organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Allyl-2,3-cyclo­pentenopyridinium chloride

aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria
*Correspondence e-mail: herwig.schottenberger@uibk.ac.at

Edited by J. Simpson, University of Otago, New Zealand (Received 27 April 2017; accepted 4 May 2017; online 9 May 2017)

The title compound, C11H14N+·Cl, was obtained by reaction of 2,3-cyclo­penteno­pyridine and allyl chloride. A network of weak C—H⋯Cl hydrogen bonds is observed in the crystal structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound has been prepared in a continuation of our inter­est in chloride-based ionic liquids as solvents for cellulose (Bentivoglio et al., 2006[Bentivoglio, G., Röder, T., Fasching, M., Buchberger, M., Schottenberger, H. & Sixta, H. (2006). Lenzinger Ber. 86, 154-161.]; Wang et al., 2012[Wang, H., Gurau, G. & Rogers, R. D. (2012). Chem. Soc. Rev. 41, 1519-1537.]; Liu et al., 2016[Liu, Y.-R., Thomsen, K., Nie, Y., Zhang, S.-J. & Meyer, A. S. (2016). Green Chem. 18, 6246-6254.]). The reactions of cyclo­alkeno­pyridines have been reviewed by Beschke (1978[Beschke, H. (1978). Aldrichim. Acta, 11, 13-16.]). Related structures of 2,3-cyclo­pentenopyridinium salts are rare (Ammon & Jensen, 1966[Ammon, H. L. & Jensen, L. H. (1966). J. Am. Chem. Soc. 88, 681-688.]; Albov et al., 2004[Albov, D. V., Rybakov, V. B., Babaev, E. V. & Aslanov, L. A. (2004). Acta Cryst. E60, o2313-o2314.]). A similar 1-allyl­pyridinium chloride has been reported recently (Bentivoglio et al., 2017[Bentivoglio, G., Laus, G., Kahlenberg, V., Röder, T. & Schottenberger, H. (2017). IUCrData, 2, x170598.]).

In the title compound, the allyl group is twisted out of the plane of the heterocyclic ring by 84°.. The cyclo­pentene ring adopts a typical envelope conformation. The two possible conformations of the envelope are mirrored in the two components of positional disorder. The components C3 and C3A are located out of the C1/C2–C5 plane by 0.28 (1) and 0.25 (3) Å, respectively, a with a final occupancy ratio of 0.71 (2):0.29 (2).

In the crystal, weak C—H⋯Cl hydrogen bonds (Fig. 1[link], Table 1[link]) create a network in which the chloride ions are fivefold coordinated by the pyridinium cations (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯Cl1 0.98 2.80 3.748 (2) 164
C9—H9A⋯Cl1 0.98 2.64 3.584 (2) 163
C2—H2B⋯Cl1i 0.98 2.67 3.643 (2) 175
C7—H7⋯Cl1ii 0.94 2.75 3.545 (2) 143
C8—H8⋯Cl1iii 0.94 2.59 3.510 (2) 166
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labels and 50% probability displacement ellipsoids for non-H atoms. The minor-disorder component is represented by open bonds. C—H⋯Cl hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (ii) x − [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; (iii) −x − [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}].]
[Figure 2]
Figure 2
Fivefold-coordinated chloride ions in the unit cell of the title compound. Only H atoms involved in contacts are shown.

Synthesis and crystallization

A solution of freshly distilled 2,3-cyclo­penteno­pyridine (5.0 g, 42.0 mmol) and allyl chloride (6.4 g, 83.6 mmol) in CH3CN (5 ml) was refluxed for 48 h. The product was precipitated by the addition of Et2O (100 ml), kept in the freezer overnight, then filtered off, washed with Et2O, and dried in vacuo yielding 7.6 g (92%) of a deliquescent powder. A solution of the crude product in CH2Cl2 was treated with charcoal to give a grey solid, which was further purified by slow evaporation of a CH2Cl2/EtOAc (2:1) solution. After removal of an initial blackish precipitate, colourless crystals separated from the filtrate, m.p. 427 K.

1H NMR (300 MHz, DMSO-d6): δ 9.12 (dd, J = 6.2, 1.2 Hz, 1H), 8.48 (dd, J = 7.8, 1.2 Hz, 1H), 7.95 (dd, J = 7.8, 6.2 Hz, 1H), 6.11 (ddt, J = 16.4, 10.3, 5.9 Hz, 1H), 5.48–5.24 (m, 4H), 3.40 (t, J = 7.7 Hz, 2H), 3.12 (t, J = 7.6 Hz, 2H), 2.18 (quin, J = 7.8 Hz, 2H) p.p.m. 13C NMR (75 MHz, DMSO-d6): δ 161.1, 144.8, 142.0, 140.9, 130.7, 125.6, 120.7, 59.5, 31.2, 30.5, 22.0 p.p.m. IR (neat): ν 3382, 2965, 2898, 2830, 1617, 1489, 1467, 1430, 1340, 1290, 1207, 1011, 958, 822, 739 cm−1.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The disordered cyclo­pentene ring was refined using six geometrical restraints (SADI) for chemically equivalent, corresponding 1,2- and 1,3-distances in the two disorder components. The disordered C3 and C3A positions were both refined anisotropically, and their final relative occupancies were 0.71 (2) and 0.29 (2).

Table 2
Experimental details

Crystal data
Chemical formula C11H14N+·Cl
Mr 195.68
Crystal system, space group Monoclinic, P21/n
Temperature (K) 233
a, b, c (Å) 8.1093 (3), 9.1624 (5), 14.6575 (7)
β (°) 94.241 (3)
V3) 1086.08 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.31
Crystal size (mm) 0.28 × 0.16 × 0.11
 
Data collection
Diffractometer Nonius KappaCCD
No. of measured, independent and observed [I > 2σ(I)] reflections 6048, 1905, 1617
Rint 0.028
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.05
No. of reflections 1906
No. of parameters 140
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.15
Computer programs: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: COLLECT (Hooft, 1998); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008).

1-Allyl-2,3-cyclopentenopyridinium chloride top
Crystal data top
C11H14N+·ClF(000) = 416
Mr = 195.68Dx = 1.197 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.1093 (3) ÅCell parameters from 8675 reflections
b = 9.1624 (5) Åθ = 1.0–25.0°
c = 14.6575 (7) ŵ = 0.31 mm1
β = 94.241 (3)°T = 233 K
V = 1086.08 (9) Å3Prism, colourless
Z = 40.28 × 0.16 × 0.11 mm
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.028
Detector resolution: 9.6 pixels mm-1θmax = 25.0°, θmin = 2.6°
phi– and ω–scansh = 99
6048 measured reflectionsk = 1010
1905 independent reflectionsl = 1715
1617 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.2786P]
where P = (Fo2 + 2Fc2)/3
1906 reflections(Δ/σ)max < 0.001
140 parametersΔρmax = 0.14 e Å3
6 restraintsΔρmin = 0.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.03447 (5)0.44823 (5)0.28693 (3)0.04502 (17)
N10.10204 (15)0.79887 (14)0.10639 (9)0.0386 (3)
C10.02285 (19)0.74677 (18)0.06053 (11)0.0394 (4)
C20.1815 (2)0.6849 (2)0.10083 (13)0.0488 (5)
H2A0.16230.60940.14620.059*0.71 (2)
H2B0.25240.76110.12960.059*0.71 (2)
H2C0.153 (8)0.584 (8)0.129 (5)0.059*0.29 (2)
H2D0.217 (9)0.716 (9)0.140 (5)0.059*0.29 (2)
C40.1684 (3)0.6863 (3)0.06749 (15)0.0723 (7)
H4A0.23470.76400.09260.087*0.71 (2)
H4B0.14450.61200.11470.087*0.71 (2)
H4C0.196 (11)0.700 (10)0.116 (6)0.087*0.29 (2)
H4D0.140 (11)0.567 (10)0.075 (6)0.087*0.29 (2)
C50.0123 (2)0.7463 (2)0.03423 (12)0.0517 (5)
C60.1289 (3)0.7974 (3)0.08175 (13)0.0665 (6)
H60.13910.79560.14600.080*
C70.2548 (3)0.8511 (3)0.03341 (14)0.0668 (6)
H70.35150.88730.06480.080*
C80.2398 (2)0.8519 (2)0.05995 (13)0.0534 (5)
H80.32590.88980.09240.064*
C90.0906 (2)0.80459 (18)0.20819 (10)0.0407 (4)
H9A0.03330.71730.23270.049*
H9B0.20220.80490.22970.049*
C100.0005 (2)0.93774 (19)0.24313 (12)0.0457 (4)
H100.11490.94430.23720.055*
C110.0739 (2)1.0444 (2)0.28143 (14)0.0563 (5)
H11A0.18831.03930.28790.068*
H11B0.01351.12670.30270.068*
C30.2577 (9)0.6200 (9)0.0171 (3)0.0669 (18)0.71 (2)
H3A0.37590.64280.01910.080*0.71 (2)
H3B0.24460.51360.01640.080*0.71 (2)
C3A0.2852 (12)0.672 (3)0.0183 (4)0.068 (5)0.29 (2)
H3A10.36870.74970.02000.082*0.29 (2)
H3A20.34190.57770.01900.082*0.29 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0394 (3)0.0451 (3)0.0500 (3)0.00190 (17)0.00033 (18)0.00391 (18)
N10.0414 (7)0.0383 (7)0.0366 (7)0.0004 (6)0.0058 (6)0.0037 (6)
C10.0391 (8)0.0408 (9)0.0388 (9)0.0073 (7)0.0058 (7)0.0021 (7)
C20.0409 (10)0.0592 (13)0.0463 (11)0.0019 (8)0.0032 (8)0.0069 (9)
C40.0610 (13)0.108 (2)0.0496 (12)0.0036 (13)0.0160 (10)0.0213 (13)
C50.0518 (10)0.0659 (12)0.0379 (9)0.0095 (9)0.0068 (8)0.0041 (8)
C60.0705 (13)0.0918 (16)0.0364 (10)0.0073 (12)0.0016 (9)0.0086 (10)
C70.0595 (12)0.0861 (16)0.0536 (12)0.0114 (11)0.0045 (10)0.0169 (11)
C80.0473 (10)0.0590 (12)0.0540 (11)0.0100 (9)0.0049 (8)0.0103 (9)
C90.0473 (9)0.0402 (9)0.0354 (9)0.0019 (7)0.0091 (7)0.0028 (7)
C100.0371 (9)0.0547 (11)0.0456 (10)0.0013 (8)0.0057 (7)0.0010 (8)
C110.0509 (10)0.0498 (11)0.0689 (13)0.0064 (9)0.0092 (9)0.0076 (9)
C30.062 (3)0.074 (4)0.067 (3)0.009 (2)0.0206 (18)0.0084 (18)
C3A0.050 (6)0.092 (13)0.064 (7)0.011 (6)0.017 (4)0.004 (5)
Geometric parameters (Å, º) top
N1—C11.344 (2)C5—C61.377 (3)
N1—C81.355 (2)C6—C71.376 (3)
N1—C91.489 (2)C6—H60.9400
C1—C51.385 (2)C7—C81.365 (3)
C1—C21.487 (2)C7—H70.9400
C2—C3A1.527 (7)C8—H80.9400
C2—C31.534 (4)C9—C101.497 (2)
C2—H2A0.9800C9—H9A0.9800
C2—H2B0.9800C9—H9B0.9800
C2—H2C1.05 (8)C10—C111.298 (3)
C2—H2D0.69 (7)C10—H100.9400
C4—C51.495 (3)C11—H11A0.9400
C4—C31.516 (5)C11—H11B0.9400
C4—C3A1.523 (7)C3—H3A0.9800
C4—H4A0.9800C3—H3B0.9800
C4—H4B0.9800C3A—H3A10.9800
C4—H4C0.78 (9)C3A—H3A20.9800
C4—H4D1.12 (9)
C1—N1—C8120.00 (15)C7—C6—C5118.78 (18)
C1—N1—C9121.34 (13)C7—C6—H6120.6
C8—N1—C9118.62 (14)C5—C6—H6120.6
N1—C1—C5120.63 (15)C8—C7—C6120.28 (19)
N1—C1—C2126.75 (15)C8—C7—H7119.9
C5—C1—C2112.62 (15)C6—C7—H7119.9
C1—C2—C3A103.0 (4)N1—C8—C7120.71 (17)
C1—C2—C3102.6 (2)N1—C8—H8119.6
C1—C2—H2A111.2C7—C8—H8119.6
C3—C2—H2A111.2N1—C9—C10111.36 (13)
C1—C2—H2B111.2N1—C9—H9A109.4
C3—C2—H2B111.2C10—C9—H9A109.4
H2A—C2—H2B109.2N1—C9—H9B109.4
C1—C2—H2C106 (4)C10—C9—H9B109.4
C3A—C2—H2C113 (4)H9A—C9—H9B108.0
C1—C2—H2D118 (7)C11—C10—C9121.86 (16)
C3A—C2—H2D118 (7)C11—C10—H10119.1
H2C—C2—H2D97 (7)C9—C10—H10119.1
C5—C4—C3104.2 (2)C10—C11—H11A120.0
C5—C4—C3A104.6 (4)C10—C11—H11B120.0
C5—C4—H4A110.9H11A—C11—H11B120.0
C3—C4—H4A110.9C4—C3—C2107.6 (3)
C5—C4—H4B110.9C4—C3—H3A110.2
C3—C4—H4B110.9C2—C3—H3A110.2
H4A—C4—H4B108.9C4—C3—H3B110.2
C5—C4—H4C123 (7)C2—C3—H3B110.2
C3A—C4—H4C125 (7)H3A—C3—H3B108.5
C5—C4—H4D103 (4)C4—C3A—C2107.6 (6)
C3A—C4—H4D96 (4)C4—C3A—H3A1110.2
H4C—C4—H4D98 (8)C2—C3A—H3A1110.2
C6—C5—C1119.57 (18)C4—C3A—H3A2110.2
C6—C5—C4130.74 (18)C2—C3A—H3A2110.2
C1—C5—C4109.68 (17)H3A1—C3A—H3A2108.5
C8—N1—C1—C50.2 (2)C3A—C4—C5—C18.5 (11)
C9—N1—C1—C5178.01 (15)C1—C5—C6—C71.6 (3)
C8—N1—C1—C2179.96 (18)C4—C5—C6—C7178.2 (2)
C9—N1—C1—C22.2 (2)C5—C6—C7—C80.7 (3)
N1—C1—C2—C3A169.5 (11)C1—N1—C8—C71.1 (3)
C5—C1—C2—C3A10.7 (11)C9—N1—C8—C7179.00 (18)
N1—C1—C2—C3170.1 (4)C6—C7—C8—N10.7 (3)
C5—C1—C2—C39.7 (4)C1—N1—C9—C1082.79 (18)
N1—C1—C5—C61.2 (3)C8—N1—C9—C1095.10 (18)
C2—C1—C5—C6178.66 (18)N1—C9—C10—C11110.0 (2)
N1—C1—C5—C4178.66 (17)C5—C4—C3—C218.0 (7)
C2—C1—C5—C41.5 (2)C1—C2—C3—C416.9 (6)
C3—C4—C5—C6168.0 (4)C5—C4—C3A—C214.9 (17)
C3A—C4—C5—C6171.4 (11)C1—C2—C3A—C415.5 (17)
C3—C4—C5—C112.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Cl10.982.803.748 (2)164
C9—H9A···Cl10.982.643.584 (2)163
C2—H2B···Cl1i0.982.673.643 (2)175
C7—H7···Cl1ii0.942.753.545 (2)143
C8—H8···Cl1iii0.942.593.510 (2)166
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+3/2, z1/2; (iii) x1/2, y+1/2, z+1/2.
 

References

First citationAlbov, D. V., Rybakov, V. B., Babaev, E. V. & Aslanov, L. A. (2004). Acta Cryst. E60, o2313–o2314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAmmon, H. L. & Jensen, L. H. (1966). J. Am. Chem. Soc. 88, 681–688.  CSD CrossRef CAS Web of Science Google Scholar
First citationBentivoglio, G., Laus, G., Kahlenberg, V., Röder, T. & Schottenberger, H. (2017). IUCrData, 2, x170598.  Google Scholar
First citationBentivoglio, G., Röder, T., Fasching, M., Buchberger, M., Schottenberger, H. & Sixta, H. (2006). Lenzinger Ber. 86, 154–161.  CAS Google Scholar
First citationBeschke, H. (1978). Aldrichim. Acta, 11, 13–16.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLiu, Y.-R., Thomsen, K., Nie, Y., Zhang, S.-J. & Meyer, A. S. (2016). Green Chem. 18, 6246–6254.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, H., Gurau, G. & Rogers, R. D. (2012). Chem. Soc. Rev. 41, 1519–1537.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds