359 (15)0.0420 (16)0.0345 (15)0.0084 (13)0.0076 (12)0.0046 (13)
F100.0526 (19)0.076 (2)0.0237 (14)0.0191 (17)0.0101 (13)0.0109 (15)
F90.0478 (18)0.090 (3)0.0360 (16)0.0260 (18)0.0211 (14)0.0060 (17)
N10.0207 (16)0.0155 (16)0.0168 (15)0.0032 (13)0.0049 (13)0.0017 (13)
N20.0193 (16)0.0222 (17)0.0179 (16)0.0005 (14)0.0050 (13)0.0031 (14)
N30.0197 (16)0.0265 (19)0.0179 (16)0.0011 (14)0.0063 (13)0.0027 (14)
F110.0336 (14)0.0253 (13)0.0307 (13)0.0043 (11)0.0115 (11)0.0003 (11)
C10.0210 (18)0.0181 (19)0.0131 (17)0.0046 (15)0.0020 (14)0.0005 (15)
C20.027 (2)0.022 (2)0.022 (2)0.0036 (17)0.0086 (16)0.0009 (16)
C30.034 (2)0.027 (2)0.028 (2)0.0041 (19)0.0089 (19)0.0046 (18)
C40.063 (4)0.031 (3)0.051 (3)0.025 (3)0.024 (3)0.017 (2)
C50.032 (2)0.022 (2)0.022 (2)0.0008 (18)0.0042 (17)0.0041 (17)
C60.030 (2)0.024 (2)0.0153 (18)0.0055 (17)0.0072 (16)0.0050 (16)
C70.0203 (18)0.0155 (19)0.0151 (17)0.0018 (15)0.0008 (14)0.0016 (14)
C80.026 (2)0.023 (2)0.030 (2)0.0057 (17)0.0066 (18)0.0071 (18)
C90.034 (2)0.021 (2)0.029 (2)0.0014 (18)0.0058 (18)0.0093 (18)
C100.029 (2)0.024 (2)0.0184 (19)0.0072 (18)0.0054 (16)0.0012 (17)
C110.0236 (19)0.0180 (19)0.0200 (19)0.0002 (16)0.0052 (15)0.0023 (16)
C120.040 (3)0.028 (2)0.027 (2)0.002 (2)0.0149 (19)0.0069 (18)
N40.0185 (16)0.0229 (17)0.0160 (15)0.0018 (14)0.0025 (13)0.0005 (13)
C140.0161 (18)0.0183 (19)0.0181 (18)0.0048 (15)0.0043 (14)0.0005 (15)
C150.0215 (19)0.022 (2)0.022 (2)0.0022 (16)0.0065 (16)0.0000 (16)
C160.022 (2)0.021 (2)0.022 (2)0.0030 (17)0.0006 (16)0.0015 (16)
C170.037 (3)0.028 (2)0.027 (2)0.002 (2)0.0007 (19)0.0045 (19)
C180.024 (2)0.031 (2)0.0157 (18)0.0029 (18)0.0038 (15)0.0011 (17)
C190.022 (2)0.029 (2)0.0169 (18)0.0008 (17)0.0048 (15)0.0014 (17)
C200.0195 (19)0.0193 (19)0.0200 (19)0.0061 (16)0.0062 (15)0.0006 (16)
C210.029 (2)0.037 (3)0.019 (2)0.0050 (19)0.0058 (17)0.0088 (18)
C220.033 (2)0.040 (3)0.019 (2)0.002 (2)0.0089 (18)0.0045 (19)
C230.025 (2)0.032 (2)0.023 (2)0.0056 (18)0.0102 (17)0.0041 (18)
C240.0215 (19)0.0122 (18)0.024 (2)0.0010 (15)0.0065 (16)0.0010 (15)
C250.040 (3)0.040 (3)0.027 (2)0.001 (2)0.017 (2)0.003 (2)
N50.0200 (16)0.0264 (19)0.0266 (18)0.0014 (15)0.0111 (14)0.0050 (16)
O10.0331 (18)0.045 (2)0.047 (2)0.0143 (16)0.0149 (16)0.0238 (18)
P30.0354 (8)0.0145 (7)0.0174 (7)00.0087 (6)0
F130.0607 (19)0.0245 (14)0.0369 (15)0.0149 (13)0.0240 (14)0.0079 (12)
Geometric parameters (Å, º) top
Ru1—N51.763 (4)C8—H80.95
Ru1—N12.056 (3)C9—C101.394 (6)
Ru1—N32.068 (3)C9—H90.95
Ru1—N22.073 (3)C10—C111.395 (6)
Ru1—N42.080 (3)C10—C121.506 (6)
Ru1—Cl12.3648 (11)C11—H110.95
F12—P31.602 (2)C12—H12A0.98
P2—F91.578 (3)C12—H12B0.98
P2—F9i1.578 (3)C12—H12C0.98
P2—F81.593 (4)N4—C191.345 (5)
P2—F10i1.598 (3)N4—C141.360 (5)
P2—F101.598 (3)C14—C151.382 (6)
P2—F71.599 (6)C14—C201.478 (5)
P1—F61.589 (3)C15—C161.397 (6)
P1—F21.591 (3)C15—H150.95
P1—F41.592 (3)C16—C181.384 (6)
P1—F51.595 (3)C16—C171.503 (6)
P1—F11.608 (3)C17—H17A0.98
P1—F31.617 (3)C17—H17B0.98
N1—C61.343 (5)C17—H17C0.98
N1—C11.365 (5)C18—C191.379 (6)
N2—C81.337 (5)C18—H180.95
N2—C71.355 (5)C19—H190.95
N3—C211.348 (5)C20—C241.387 (5)
N3—C201.350 (5)C21—C221.377 (6)
F11—P31.601 (3)C21—H210.95
C1—C21.373 (6)C22—C231.384 (7)
C1—C71.473 (5)C22—H220.95
C2—C31.384 (6)C23—C241.397 (6)
C2—H20.95C23—C251.502 (6)
C3—C51.400 (6)C24—H240.95
C3—C41.502 (6)C25—H25A0.98
C4—H4A0.98C25—H25B0.98
C4—H4B0.98C25—H25C0.98
C4—H4C0.98N5—O11.120 (5)
C5—C61.365 (6)P3—F11ii1.601 (3)
C5—H50.95P3—F12ii1.602 (2)
C6—H60.95P3—F131.607 (3)
C7—C111.383 (5)P3—F13ii1.607 (3)
C8—C91.377 (6)
N5—Ru1—N195.26 (14)N2—C8—H8118.8
N5—Ru1—N397.01 (14)C9—C8—H8118.8
N1—Ru1—N395.54 (13)C8—C9—C10119.5 (4)
N5—Ru1—N291.27 (15)C8—C9—H9120.2
N1—Ru1—N279.70 (13)C10—C9—H9120.2
N3—Ru1—N2170.83 (14)C9—C10—C11117.6 (4)
N5—Ru1—N4175.15 (15)C9—C10—C12121.7 (4)
N1—Ru1—N484.00 (13)C11—C10—C12120.7 (4)
N3—Ru1—N478.32 (13)C7—C11—C10120.2 (4)
N2—Ru1—N493.30 (13)C7—C11—H11119.9
N5—Ru1—Cl192.77 (12)C10—C11—H11119.9
N1—Ru1—Cl1170.58 (9)C10—C12—H12A109.5
N3—Ru1—Cl188.35 (10)C10—C12—H12B109.5
N2—Ru1—Cl195.22 (10)H12A—C12—H12B109.5
N4—Ru1—Cl188.42 (9)C10—C12—H12C109.5
F9—P2—F9i179.4 (3)H12A—C12—H12C109.5
F9—P2—F890.31 (16)H12B—C12—H12C109.5
F9i—P2—F890.31 (16)C19—N4—C14118.2 (3)
F9—P2—F10i89.89 (16)C19—N4—Ru1126.1 (3)
F9i—P2—F10i90.11 (16)C14—N4—Ru1115.5 (2)
F8—P2—F10i89.90 (15)N4—C14—C15121.5 (4)
F9—P2—F1090.11 (16)N4—C14—C20114.7 (3)
F9i—P2—F1089.89 (16)C15—C14—C20123.7 (4)
F8—P2—F1089.90 (15)C14—C15—C16120.1 (4)
F10i—P2—F10179.8 (3)C14—C15—H15120
F9—P2—F789.69 (16)C16—C15—H15120
F9i—P2—F789.69 (16)C18—C16—C15117.7 (4)
F8—P2—F7180.000 (2)C18—C16—C17121.1 (4)
F10i—P2—F790.10 (15)C15—C16—C17121.2 (4)
F10—P2—F790.10 (15)C16—C17—H17A109.5
F6—P1—F290.51 (17)C16—C17—H17B109.5
F6—P1—F490.95 (19)H17A—C17—H17B109.5
F2—P1—F491.90 (17)C16—C17—H17C109.5
F6—P1—F5179.40 (19)H17A—C17—H17C109.5
F2—P1—F589.54 (16)H17B—C17—H17C109.5
F4—P1—F589.65 (17)C19—C18—C16119.8 (4)
F6—P1—F189.67 (18)C19—C18—H18120.1
F2—P1—F1178.51 (17)C16—C18—H18120.1
F4—P1—F189.57 (16)N4—C19—C18122.8 (4)
F5—P1—F190.26 (16)N4—C19—H19118.6
F6—P1—F389.92 (17)C18—C19—H19118.6
F2—P1—F390.25 (15)N3—C20—C24121.7 (4)
F4—P1—F3177.67 (17)N3—C20—C14115.1 (3)
F5—P1—F389.47 (16)C24—C20—C14123.2 (4)
F1—P1—F388.28 (15)N3—C21—C22122.1 (4)
C6—N1—C1119.0 (3)N3—C21—H21119
C6—N1—Ru1126.5 (3)C22—C21—H21119
C1—N1—Ru1114.4 (3)C21—C22—C23120.7 (4)
C8—N2—C7119.2 (3)C21—C22—H22119.6
C8—N2—Ru1126.2 (3)C23—C22—H22119.6
C7—N2—Ru1114.5 (3)C22—C23—C24116.9 (4)
C21—N3—C20118.4 (4)C22—C23—C25122.5 (4)
C21—N3—Ru1125.5 (3)C24—C23—C25120.6 (4)
C20—N3—Ru1116.1 (3)C20—C24—C23120.3 (4)
N1—C1—C2120.5 (4)C20—C24—H24119.9
N1—C1—C7115.7 (3)C23—C24—H24119.9
C2—C1—C7123.8 (4)C23—C25—H25A109.5
C1—C2—C3121.3 (4)C23—C25—H25B109.5
C1—C2—H2119.4H25A—C25—H25B109.5
C3—C2—H2119.4C23—C25—H25C109.5
C2—C3—C5116.9 (4)H25A—C25—H25C109.5
C2—C3—C4121.3 (4)H25B—C25—H25C109.5
C5—C3—C4121.8 (4)O1—N5—Ru1178.6 (3)
C3—C4—H4A109.5F11—P3—F11ii89.5 (2)
C3—C4—H4B109.5F11—P3—F1289.43 (14)
H4A—C4—H4B109.5F11ii—P3—F1290.16 (14)
C3—C4—H4C109.5F11—P3—F12ii90.16 (14)
H4A—C4—H4C109.5F11ii—P3—F12ii89.43 (14)
H4B—C4—H4C109.5F12—P3—F12ii179.4 (2)
C6—C5—C3120.2 (4)F11—P3—F13179.73 (16)
C6—C5—H5119.9F11ii—P3—F1390.28 (14)
C3—C5—H5119.9F12—P3—F1390.66 (14)
N1—C6—C5122.1 (4)F12ii—P3—F1389.75 (15)
N1—C6—H6119F11—P3—F13ii90.28 (14)
C5—C6—H6119F11ii—P3—F13ii179.73 (17)
N2—C7—C11121.0 (4)F12—P3—F13ii89.75 (15)
N2—C7—C1115.4 (3)F12ii—P3—F13ii90.66 (14)
C11—C7—C1123.6 (4)F13—P3—F13ii90.0 (2)
N2—C8—C9122.4 (4)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F2iii0.952.543.328 (5)141
C5—H5···F9i0.952.513.310 (5)141
C8—H8···Cl10.952.753.353 (4)122
C15—H15···Cl1iv0.952.803.660 (4)152
C18—H18···F11v0.952.493.215 (5)133
C18—H18···F4vi0.952.323.064 (5)135
C19—H19···F13vii0.952.543.208 (5)127
C21—H21···F8viii0.952.533.433 (5)159
C22—H22···F1i0.952.323.253 (5)166
C25—H25A···F4i0.982.503.358 (6)147
C25—H25C···F90.982.393.228 (6)143
Symmetry codes: (i) x+1/2, y, z+1/2; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1; (v) x, y+1, z; (vi) x+1/2, y+1, z+1/2; (vii) x+1/2, y+1, z+3/2; (viii) x, y1, z.
 

Funding information

Funding for this research was provided by: Iraqi/French institution (grant to HSM); Campus France (award No. 776290J (Moyen-Orient) to HSM).

References

First citationAkl, J., Sasaki, I., Lacroix, P. G., Malfant, I. S., Vicendo, P., Farfán, N. & Santillan, R. (2014). Dalton Trans. 43, 12721–12733.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCormary, B., Malfant, I., Buron-Le Cointe, M., Toupet, L., Delley, B., Schaniel, D., Mockus, N., Woike, T., Fejfarová, K., Petříček, V. & Dušek, M. (2009). Acta Cryst. B65, 612–623.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCormary, B., Mallet-Ladeira, S., Jacob, K., Lacroix, P. G., Woike, T., Schaniel, D. & Malfant, I. (2012). Inorg. Chem. 51, 7492–7501.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFry, N. L. & Mascharak, P. K. (2011). Acc. Chem. Res. 44, 289–298.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHirst, D. & Robson, T. (2007). J. Pharm. Pharmacol. 59, 3–13.  Web of Science CrossRef PubMed CAS Google Scholar
First citationImlau, M., Woike, T., Schieder, R. & Rupp, R. A. (1999). Appl. Phys. B, 68, 877–885.  Web of Science CrossRef CAS Google Scholar
First citationLahiri, G. K. & Kaim, W. (2010). Dalton Trans. 39, 4471–4478.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRose, M. J. & Mascharak, P. K. (2008). Coord. Chem. Rev. 252, 2093–2114.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSchaniel, D., Cormary, B., Malfant, I., Valade, L., Woike, T., Delley, B., Krämer, K. W. & Güdel, H. U. (2007a). Phys. Chem. Chem. Phys. 99, 3717–3724.  Web of Science CrossRef Google Scholar
First citationSchaniel, D., Imlau, M., Weisemoeller, T., Woike, T., Krämer, K. W. & Güdel, H. U. (2007b). Adv. Mater. 19, 723–726.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTfouni, E., Krieger, M., McGarvey, B. R. & Franco, D. W. (2003). Coord. Chem. Rev. 236, 57–69.  Web of Science CrossRef CAS Google Scholar
First citationTogniolo, V., da Silva, R. S. & Tedesco, A. C. (2001). Inorg. Chim. Acta, 316, 7–12.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds