organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Hy­dr­oxy-2-phenyl-7-(prop-2-yn-1-yl­­oxy)-4H-chromen-4-one

aCollege of Pharmacy, Jiamusi University, Jiamusi 154007, People's Republic of China
*Correspondence e-mail: sjzhou_jmsu@163.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 23 March 2017; accepted 29 March 2017; online 7 April 2017)

In the title compound, C18H12O4, the essentially planar chromenone ring system [the maximum deviation = 0.016 (2) Å] is nearly co-planar with the phenyl ring [dihedral angle = 3.85 (8)°]. An intra­molecular O—H⋯O hydrogen bond occurs. In the crystal, weak C—H⋯O hydrogen bonds and ππ stacking inter­actions link the mol­ecules into a three-dimensional supra­molecular network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Chrysin (5,7-dihy­droxy-2-phenyl-4H-chromen-4-one) is usually extracted from the passion flower and from honeycomb (Sun et al., 2012[Sun, L.-P., Chen, A.-L., Hung, H.-C., Chien, Y.-H., Huang, J.-S., Huang, C.-Y., Chen, Y.-W. & Chen, C.-N. (2012). J. Agric. Food Chem. 60, 11748-11758.]). It has the characteristics of flavonoids (Wang et al., 2014[Wang, J., Zhang, T., Du, J., Cui, S., Yang, F. & Jin, Q. (2014). PLoS One, 9, e89668.]). Chrysin has been confirmed to possess pharmacological effects including anti-diarrhoeal, anti-carcinogenic and anti-inflammatory activities (Yang et al., 2014[Yang, B., Huang, J., Xiang, T., Yin, X., Luo, X., Huang, J., Luo, F., Li, H., Li, H. & Ren, G. (2014). J. Appl. Toxicol. 34, 105-112.]; Ronnekleiv-Kelly et al., 2016[Ronnekleiv-Kelly, S. M., Nukaya, M., Díaz-Díaz, C. J., Megna, B. W., Carney, P. R., Geiger, P. G. & Kennedy, G. D. (2016). Cancer Lett. 370, 91-99.]; Rauf et al., 2015[Rauf, A., Khan, R., Raza, M., Khan, H., Pervez, S., De Feo, V., Maione, F. & Mascolo, N. (2015). Fitoterapia, 103, 129-135.]). Thus, the modification of chrysin is of inter­est in flavonoid research.

The title compound is similar to its chrysin precursor, which contains three aromatic ring moieties, except for the replacement of hydrogen by an alkynyl group (Fig. 1[link]). The carbonyl C=O bond length is 1.263 (2) Å, while the other C—O bonds are in the range 1.357 (2) to 1.433 (2) Å. The C17—C18 bond length is 1.165 (3) Å, indicating that the alkynyl group has successfully replaced the hy­droxy hydrogen atom of the chrysin precursor. The essentially planar chromenone ring system [maximum deviation = 0.016 (2) Å] is nearly co-planar with the phenyl ring [dihedral angle = 3.85 (8)°]. An intra­molecular O1—H1A⋯O2 hydrogen bond occurs (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2 0.82 1.85 2.584 (2) 148
C3—H3⋯O2i 0.93 2.48 3.408 (2) 177
C18—H18⋯O2ii 0.93 2.45 3.330 (3) 157
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound. The dashed line indicates the intra­molecular hydrogen bond.

In the crystal, weak C—H⋯O hydrogen bonds (Table 1[link]) and ππ inter­actions [centroid–centroid distances Cg1⋯Cg3(1 − x, 1 − y, 1 − z) = 3.6071 (12) Å and Cg2⋯Cg3(1 − x, 1 − y, 1 − z) = 3.8933 (12) Å; Cg1, Cg2 and Cg3 are the centroids of the O1/C5–C9, C1–C6 and C10–C15 rings, respectively] link the mol­ecules into a three-dimensional supra­molecular network.

A search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed the structure of a related compound, 5,7-dihy­droxy-3,6-dimeth­oxy-2-(4-meth­oxy­phen­yl)-4H-chromen-4-one monohydrate (Mohammad et al., 2010[Mohammad, A., Anis, I., McKee, V., Frese, J. W. A. & Shah, M. R. (2010). Acta Cryst. E66, o2716-o2717.]), in which the 4-hydroxyl group of chrysin is replaced by a 3-bromo­propyne group.

Synthesis and crystallization

A mixture of chrysin (5 mmol, 1.23 g) and K2CO3 (10 mmol, 1.38 g) in acetone (20 ml) stirred at 353 K until the solids were dissolved completely. Then 3-bromo-1-propyne (7.5 mmol, 0.89 g) was added dropwise to the above solution. The mixture was stirred under reflux for 6 h. Colourless bipyramidal crystals were obtained from an acetone solution after 3 d by slow evaporation of the solvent at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C18H12O4
Mr 292
Crystal system, space group Monoclinic, P21/n
Temperature (K) 295
a, b, c (Å) 7.2074 (10), 13.1851 (15), 14.848 (2)
β (°) 102.505 (14)
V3) 1377.5 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.1 × 0.08 × 0.06
 
Data collection
Diffractometer Agilent New Gemini, Dual, Cu at zero, EosS2
Absorption correction Multi-scan (SCALE3 ABSPACK in CrysAlis PRO; Agilent, 2015[Agilent (2015). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.992, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8328, 2715, 1659
Rint 0.041
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.111, 0.98
No. of reflections 2715
No. of parameters 199
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.17
Computer programs: CrysAlis PRO (Agilent, 2015[Agilent (2015). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). Crystal Impact GbR, Bonn, Germany.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2015); cell refinement: CrysAlis PRO (Agilent, 2015); data reduction: CrysAlis PRO (Agilent, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

5-Hydroxy-2-phenyl-7-(prop-2-yn-1-yloxy)-4H-chromen-4-one top
Crystal data top
C18H12O4F(000) = 608
Mr = 292Dx = 1.409 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1686 reflections
a = 7.2074 (10) Åθ = 3.8–26.5°
b = 13.1851 (15) ŵ = 0.10 mm1
c = 14.848 (2) ÅT = 295 K
β = 102.505 (14)°Bipyramid, colorless
V = 1377.5 (3) Å30.1 × 0.08 × 0.06 mm
Z = 4
Data collection top
Agilent New Gemini, Dual, Cu at zero, EosS2
diffractometer
2715 independent reflections
Radiation source: Enhance (Mo) X-ray Source1659 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 16.1280 pixels mm-1θmax = 26.0°, θmin = 3.5°
ω scanh = 86
Absorption correction: multi-scan
(SCALE3 ABSPACK in CrysAlisPro; Agilent, 2015)
k = 1615
Tmin = 0.992, Tmax = 1.000l = 1818
8328 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0425P)2]
where P = (Fo2 + 2Fc2)/3
2715 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.17 e Å3
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

H atoms were placed in calculated positions and refined in riding mode, Uiso(H) = 1.5Ueq(O) for the hydroxyl-H atom and 1.2eq(C) for the others.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6978 (3)0.75602 (14)0.64191 (13)0.0385 (5)
H10.80830.75460.61920.046*
C20.6296 (3)0.84539 (14)0.67119 (12)0.0373 (5)
C30.4655 (3)0.84843 (14)0.70599 (12)0.0392 (5)
H30.42420.90950.72620.047*
C40.3653 (3)0.76160 (14)0.71045 (13)0.0374 (5)
C50.4284 (3)0.66764 (13)0.68123 (12)0.0333 (5)
C60.5947 (3)0.66882 (13)0.64792 (12)0.0346 (5)
C70.3272 (3)0.57441 (14)0.68426 (12)0.0374 (5)
C80.4111 (3)0.48605 (14)0.65360 (12)0.0387 (5)
H80.35150.42370.65490.046*
C90.5730 (3)0.49037 (13)0.62307 (12)0.0342 (5)
C100.6740 (3)0.40468 (14)0.59232 (12)0.0352 (5)
C110.5985 (3)0.30727 (15)0.58787 (15)0.0517 (6)
H110.48260.29640.60430.062*
C120.6929 (3)0.22674 (17)0.55946 (16)0.0610 (7)
H120.64010.16210.55670.073*
C130.8633 (3)0.24088 (16)0.53535 (15)0.0554 (6)
H130.92670.18600.51650.066*
C140.9411 (3)0.33648 (16)0.53894 (14)0.0535 (6)
H141.05670.34640.52210.064*
C150.8473 (3)0.41805 (15)0.56767 (13)0.0448 (5)
H150.90110.48240.57040.054*
C160.8636 (3)0.94818 (16)0.62002 (14)0.0479 (5)
H16A0.95630.89450.63790.057*
H16B0.92781.01260.63540.057*
C170.7874 (3)0.94335 (15)0.52047 (16)0.0454 (5)
C180.7235 (3)0.94124 (17)0.44139 (19)0.0636 (7)
H180.67260.93960.37830.076*
O10.20205 (19)0.76456 (10)0.74190 (10)0.0533 (4)
H1A0.15730.70730.74080.080*
O20.17536 (19)0.57122 (10)0.71351 (10)0.0512 (4)
O30.66511 (17)0.58021 (9)0.61863 (9)0.0401 (4)
O40.71629 (19)0.93772 (9)0.67054 (9)0.0475 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0406 (11)0.0334 (11)0.0450 (12)0.0040 (9)0.0172 (10)0.0026 (9)
C20.0455 (12)0.0302 (11)0.0353 (11)0.0048 (9)0.0068 (10)0.0017 (8)
C30.0479 (12)0.0327 (11)0.0399 (11)0.0037 (10)0.0158 (10)0.0032 (9)
C40.0389 (11)0.0386 (12)0.0367 (11)0.0045 (10)0.0125 (10)0.0030 (9)
C50.0365 (11)0.0331 (11)0.0307 (10)0.0002 (9)0.0084 (9)0.0026 (8)
C60.0413 (11)0.0281 (11)0.0349 (10)0.0037 (9)0.0095 (9)0.0014 (8)
C70.0383 (12)0.0379 (12)0.0370 (11)0.0020 (10)0.0102 (9)0.0074 (9)
C80.0448 (12)0.0287 (11)0.0431 (11)0.0023 (9)0.0105 (10)0.0010 (9)
C90.0405 (11)0.0288 (11)0.0328 (10)0.0003 (9)0.0069 (9)0.0037 (8)
C100.0403 (11)0.0313 (11)0.0324 (10)0.0044 (9)0.0046 (9)0.0020 (8)
C110.0508 (13)0.0354 (13)0.0715 (15)0.0001 (11)0.0191 (12)0.0036 (11)
C120.0649 (16)0.0341 (13)0.0852 (18)0.0014 (12)0.0191 (14)0.0098 (12)
C130.0633 (15)0.0417 (14)0.0615 (15)0.0150 (12)0.0145 (13)0.0073 (11)
C140.0526 (14)0.0535 (15)0.0584 (14)0.0083 (12)0.0211 (12)0.0032 (11)
C150.0520 (13)0.0349 (12)0.0492 (12)0.0008 (10)0.0147 (11)0.0021 (9)
C160.0514 (13)0.0402 (12)0.0538 (13)0.0102 (10)0.0151 (11)0.0003 (10)
C170.0468 (13)0.0370 (12)0.0563 (15)0.0000 (10)0.0198 (12)0.0039 (10)
C180.0658 (16)0.0688 (18)0.0575 (16)0.0028 (13)0.0162 (14)0.0067 (13)
O10.0519 (9)0.0429 (8)0.0748 (10)0.0028 (7)0.0349 (8)0.0012 (7)
O20.0487 (9)0.0451 (9)0.0679 (10)0.0033 (7)0.0308 (8)0.0017 (7)
O30.0431 (8)0.0298 (8)0.0517 (8)0.0002 (6)0.0198 (7)0.0020 (6)
O40.0603 (9)0.0340 (8)0.0538 (9)0.0106 (7)0.0242 (7)0.0084 (6)
Geometric parameters (Å, º) top
C1—C61.382 (2)C10—C151.387 (3)
C1—C21.383 (2)C10—C111.391 (3)
C1—H10.9300C11—C121.376 (3)
C2—O41.369 (2)C11—H110.9300
C2—C31.390 (2)C12—C131.365 (3)
C3—C41.363 (2)C12—H120.9300
C3—H30.9300C13—C141.376 (3)
C4—O11.357 (2)C13—H130.9300
C4—C51.419 (2)C14—C151.386 (3)
C5—C61.392 (2)C14—H140.9300
C5—C71.435 (2)C15—H150.9300
C6—O31.381 (2)C16—O41.433 (2)
C7—O21.263 (2)C16—C171.463 (3)
C7—C81.432 (2)C16—H16A0.9700
C8—C91.341 (2)C16—H16B0.9700
C8—H80.9300C17—C181.165 (3)
C9—O31.367 (2)C18—H180.9300
C9—C101.469 (2)O1—H1A0.8200
C6—C1—C2117.11 (18)C15—C10—C9121.30 (17)
C6—C1—H1121.4C11—C10—C9120.63 (18)
C2—C1—H1121.4C12—C11—C10120.8 (2)
O4—C2—C1124.15 (18)C12—C11—H11119.6
O4—C2—C3113.79 (16)C10—C11—H11119.6
C1—C2—C3122.05 (18)C13—C12—C11120.5 (2)
C4—C3—C2119.73 (18)C13—C12—H12119.7
C4—C3—H3120.1C11—C12—H12119.7
C2—C3—H3120.1C12—C13—C14119.8 (2)
O1—C4—C3120.01 (17)C12—C13—H13120.1
O1—C4—C5119.27 (17)C14—C13—H13120.1
C3—C4—C5120.71 (18)C13—C14—C15120.1 (2)
C6—C5—C4117.12 (17)C13—C14—H14120.0
C6—C5—C7120.20 (17)C15—C14—H14120.0
C4—C5—C7122.67 (17)C14—C15—C10120.65 (19)
O3—C6—C1116.35 (17)C14—C15—H15119.7
O3—C6—C5120.38 (16)C10—C15—H15119.7
C1—C6—C5123.27 (17)O4—C16—C17111.47 (16)
O2—C7—C8122.65 (17)O4—C16—H16A109.3
O2—C7—C5121.57 (17)C17—C16—H16A109.3
C8—C7—C5115.78 (17)O4—C16—H16B109.3
C9—C8—C7122.08 (18)C17—C16—H16B109.3
C9—C8—H8119.0H16A—C16—H16B108.0
C7—C8—H8119.0C18—C17—C16178.4 (2)
C8—C9—O3121.36 (17)C17—C18—H18180.0
C8—C9—C10126.74 (18)C4—O1—H1A109.5
O3—C9—C10111.89 (16)C9—O3—C6120.17 (15)
C15—C10—C11118.07 (18)C2—O4—C16118.70 (15)
C6—C1—C2—O4179.29 (17)C7—C8—C9—O30.8 (3)
C6—C1—C2—C30.5 (3)C7—C8—C9—C10178.32 (16)
O4—C2—C3—C4179.98 (17)C8—C9—C10—C15175.85 (18)
C1—C2—C3—C41.1 (3)O3—C9—C10—C153.4 (2)
C2—C3—C4—O1178.12 (16)C8—C9—C10—C113.6 (3)
C2—C3—C4—C51.0 (3)O3—C9—C10—C11177.13 (17)
O1—C4—C5—C6178.83 (16)C15—C10—C11—C120.2 (3)
C3—C4—C5—C60.3 (3)C9—C10—C11—C12179.75 (18)
O1—C4—C5—C70.6 (3)C10—C11—C12—C130.2 (3)
C3—C4—C5—C7179.72 (18)C11—C12—C13—C140.4 (3)
C2—C1—C6—O3179.84 (15)C12—C13—C14—C150.5 (3)
C2—C1—C6—C50.2 (3)C13—C14—C15—C100.5 (3)
C4—C5—C6—O3179.72 (15)C11—C10—C15—C140.4 (3)
C7—C5—C6—O30.8 (3)C9—C10—C15—C14179.90 (17)
C4—C5—C6—C10.3 (3)C8—C9—O3—C61.6 (3)
C7—C5—C6—C1179.11 (17)C10—C9—O3—C6177.70 (14)
C6—C5—C7—O2179.50 (17)C1—C6—O3—C9179.34 (16)
C4—C5—C7—O20.1 (3)C5—C6—O3—C90.7 (2)
C6—C5—C7—C81.5 (3)C1—C2—O4—C1613.3 (3)
C4—C5—C7—C8179.10 (16)C3—C2—O4—C16167.81 (15)
O2—C7—C8—C9179.68 (17)C17—C16—O4—C270.0 (2)
C5—C7—C8—C90.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.821.852.584 (2)148
C3—H3···O2i0.932.483.408 (2)177
C18—H18···O2ii0.932.453.330 (3)157
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y+3/2, z1/2.
 

Footnotes

These authors contributed equally to this work.

Acknowledgements

The data collection was performed at the College of Phamacy, Jiamusi University.

Funding information

Funding for this research was provided by: Graduate Innovation Foundation of Jiamusi University (award No. YZ2016_005).

References

First citationAgilent (2015). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohammad, A., Anis, I., McKee, V., Frese, J. W. A. & Shah, M. R. (2010). Acta Cryst. E66, o2716–o2717.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRauf, A., Khan, R., Raza, M., Khan, H., Pervez, S., De Feo, V., Maione, F. & Mascolo, N. (2015). Fitoterapia, 103, 129–135.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRonnekleiv-Kelly, S. M., Nukaya, M., Díaz-Díaz, C. J., Megna, B. W., Carney, P. R., Geiger, P. G. & Kennedy, G. D. (2016). Cancer Lett. 370, 91–99.  Web of Science CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, L.-P., Chen, A.-L., Hung, H.-C., Chien, Y.-H., Huang, J.-S., Huang, C.-Y., Chen, Y.-W. & Chen, C.-N. (2012). J. Agric. Food Chem. 60, 11748–11758.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWang, J., Zhang, T., Du, J., Cui, S., Yang, F. & Jin, Q. (2014). PLoS One, 9, e89668.  Web of Science CrossRef PubMed Google Scholar
First citationYang, B., Huang, J., Xiang, T., Yin, X., Luo, X., Huang, J., Luo, F., Li, H., Li, H. & Ren, G. (2014). J. Appl. Toxicol. 34, 105–112.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds