organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4,6-Di-tert-butyl-2-({[4-(di­ethyl­amino)­phen­yl]imino}­meth­yl)phenol

aDepartment of Chemistry, Vaigai College of Engineering, Madurai 625 122, Tamil Nadu, India, bDepartment of Chemistry, University of Pitesti, Pitesti 11040, Romania, cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and dPG & Research Department of Chemistry, Chikkanna Government Arts College, Tiruppur 641 602, Tamil Nadu, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, rajagopal18@yahoo.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 10 April 2017; accepted 15 April 2017; online 21 April 2017)

The title compound, C25H36N2O, adopts an E conformation about the C=N bond. The dihedral angle between the aromatic rings is 35.6 (6)°. The mol­ecular structure is stabilized by an O—H⋯N hydrogen bond, which forms an S(6) loop, and weak C—H⋯O contacts. Weak inter­molecular C—H⋯π inter­actions are observed in the crystal packing. The di­ethyl­amino group has rotational disorder with site occupancies of 0.85 (2) and 0.15 (2) for the major and minor components, respectively. The structure was refined as a three-component twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Schiff base derivatives are a biologically versatile class of compounds possessing diverse activities, such as anti-inflammatory (Alam et al., 2012[Alam, M. S., Choi, J. & Lee, D. (2012). Bioorg. Med. Chem. 20, 4103-4108.]), anti-bacterial (Sondhi et al., 2006[Sondhi, S. M., Singh, N., Kumar, A., Lozach, O. & Meijer, L. (2006). Bioorg. Med. Chem. 14, 3758-3765.]), anti-fungal (Jarrahpour et al., 2007[Jarrahpour, A., Khalili, D., De Clercq, E., Salmi, C. & Brunel, J. M. (2007). Molecules, 12, 1720-1730.]). We herein, report the synthesis and crystal structure of the title compound (Fig. 1[link]). The bond distances are comparable with similar structures (Rani et al., 2015[Rani, C. V., Chakkaravarthi, G. & Rajagopal, G. (2015). Acta Cryst. E71, o503.], 2017[Rani, C. V., Mitu, L., Chakkaravarthi, G. & Rajagopal, G. (2017). IUCrData, 2, x170396.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling and 30% probability displacement ellipsoids. The O—H⋯N hydrogen bond is shown as a dashed line.

The dihedral angle between the best planes through the aromatic rings (C5–C10 and C12–C17) is 35.6 (6)°. The C11=N2 bond adopts the E conformation, which allows formation of an intra­molecular O1—H1⋯N2 hydrogen bond, resulting in an S(6) ring-motif (Fig. 1[link] and Table 1[link]). The mol­ecular structure is stabilized by an O—H⋯N hydrogen bond and weak C—H⋯O contacts (Table 1[link]). Weak inter­molecular C—H⋯π inter­actions are also observed in the crystal packing (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.83 (7) 1.82 (11) 2.591 (12) 155 (14)
C23—H23A⋯O1 0.96 2.27 2.947 (17) 127
C24—H24A⋯O1 0.96 2.46 3.071 (16) 121
C2—H2BCg2i 0.97 2.87 3.810 (19) 166
C2′—H2′1⋯Cg2i 0.97 2.60 3.39 (11) 139
Symmetry code: (i) x-1, y, z-1.

Synthesis and crystallization

An ethano­lic solution of N1,N1-di­ethyl­benzene-1,4-di­amine (5 mmol) was magnetically stirred in a round-bottom flask followed by dropwise addition of 3,5-di-tert-butyl-2-hy­droxy­benzaldehyde (5 mmol) containing 2–3 drops of glacial acetic acid. The reaction mixture was then refluxed for 3 h and upon cooling to room temperature, a yellow precipitate was separated out from the mixture. The precipitate was washed with ethanol and dried in vacuo over anhydrous CaCl2. Single crystals suitable for X–ray diffraction were obtained by slow evaporation of a solution of the title compound in DMF at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The di­ethyl­amine group has rotational disorder with occupancies of 0.85 (2) for the major component (atoms C1–C4) and 0.15 (2) for the minor component (atoms C1′–C4′). The command DFIX was used to restrain the N—C and C—C bond lengths involving these atoms to 1.43 (1) and 1.55 (1) Å, respectively. The same anisotropic displacement parameters were used for the disordered equivalent C atoms (C1 & C1′, C2 & C2′, C3 & C3′ and C4 & C4′) using the EADP command. Rigid bond restraints were used for N1—C2′, N1—C4′, N1—C2, N1—C4, N2—C8, C3′-C4′, C5—C6, C3—C4, C6—C7, C18—C21, C15—C16, and C1—C2 bonds, using the DELU command. The structure was refined as a three-component twin. In the absence of significant anomalous scattering effects, the absolute structure parameter is meaningless. Reflections (20[\overline{5}]), (10[\overline{5}]) and ([\overline{1}]05) were omitted in the final cycles of refinement.

Table 2
Experimental details

Crystal data
Chemical formula C25H36N2O
Mr 380.56
Crystal system, space group Monoclinic, P21
Temperature (K) 295
a, b, c (Å) 8.9303 (15), 15.572 (3), 9.4824 (16)
β (°) 117.320 (8)
V3) 1171.6 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.30 × 0.28 × 0.24
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.921, 0.984
No. of measured, independent and observed [I > 2σ(I)] reflections 8432, 8432, 6509
Rint 0.000
θmax (°) 22.9
(sin θ/λ)max−1) 0.547
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.189, 1.05
No. of reflections 8432
No. of parameters 277
No. of restraints 26
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015) and PLATON (Spek, 2009).

4,6-Di-tert-butyl-2-({[4-(diethylamino)phenyl]imino}methyl)phenol top
Crystal data top
C25H36N2OF(000) = 416
Mr = 380.56Dx = 1.079 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.9303 (15) ÅCell parameters from 3084 reflections
b = 15.572 (3) Åθ = 2.4–20.5°
c = 9.4824 (16) ŵ = 0.07 mm1
β = 117.320 (8)°T = 295 K
V = 1171.6 (3) Å3Block, yellow
Z = 20.30 × 0.28 × 0.24 mm
Data collection top
Bruker APEXII CCD
diffractometer
8432 independent reflections
Radiation source: fine-focus sealed tube6509 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ω and φ scanθmax = 22.9°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 99
Tmin = 0.921, Tmax = 0.984k = 1717
8432 measured reflectionsl = 1010
Refinement top
Refinement on F226 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.189 w = 1/[σ2(Fo2) + (0.0973P)2 + 0.2985P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
8432 reflectionsΔρmax = 0.20 e Å3
277 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 3-component twin. The H atom for the hydroxy group was located in a difference-Fourier map and refined with a distance restraint of 0.82 (1) Å, with Uiso(H) = 1.5Ueq(O). All other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic CH, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2 and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.077 (3)0.5191 (13)0.506 (3)0.150 (9)0.85 (2)
H1A0.1772800.4852500.5571430.225*0.85 (2)
H1B0.0100740.5125970.5606450.225*0.85 (2)
H1C0.0128060.5001820.3977790.225*0.85 (2)
C20.1242 (18)0.6139 (12)0.507 (2)0.094 (5)0.85 (2)
H2A0.1901150.6328810.6161520.113*0.85 (2)
H2B0.1928520.6204450.4530170.113*0.85 (2)
C30.016 (4)0.7921 (17)0.593 (3)0.186 (12)0.85 (2)
H3A0.0159960.8202950.6655620.278*0.85 (2)
H3B0.1346180.7809810.6453280.278*0.85 (2)
H3C0.0115590.8284090.5027350.278*0.85 (2)
C40.081 (2)0.7066 (14)0.5381 (18)0.107 (6)0.85 (2)
H4A0.0547610.6691860.6283330.128*0.85 (2)
H4B0.2016740.7168540.4850220.128*0.85 (2)
C1'0.175 (19)0.563 (10)0.587 (14)0.150 (9)0.15 (2)
H1'10.2715430.5300820.5989550.225*0.15 (2)
H1'20.2051380.5980400.6788340.225*0.15 (2)
H1'30.0857010.5246620.5740630.225*0.15 (2)
C2'0.116 (11)0.621 (8)0.438 (12)0.094 (5)0.15 (2)
H2'10.2050600.6603150.4485960.113*0.15 (2)
H2'20.0849050.5864950.3431940.113*0.15 (2)
C3'0.08 (3)0.818 (8)0.517 (19)0.186 (12)0.15 (2)
H3'10.0437550.8493120.6134570.278*0.15 (2)
H3'20.0353060.8477360.4519560.278*0.15 (2)
H3'30.1962420.8136330.4602550.278*0.15 (2)
C4'0.002 (14)0.727 (6)0.556 (9)0.107 (6)0.15 (2)
H4'10.1235600.7334890.6165860.128*0.15 (2)
H4'20.0364410.6995830.6248360.128*0.15 (2)
C50.1139 (15)0.6770 (9)0.2706 (11)0.057 (3)
C60.2514 (14)0.7334 (8)0.2004 (12)0.067 (3)
H60.2861480.7641610.2641620.080*
C70.3341 (14)0.7435 (8)0.0403 (12)0.063 (3)
H70.4253050.7809680.0013660.075*
C80.2911 (14)0.7014 (7)0.0652 (11)0.052 (3)
C90.1524 (15)0.6488 (9)0.0054 (13)0.070 (3)
H90.1151490.6202700.0588480.084*
C100.0672 (13)0.6366 (8)0.1654 (14)0.066 (3)
H100.0255120.6001100.2060120.079*
C110.4023 (13)0.6582 (7)0.3275 (12)0.057 (3)
H110.3540710.6048120.2893940.069*
C120.4924 (14)0.6693 (7)0.4952 (12)0.051 (3)
C130.5096 (14)0.6016 (7)0.5958 (13)0.060 (3)
H130.4602690.5493580.5507380.072*
C140.5948 (13)0.6069 (7)0.7577 (13)0.051 (3)
C150.6630 (15)0.6864 (7)0.8231 (11)0.052 (2)
H150.7210450.6919590.9328850.063*
C160.6464 (12)0.7588 (6)0.7274 (11)0.050 (3)
C170.5607 (12)0.7496 (7)0.5649 (11)0.049 (3)
C180.6143 (16)0.5287 (8)0.8651 (13)0.065 (3)
C190.4436 (17)0.4872 (10)0.8153 (16)0.094 (4)
H19A0.3956620.4709940.7054930.141*
H19B0.3701560.5272040.8299530.141*
H19C0.4569730.4370400.8789340.141*
C200.7227 (17)0.4621 (10)0.8346 (17)0.093 (4)
H20A0.6757520.4513270.7227080.140*
H20B0.7246330.4096440.8886600.140*
H20C0.8354440.4835930.8734060.140*
C210.693 (2)0.5511 (10)1.0374 (14)0.113 (6)
H21A0.7087590.4997401.0987320.170*
H21B0.6206360.5898101.0564910.170*
H21C0.8001300.5780051.0677420.170*
C220.7209 (14)0.8462 (7)0.8094 (12)0.055 (3)
C230.8412 (17)0.8824 (9)0.7467 (17)0.084 (4)
H23A0.7810270.8883800.6334570.126*
H23B0.9341100.8436460.7739810.126*
H23C0.8828850.9374210.7940290.126*
C240.5703 (16)0.9104 (9)0.7627 (16)0.078 (4)
H24A0.5197040.9214250.6506230.117*
H24B0.6110750.9633190.8195540.117*
H24C0.4878030.8858910.7891970.117*
C250.8121 (18)0.8411 (8)0.9828 (13)0.079 (4)
H25A0.8637370.8954781.0249630.119*
H25B0.8975740.7975841.0133850.119*
H25C0.7348350.8267461.0236480.119*
N10.0275 (13)0.6674 (8)0.4291 (11)0.088 (3)
N20.3832 (11)0.7164 (6)0.2262 (10)0.058 (2)
O10.5431 (11)0.8175 (5)0.4662 (9)0.072 (2)
H10.488 (16)0.799 (9)0.375 (7)0.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.14 (2)0.143 (15)0.113 (16)0.027 (15)0.016 (16)0.044 (15)
C20.072 (8)0.149 (12)0.057 (10)0.021 (7)0.027 (8)0.018 (10)
C30.27 (4)0.139 (16)0.107 (18)0.010 (10)0.05 (2)0.043 (13)
C40.073 (10)0.182 (14)0.064 (8)0.016 (9)0.029 (7)0.005 (7)
C1'0.14 (2)0.143 (15)0.113 (16)0.027 (15)0.016 (16)0.044 (15)
C2'0.072 (8)0.149 (12)0.057 (10)0.021 (7)0.027 (8)0.018 (10)
C3'0.27 (4)0.139 (16)0.107 (18)0.010 (10)0.05 (2)0.043 (13)
C4'0.073 (10)0.182 (14)0.064 (8)0.016 (9)0.029 (7)0.005 (7)
C50.061 (5)0.070 (8)0.044 (5)0.000 (5)0.026 (4)0.004 (5)
C60.078 (7)0.071 (9)0.060 (4)0.011 (5)0.040 (5)0.005 (6)
C70.068 (6)0.058 (8)0.064 (4)0.016 (6)0.031 (5)0.011 (6)
C80.066 (6)0.036 (7)0.054 (4)0.004 (6)0.028 (5)0.005 (5)
C90.069 (7)0.079 (10)0.070 (8)0.008 (7)0.038 (6)0.009 (7)
C100.052 (6)0.069 (10)0.069 (8)0.019 (6)0.022 (6)0.005 (6)
C110.077 (7)0.032 (7)0.064 (7)0.001 (6)0.033 (6)0.000 (6)
C120.065 (6)0.036 (7)0.055 (6)0.003 (5)0.029 (5)0.001 (5)
C130.076 (8)0.035 (7)0.076 (8)0.005 (6)0.041 (6)0.010 (6)
C140.066 (7)0.038 (7)0.058 (7)0.014 (6)0.036 (6)0.015 (5)
C150.066 (6)0.037 (6)0.056 (6)0.004 (5)0.030 (5)0.005 (4)
C160.057 (6)0.040 (6)0.062 (6)0.003 (6)0.036 (5)0.001 (4)
C170.061 (6)0.044 (7)0.048 (6)0.002 (6)0.028 (5)0.003 (5)
C180.079 (8)0.043 (7)0.074 (5)0.002 (7)0.037 (6)0.015 (6)
C190.100 (9)0.080 (12)0.117 (10)0.010 (8)0.062 (8)0.029 (8)
C200.092 (10)0.062 (10)0.127 (11)0.020 (8)0.053 (9)0.033 (8)
C210.160 (15)0.089 (12)0.069 (5)0.024 (11)0.034 (9)0.022 (7)
C220.070 (7)0.044 (8)0.056 (7)0.011 (6)0.034 (6)0.010 (5)
C230.093 (9)0.067 (10)0.106 (10)0.027 (8)0.057 (8)0.009 (7)
C240.099 (10)0.041 (8)0.108 (9)0.000 (7)0.059 (8)0.004 (6)
C250.103 (10)0.061 (9)0.069 (8)0.025 (8)0.035 (7)0.021 (6)
N10.081 (5)0.121 (9)0.063 (6)0.019 (6)0.035 (5)0.017 (5)
N20.065 (5)0.049 (6)0.056 (4)0.001 (5)0.024 (4)0.004 (5)
O10.096 (6)0.046 (5)0.067 (5)0.006 (5)0.033 (5)0.008 (4)
Geometric parameters (Å, º) top
C1—C21.53 (2)C11—C121.425 (14)
C1—H1A0.9600C11—H110.9300
C1—H1B0.9600C12—C131.383 (15)
C1—H1C0.9600C12—C171.416 (14)
C2—N11.468 (15)C13—C141.368 (12)
C2—H2A0.9700C13—H130.9300
C2—H2B0.9700C14—C151.393 (15)
C3—C41.54 (2)C14—C181.545 (16)
C3—H3A0.9600C15—C161.411 (15)
C3—H3B0.9600C15—H150.9300
C3—H3C0.9600C16—C171.377 (12)
C4—N11.458 (16)C16—C221.557 (14)
C4—H4A0.9700C17—O11.372 (12)
C4—H4B0.9700C18—C211.493 (17)
C1'—C2'1.55 (2)C18—C191.518 (17)
C1'—H1'10.9600C18—C201.534 (18)
C1'—H1'20.9600C19—H19A0.9600
C1'—H1'30.9600C19—H19B0.9600
C2'—N11.44 (2)C19—H19C0.9600
C2'—H2'10.9700C20—H20A0.9600
C2'—H2'20.9700C20—H20B0.9600
C3'—C4'1.55 (2)C20—H20C0.9600
C3'—H3'10.9600C21—H21A0.9600
C4'—N11.44 (2)C21—H21B0.9600
C4'—H4'10.9700C21—H21C0.9600
C4'—H4'20.9700C22—C251.464 (14)
C5—N11.346 (12)C22—C231.553 (16)
C5—C101.394 (16)C22—C241.569 (17)
C5—C61.404 (17)C23—H23A0.9600
C6—C71.359 (14)C23—H23B0.9600
C6—H60.9300C23—H23C0.9600
C7—C81.389 (15)C24—H24A0.9600
C7—H70.9300C24—H24B0.9600
C8—C91.375 (15)C24—H24C0.9600
C8—N21.382 (12)C25—H25A0.9600
C9—C101.363 (15)C25—H25B0.9600
C9—H90.9300C25—H25C0.9600
C10—H100.9300O1—H10.83 (2)
C11—N21.273 (12)
C2—C1—H1A109.5C12—C13—H13118.1
C2—C1—H1B109.5C13—C14—C15117.2 (9)
H1A—C1—H1B109.5C13—C14—C18121.9 (10)
C2—C1—H1C109.5C15—C14—C18120.9 (9)
H1A—C1—H1C109.5C14—C15—C16121.9 (9)
H1B—C1—H1C109.5C14—C15—H15119.1
N1—C2—C1110.7 (15)C16—C15—H15119.1
N1—C2—H2A109.5C17—C16—C15118.5 (9)
C1—C2—H2A109.5C17—C16—C22122.7 (8)
N1—C2—H2B109.5C15—C16—C22118.8 (8)
C1—C2—H2B109.5O1—C17—C16120.9 (9)
H2A—C2—H2B108.1O1—C17—C12118.2 (8)
C4—C3—H3A109.5C16—C17—C12120.9 (9)
C4—C3—H3B109.5C21—C18—C19109.9 (11)
H3A—C3—H3B109.5C21—C18—C20110.1 (11)
C4—C3—H3C109.5C19—C18—C20106.5 (11)
H3A—C3—H3C109.5C21—C18—C14113.0 (11)
H3B—C3—H3C109.5C19—C18—C14109.7 (9)
N1—C4—C3106.6 (19)C20—C18—C14107.4 (10)
N1—C4—H4A110.4C18—C19—H19A109.5
C3—C4—H4A110.4C18—C19—H19B109.5
N1—C4—H4B110.4H19A—C19—H19B109.5
C3—C4—H4B110.4C18—C19—H19C109.5
H4A—C4—H4B108.6H19A—C19—H19C109.5
C2'—C1'—H1'1109.5H19B—C19—H19C109.5
C2'—C1'—H1'2109.5C18—C20—H20A109.5
H1'1—C1'—H1'2109.5C18—C20—H20B109.5
C2'—C1'—H1'3109.5H20A—C20—H20B109.5
H1'1—C1'—H1'3109.5C18—C20—H20C109.5
H1'2—C1'—H1'3109.5H20A—C20—H20C109.5
N1—C2'—C1'105 (8)H20B—C20—H20C109.5
N1—C2'—H2'1110.6C18—C21—H21A109.5
C1'—C2'—H2'1110.6C18—C21—H21B109.5
N1—C2'—H2'2110.6H21A—C21—H21B109.5
C1'—C2'—H2'2110.6C18—C21—H21C109.5
H2'1—C2'—H2'2108.8H21A—C21—H21C109.5
C4'—C3'—H3'1109.5H21B—C21—H21C109.5
C4'—C3'—H3'3109.5C25—C22—C23108.9 (10)
H3'2—C3'—H3'3109.5C25—C22—C16113.8 (9)
N1—C4'—C3'120 (9)C23—C22—C16109.7 (8)
N1—C4'—H4'1107.3C25—C22—C24108.4 (10)
N1—C4'—H4'2107.3C23—C22—C24108.3 (9)
C3'—C4'—H4'2107.3C16—C22—C24107.6 (9)
H4'1—C4'—H4'2106.9C22—C23—H23A109.5
N1—C5—C10122.8 (11)C22—C23—H23B109.5
N1—C5—C6121.8 (10)H23A—C23—H23B109.5
C10—C5—C6115.2 (9)C22—C23—H23C109.5
C7—C6—C5120.8 (11)H23A—C23—H23C109.5
C7—C6—H6119.6H23B—C23—H23C109.5
C5—C6—H6119.6C22—C24—H24A109.5
C6—C7—C8124.1 (11)C22—C24—H24B109.5
C6—C7—H7117.9H24A—C24—H24B109.5
C8—C7—H7117.9C22—C24—H24C109.5
C9—C8—N2125.8 (9)H24A—C24—H24C109.5
C9—C8—C7114.6 (9)H24B—C24—H24C109.5
N2—C8—C7119.6 (10)C22—C25—H25A109.5
C10—C9—C8122.8 (10)C22—C25—H25B109.5
C10—C9—H9118.6H25A—C25—H25B109.5
C8—C9—H9118.6C22—C25—H25C109.5
C9—C10—C5122.5 (11)H25A—C25—H25C109.5
C9—C10—H10118.8H25B—C25—H25C109.5
C5—C10—H10118.8C5—N1—C4'131 (5)
N2—C11—C12124.6 (10)C5—N1—C2'99 (4)
N2—C11—H11117.7C4'—N1—C2'117 (7)
C12—C11—H11117.7C5—N1—C4122.6 (11)
C13—C12—C17117.6 (9)C5—N1—C2123.4 (11)
C13—C12—C11120.3 (10)C4—N1—C2114.0 (11)
C17—C12—C11122.0 (9)C11—N2—C8121.3 (9)
C14—C13—C12123.8 (11)C17—O1—H1106 (10)
C14—C13—H13118.1
N1—C5—C6—C7178.4 (11)C13—C14—C18—C1949.8 (15)
C10—C5—C6—C72.6 (18)C15—C14—C18—C19129.6 (12)
C5—C6—C7—C80.8 (18)C13—C14—C18—C2065.5 (13)
C6—C7—C8—C91.6 (17)C15—C14—C18—C20115.1 (12)
C6—C7—C8—N2179.8 (11)C17—C16—C22—C25178.0 (10)
N2—C8—C9—C10179.9 (11)C15—C16—C22—C253.9 (15)
C7—C8—C9—C102.1 (17)C17—C16—C22—C2355.7 (13)
C8—C9—C10—C50.2 (19)C15—C16—C22—C23126.1 (11)
N1—C5—C10—C9177.9 (13)C17—C16—C22—C2461.9 (12)
C6—C5—C10—C92.2 (18)C15—C16—C22—C24116.2 (10)
N2—C11—C12—C13178.5 (11)C10—C5—N1—C4'146 (7)
N2—C11—C12—C174.3 (17)C6—C5—N1—C4'29 (7)
C17—C12—C13—C143.1 (17)C10—C5—N1—C2'8 (6)
C11—C12—C13—C14179.6 (11)C6—C5—N1—C2'167 (6)
C12—C13—C14—C152.1 (16)C10—C5—N1—C4177.2 (16)
C12—C13—C14—C18178.4 (11)C6—C5—N1—C47 (2)
C13—C14—C15—C160.4 (17)C10—C5—N1—C20 (2)
C18—C14—C15—C16179.8 (10)C6—C5—N1—C2175.3 (15)
C14—C15—C16—C170.2 (16)C3'—C4'—N1—C52 (19)
C14—C15—C16—C22178.0 (9)C3'—C4'—N1—C2'134 (15)
C15—C16—C17—O1179.0 (9)C1'—C2'—N1—C5149 (10)
C22—C16—C17—O12.9 (14)C1'—C2'—N1—C4'65 (13)
C15—C16—C17—C120.8 (14)C3—C4—N1—C595 (2)
C22—C16—C17—C12178.9 (9)C3—C4—N1—C287.3 (19)
C13—C12—C17—O1179.4 (10)C1—C2—N1—C582 (2)
C11—C12—C17—O12.1 (15)C1—C2—N1—C496 (2)
C13—C12—C17—C162.3 (15)C12—C11—N2—C8178.7 (10)
C11—C12—C17—C16179.6 (10)C9—C8—N2—C1133.1 (16)
C13—C14—C18—C21172.9 (12)C7—C8—N2—C11149.0 (11)
C15—C14—C18—C216.5 (16)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.83 (7)1.82 (11)2.591 (12)155 (14)
C23—H23A···O10.962.272.947 (17)127
C24—H24A···O10.962.463.071 (16)121
C2—H2B···Cg2i0.972.873.810 (19)166
C2—H21···Cg2i0.972.603.39 (11)139
Symmetry code: (i) x1, y, z1.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationAlam, M. S., Choi, J. & Lee, D. (2012). Bioorg. Med. Chem. 20, 4103–4108.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJarrahpour, A., Khalili, D., De Clercq, E., Salmi, C. & Brunel, J. M. (2007). Molecules, 12, 1720–1730.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRani, C. V., Chakkaravarthi, G. & Rajagopal, G. (2015). Acta Cryst. E71, o503.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRani, C. V., Mitu, L., Chakkaravarthi, G. & Rajagopal, G. (2017). IUCrData, 2, x170396.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSondhi, S. M., Singh, N., Kumar, A., Lozach, O. & Meijer, L. (2006). Bioorg. Med. Chem. 14, 3758–3765.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds