organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(6-Nitro-1H-indazol-1-yl)ethanone

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Mohammed V University, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: mmohamedabdelahi@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 14 May 2017; accepted 5 June 2017; online 13 June 2017)

In the title mol­ecule, C9H7N3O3, the indazole moiety is essentially planar and the mean plane of the acetyl substituent is twisted by 5.3 (1)° from its plane. In the crystal, weak C—H⋯O and C—H⋯N hydrogen bonds form layers parallel to (102), which are associated through π-stacking inter­actions to form a three-dimensional network. The structure was refined as a two-component twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The diverse pharmacological properties exhibited by 1H-indazoles have sparked the emergence of novel methods toward their synthesis. Indazole is a frequently found motif in drug substances with important biological activities such as anti­microbial (Li et al., 2003[Li, X., Chu, S., Feher, V. A., Khalili, M., Nie, Z., Margosiak, S., Nikulin, V., Levin, J., Sprankle, K. G., Tedder, M. E., Almassy, R., Appelt, K. & Yager, K. M. (2003). J. Med. Chem. 46, 5663-5673.]), anti-inflammatory (Lin et al., 2008[Lin, X., Busch-Petersen, V., Deng, J., Edwards, V., Zhang, V. & Kerns, J. K. (2008). Synlett, pp. 3216-3220.]) and anti­cancer effects (Zhu et al., 2007[Zhu, G. D., Gong, J., Gandhi, V. B., Woods, K., Luo, Y., Liu, X., Guan, R., Klinghofer, V., Johnson, E. F., Stoll, V. S., Mamo, M., Li, Q., Rosenberg, S. H. & Giranda, V. L. (2007). Bioorg. Med. Chem. 15, 2441-2452.]). The crystal structure study of the title compound constitutes a continuation of our previous work on indazole derivatives (Mohamed Abdelahi et al., 2017[Mohamed Abdelahi, M. M., El Bakri, Y., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x170432.]; El Brahmi et al., 2012[El Brahmi, N., Benchidmi, M., Essassi, E. M., Ladeira, S. & El Ammari, L. (2012). Acta Cryst. E68, o3368.]).

The indazole moiety is planar to within 0.0093 (16) Å for (C6) with an r.m.s. deviation from the mean plane of 0.005 Å. The acetyl group is slightly twisted out of the indazole plane, as indicated by the dihedral angle of 5.3 (1)° between it and the N2/C8/C9/O1 plane. This orientation may be due in part to the intra­molecular C2—H2⋯O1 hydrogen bond (Table 1[link] and Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1 0.94 (2) 2.46 (2) 2.929 (2) 111.3 (16)
C4—H4⋯O1i 0.95 (3) 2.37 (3) 3.213 (2) 148 (2)
C7—H7⋯N1ii 0.95 (2) 2.65 (2) 3.328 (2) 129.2 (18)
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The title mol­ecule with labeling scheme and 50% probability ellipsoids. The intra­molecular C—H⋯O inter­action is shown by a dashed line.

In the crystal, the mol­ecules form dimers through pairwise C7—H7⋯N1 hydrogen bonds which are linked into sheets parallel to (102) by C4—H4⋯O1 hydrogen bonds (Table 1[link] and Fig. 2[link]). The sheets stack along the a-axis direction and are associated through head-to-head π-stacking inter­actions (Fig. 3[link]) with centroid⋯centroid distances of 3.892 (1) Å.

[Figure 2]
Figure 2
Packing viewed along the a-axis direction with C—H⋯O and C—H⋯N hydrogen bonds shown as dashed lines.
[Figure 3]
Figure 3
Details of the π-stacking inter­actions (orange dashed lines) and the inter­molecular C—H⋯O and C—H⋯N hydrogen bonds (black dashed lines).

Synthesis and crystallization

A mixture of 6-nitro-1H-indazole (0.6 g, 3 mmol), acetic acid (2 ml) and acetic anhydride (10 ml) were heated under reflux for 24 h. After completion of the reaction (monitored by TLC), the solvent was removed under vacuum. The residue obtained was recrystallized from ethanol to afford the title compound as colorless crystals (yield: 70%).

Refinement

Crystal and refinement details are presented in Table 2[link]. The structure was refined as a two-component twin.

Table 2
Experimental details

Crystal data
Chemical formula C9H7N3O3
Mr 205.18
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 3.8919 (1), 20.4831 (6), 11.2580 (4)
β (°) 92.757 (1)
V3) 896.43 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.00
Crystal size (mm) 0.25 × 0.18 × 0.07
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS, University of Göttingen, Göttingen, Germany.])
Tmin, Tmax 0.79, 0.93
No. of measured, independent and observed [I > 2σ(I)] reflections 12167, 11998, 9449
Rint 0.038
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.140, 1.03
No. of reflections 11998
No. of parameters 165
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.27, −0.29
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1-(6-Nitro-1H-indazol-1-yl)ethanone top
Crystal data top
C9H7N3O3F(000) = 424
Mr = 205.18Dx = 1.520 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 3.8919 (1) ÅCell parameters from 7750 reflections
b = 20.4831 (6) Åθ = 4.3–72.2°
c = 11.2580 (4) ŵ = 1.00 mm1
β = 92.757 (1)°T = 150 K
V = 896.43 (5) Å3Plate, colourless
Z = 40.25 × 0.18 × 0.07 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
11998 independent reflections
Radiation source: INCOATEC IµS micro-focus source9449 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 10.4167 pixels mm-1θmax = 72.2°, θmin = 4.3°
ω scansh = 44
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 2524
Tmin = 0.79, Tmax = 0.93l = 1313
12167 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: difference Fourier map
wR(F2) = 0.140All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0691P)2 + 0.0964P]
where P = (Fo2 + 2Fc2)/3
11998 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.29 e Å3
Special details top

Experimental. Analysis of 1886 reflections having I/σ(I) > 12 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the monoclinic system and to be twinned by a 180° rotation about the b axis. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0289 (4)0.63313 (7)0.16899 (13)0.0386 (4)
O20.8908 (5)0.85449 (7)0.26601 (14)0.0455 (5)
O30.6050 (5)0.89484 (7)0.40880 (16)0.0489 (5)
N10.6127 (4)0.55971 (8)0.40377 (15)0.0325 (4)
N20.7342 (4)0.60698 (7)0.32890 (14)0.0267 (4)
N30.7188 (4)0.84860 (7)0.35434 (15)0.0324 (4)
C10.6747 (5)0.66903 (8)0.37279 (16)0.0243 (4)
C20.7481 (5)0.73060 (8)0.32808 (16)0.0252 (4)
H20.861 (6)0.7372 (11)0.257 (2)0.032 (6)*
C30.6468 (5)0.78218 (8)0.39653 (17)0.0265 (4)
C40.4795 (5)0.77587 (9)0.50369 (17)0.0285 (5)
H40.420 (6)0.8142 (13)0.545 (2)0.040 (6)*
C50.4104 (5)0.71433 (9)0.54587 (17)0.0295 (4)
H50.293 (6)0.7092 (11)0.621 (2)0.034 (6)*
C60.5103 (5)0.66033 (9)0.47964 (16)0.0262 (4)
C70.4820 (5)0.59099 (10)0.49217 (18)0.0323 (5)
H70.378 (6)0.5673 (11)0.553 (2)0.038 (6)*
C80.9034 (5)0.59016 (9)0.22604 (18)0.0302 (5)
C90.9149 (7)0.51924 (11)0.1962 (3)0.0448 (6)
H9A1.039 (9)0.4957 (16)0.261 (3)0.069 (9)*
H9B0.693 (11)0.5004 (16)0.191 (3)0.082 (11)*
H9C1.034 (8)0.5145 (14)0.126 (3)0.060 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0437 (9)0.0361 (8)0.0371 (8)0.0018 (6)0.0129 (6)0.0027 (6)
O20.0670 (11)0.0297 (8)0.0409 (9)0.0095 (7)0.0128 (8)0.0042 (6)
O30.0630 (12)0.0241 (8)0.0602 (11)0.0065 (6)0.0101 (8)0.0024 (7)
N10.0365 (10)0.0245 (8)0.0366 (9)0.0034 (6)0.0023 (7)0.0061 (6)
N20.0303 (9)0.0209 (7)0.0289 (8)0.0003 (6)0.0022 (6)0.0015 (6)
N30.0377 (10)0.0239 (8)0.0350 (9)0.0012 (6)0.0043 (7)0.0001 (7)
C10.0240 (9)0.0242 (9)0.0245 (9)0.0001 (6)0.0024 (7)0.0002 (7)
C20.0262 (10)0.0253 (9)0.0240 (9)0.0011 (6)0.0001 (7)0.0019 (7)
C30.0278 (10)0.0239 (9)0.0273 (10)0.0012 (6)0.0035 (8)0.0019 (7)
C40.0285 (10)0.0292 (10)0.0276 (10)0.0026 (7)0.0010 (8)0.0053 (7)
C50.0288 (10)0.0359 (10)0.0238 (9)0.0006 (7)0.0010 (8)0.0006 (7)
C60.0249 (10)0.0288 (9)0.0248 (9)0.0016 (7)0.0004 (7)0.0038 (7)
C70.0352 (11)0.0295 (10)0.0322 (10)0.0035 (7)0.0029 (8)0.0064 (8)
C80.0273 (10)0.0303 (10)0.0328 (10)0.0018 (7)0.0007 (8)0.0046 (8)
C90.0441 (14)0.0339 (11)0.0573 (16)0.0001 (9)0.0103 (12)0.0146 (10)
Geometric parameters (Å, º) top
O1—C81.207 (2)C3—C41.404 (3)
O2—N31.231 (2)C4—C51.378 (3)
O3—N31.223 (2)C4—H40.95 (3)
N1—C71.307 (3)C5—C61.399 (3)
N1—N21.382 (2)C5—H50.99 (2)
N2—C11.387 (2)C6—C71.432 (3)
N2—C81.402 (3)C7—H70.95 (2)
N3—C31.472 (2)C8—C91.492 (3)
C1—C21.393 (2)C9—H9A0.98 (3)
C1—C61.401 (3)C9—H9B0.95 (4)
C2—C31.377 (3)C9—H9C0.94 (3)
C2—H20.94 (2)
C7—N1—N2106.15 (15)C4—C5—C6118.39 (18)
N1—N2—C1110.90 (15)C4—C5—H5119.9 (13)
N1—N2—C8121.30 (15)C6—C5—H5121.7 (13)
C1—N2—C8127.76 (16)C5—C6—C1120.47 (17)
O3—N3—O2123.58 (17)C5—C6—C7134.97 (18)
O3—N3—C3118.35 (17)C1—C6—C7104.55 (16)
O2—N3—C3118.07 (16)N1—C7—C6112.12 (17)
N2—C1—C2131.33 (18)N1—C7—H7119.9 (14)
N2—C1—C6106.28 (15)C6—C7—H7128.0 (14)
C2—C1—C6122.39 (17)O1—C8—N2118.59 (17)
C3—C2—C1115.06 (18)O1—C8—C9125.0 (2)
C3—C2—H2121.5 (14)N2—C8—C9116.44 (18)
C1—C2—H2123.4 (14)C8—C9—H9A109.4 (19)
C2—C3—C4124.57 (17)C8—C9—H9B112 (2)
C2—C3—N3117.68 (17)H9A—C9—H9B105 (3)
C4—C3—N3117.76 (16)C8—C9—H9C108.1 (18)
C5—C4—C3119.12 (17)H9A—C9—H9C109 (3)
C5—C4—H4122.0 (15)H9B—C9—H9C113 (3)
C3—C4—H4118.8 (15)
C7—N1—N2—C10.2 (2)N3—C3—C4—C5179.61 (16)
C7—N1—N2—C8177.70 (17)C3—C4—C5—C60.0 (3)
N1—N2—C1—C2179.35 (18)C4—C5—C6—C10.4 (3)
C8—N2—C1—C22.9 (3)C4—C5—C6—C7179.1 (2)
N1—N2—C1—C60.2 (2)N2—C1—C6—C5179.16 (16)
C8—N2—C1—C6177.56 (17)C2—C1—C6—C50.4 (3)
N2—C1—C2—C3179.40 (18)N2—C1—C6—C70.1 (2)
C6—C1—C2—C30.1 (3)C2—C1—C6—C7179.50 (17)
C1—C2—C3—C40.3 (3)N2—N1—C7—C60.2 (2)
C1—C2—C3—N3179.68 (15)C5—C6—C7—N1178.8 (2)
O3—N3—C3—C2173.97 (17)C1—C6—C7—N10.0 (2)
O2—N3—C3—C26.0 (3)N1—N2—C8—O1174.05 (18)
O3—N3—C3—C46.0 (3)C1—N2—C8—O13.5 (3)
O2—N3—C3—C4173.97 (17)N1—N2—C8—C95.6 (3)
C2—C3—C4—C50.4 (3)C1—N2—C8—C9176.86 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.94 (2)2.46 (2)2.929 (2)111.3 (16)
C4—H4···O1i0.95 (3)2.37 (3)3.213 (2)148 (2)
C7—H7···N1ii0.95 (2)2.65 (2)3.328 (2)129.2 (18)
Symmetry codes: (i) x1, y+3/2, z+1/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

The support of NSF-MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Brahmi, N., Benchidmi, M., Essassi, E. M., Ladeira, S. & El Ammari, L. (2012). Acta Cryst. E68, o3368.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, X., Chu, S., Feher, V. A., Khalili, M., Nie, Z., Margosiak, S., Nikulin, V., Levin, J., Sprankle, K. G., Tedder, M. E., Almassy, R., Appelt, K. & Yager, K. M. (2003). J. Med. Chem. 46, 5663–5673.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLin, X., Busch-Petersen, V., Deng, J., Edwards, V., Zhang, V. & Kerns, J. K. (2008). Synlett, pp. 3216–3220.  Web of Science CrossRef Google Scholar
First citationMohamed Abdelahi, M. M., El Bakri, Y., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x170432.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). TWINABS, University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhu, G. D., Gong, J., Gandhi, V. B., Woods, K., Luo, Y., Liu, X., Guan, R., Klinghofer, V., Johnson, E. F., Stoll, V. S., Mamo, M., Li, Q., Rosenberg, S. H. & Giranda, V. L. (2007). Bioorg. Med. Chem. 15, 2441–2452.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds