organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

8-Hy­dr­oxy-3,4-bis­­(4-meth­­oxy­phen­yl)-1H-isochromen-1-one

aOrganic & Bio-organic Chemistry, CSIR Central Leather Research Institute, Adyar, Chennai 600 020, India
*Correspondence e-mail: umanarayanclri@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 28 March 2017; accepted 10 April 2017; online 21 April 2017)

In the title compound, C23H18O5, the two meth­oxy-substituted benzene rings are inclined to one another by 67.0 (2)° and to the mean plane of the 1H-isochromene ring system by 67.21 (16) and 27.61 (17)°. There is an intra­molecular C—H⋯π inter­action present involving the two 4-meth­oxy­phenyl rings. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains propagating along the [301] direction. The chains are linked by a number of C—H⋯π inter­actions, forming a three-dimensional structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Chromene derivatives are important heterocyclic compounds that have a variety of industrial, biological and chemical synthesis applications (Geen et al., 1996[Geen, G. R., Evans, J. M. & Vong, A. K. (1996). Comprehensive Heterocyclic Chemistry, 1st ed., edited by A. R. Katrizky, Vol. 3, pp. 469-500. New York: Pergamon.]; Ercole et al., 2009[Ercole, F., Davis, T. P. & Evans, R. A. (2009). Macromolecules, 42, 1500-1511.]). They exhibit a number of pharmacological activities, such as anti-HIV, anti-inflammatory, anti­bacterial, anti-allergic and anti­cancer (Khan et al., 2010[Khan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058-4064.]; Raj et al., 2010[Raj, T., Bhatia, R. K., kapur, A., Sharma, M., Saxena, A. K. & Ishar, M. P. S. (2010). Eur. J. Med. Chem. 45, 790-794.]).

The title compound, Fig. 1[link], consists of a chromene moiety substituted by two meth­oxy­phenyl groups and an hy­droxy group. The two benzene rings (C10–C15 and C17–C22) are inclined to one another by 67.0 (2)° and to the mean plane of the 1H-isochromene ring system (O1/C1–C9) by 67.21 (16) and 27.61 (17)°, respectively. The 1H-isochromene moiety is planar (r.m.s. deviation = 0.043 Å) and atoms O2 and O3 deviate from this mean plane by −0.121 (3) and 0.058 (5) Å, respectively. There is an intra­molecular C—H⋯π inter­action present involving the two 4-meth­oxy­phenyl rings (Table 1[link] and Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of benzene rings C10–C15 and C17–C22, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O5i 0.82 2.56 3.236 (5) 140
C18—H18⋯Cg3 0.93 2.77 3.494 (5) 135
C3—H3⋯Cg3ii 0.93 2.79 3.611 (5) 148
C11—H11⋯Cg4iii 0.93 2.73 3.593 (4) 155
C23—H23CCg4iv 0.96 3.00 3.872 (7) 152
Symmetry codes: (i) [x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+3, -y, -z+1; (iii) x+1, y, z; (iv) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intra­molecular C—H⋯π inter­action (Table 1[link]) is shown as a dashed arrow.

In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains propagating along [301]; Table 1[link] and Fig. 2[link]. The chains are linked by a number of C—H⋯π inter­actions, forming a three-dimensional structure

[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. The dashed lines represent the hydrogen bonds (see Table 1[link]). For clarity, H atoms not involved in hydrogen bonding have been omitted.

Synthesis and crystallization

To a dried 50 ml round-bottom flask, fitted with a reflux condenser, were added 2-hy­droxy­benzoic acid (0.3 mmol), 1,2-bis­(4-meth­oxy­phen­yl)ethyne (0.3 mmol), [RuCl2(p-cymene)] (5.0 mol %), AgOAc (1.0 equiv) and AgSbF6 (20 mol %) in 1,2-dichloroethane. The reaction mixture was refluxed for 12 h. After cooling to ambient temperature, the reaction mixture was diluted with CH2Cl2, filtered through Celite and the filtrate was concentrated under reduced pressure. The crude product was purified through a silica gel column using hexane and ethyl acetate as eluent. The title compound was obtained in 65% yield. It was recrystallized by slow evaporation of a solution in chloro­form, yielding colourless block-like crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C23H18O5
Mr 374.37
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 5.8882 (7), 16.418 (3), 18.894 (3)
β (°) 95.016 (5)
V3) 1819.5 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.25 × 0.22 × 0.16
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.976, 0.985
No. of measured, independent and observed [I > 2σ(I)] reflections 9449, 2910, 1375
Rint 0.068
(sin θ/λ)max−1) 0.576
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.197, 1.01
No. of reflections 2910
No. of parameters 257
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.23
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

8-Hydroxy-3,4-bis(4-methoxyphenyl)-1H-isochromen-1-one top
Crystal data top
C23H18O5F(000) = 784
Mr = 374.37Dx = 1.367 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1375 reflections
a = 5.8882 (7) Åθ = 2.2–24.2°
b = 16.418 (3) ŵ = 0.10 mm1
c = 18.894 (3) ÅT = 296 K
β = 95.016 (5)°Block, colourless
V = 1819.5 (5) Å30.25 × 0.22 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
2910 independent reflections
Radiation source: fine-focus sealed tube1375 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ω and φ scansθmax = 24.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 64
Tmin = 0.976, Tmax = 0.985k = 1518
9449 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.197 w = 1/[σ2(Fo2) + (0.0901P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2910 reflectionsΔρmax = 0.29 e Å3
257 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.006 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.4796 (7)0.1453 (3)0.6993 (2)0.0573 (12)
C21.6348 (7)0.0900 (3)0.6765 (2)0.0606 (12)
H21.75390.07160.70810.073*
C31.6147 (6)0.0621 (3)0.6080 (2)0.0583 (12)
H31.71900.02430.59360.070*
C41.4399 (6)0.0896 (2)0.55963 (19)0.0490 (11)
H41.42890.07040.51320.059*
C51.2825 (6)0.1453 (2)0.58020 (18)0.0423 (10)
C61.1052 (6)0.1788 (2)0.52959 (18)0.0420 (10)
C70.9648 (6)0.2358 (3)0.55146 (18)0.0470 (10)
C81.1367 (7)0.2303 (3)0.6731 (2)0.0594 (12)
C91.3006 (6)0.1729 (2)0.65103 (19)0.0469 (10)
C101.0851 (5)0.1492 (2)0.45471 (18)0.0433 (10)
C111.2498 (6)0.1688 (2)0.40897 (19)0.0483 (11)
H111.37910.19750.42630.058*
C121.2242 (6)0.1464 (3)0.33848 (19)0.0514 (11)
H121.33410.16120.30840.062*
C131.0352 (6)0.1020 (3)0.3123 (2)0.0522 (11)
C140.8745 (6)0.0802 (3)0.3572 (2)0.0586 (12)
H140.74800.04990.34010.070*
C150.9007 (6)0.1033 (2)0.4279 (2)0.0527 (11)
H150.79180.08760.45800.063*
C160.8276 (8)0.0444 (4)0.2115 (2)0.1003 (19)
H16A0.80930.00660.23520.150*
H16B0.84100.03470.16190.150*
H16C0.69730.07830.21680.150*
C170.7859 (6)0.2841 (2)0.5105 (2)0.0508 (11)
C180.7925 (7)0.3006 (3)0.4386 (2)0.0651 (13)
H180.91110.27960.41470.078*
C190.6284 (8)0.3471 (3)0.4019 (3)0.0772 (14)
H190.63610.35700.35370.093*
C200.4544 (8)0.3789 (3)0.4359 (3)0.0720 (14)
C210.4392 (6)0.3655 (3)0.5068 (3)0.0709 (14)
H210.32020.38780.52970.085*
C220.6072 (7)0.3173 (3)0.5446 (2)0.0628 (12)
H220.59850.30760.59270.075*
C230.1536 (9)0.4761 (4)0.4247 (4)0.126 (2)
H23A0.04180.44390.44610.189*
H23B0.07870.51170.38980.189*
H23C0.23810.50790.46070.189*
O10.9793 (4)0.26094 (17)0.62196 (13)0.0592 (8)
O21.1211 (5)0.2567 (2)0.73262 (15)0.0907 (12)
O31.5022 (7)0.1731 (3)0.76879 (19)0.1251 (15)
H3A1.62700.15940.78780.188*
O41.0245 (5)0.08343 (19)0.24135 (14)0.0747 (10)
O50.2996 (6)0.4257 (2)0.3928 (2)0.1062 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.067 (3)0.066 (3)0.038 (2)0.002 (2)0.003 (2)0.014 (2)
C20.063 (2)0.066 (3)0.050 (3)0.007 (2)0.007 (2)0.001 (2)
C30.059 (2)0.054 (3)0.062 (3)0.009 (2)0.007 (2)0.005 (2)
C40.055 (2)0.052 (3)0.040 (2)0.005 (2)0.0045 (19)0.000 (2)
C50.050 (2)0.035 (3)0.042 (2)0.006 (2)0.0065 (18)0.0031 (19)
C60.044 (2)0.044 (3)0.039 (2)0.0020 (19)0.0070 (17)0.0011 (19)
C70.051 (2)0.052 (3)0.038 (2)0.007 (2)0.0047 (18)0.007 (2)
C80.066 (3)0.061 (3)0.051 (3)0.000 (2)0.004 (2)0.001 (2)
C90.052 (2)0.049 (3)0.040 (2)0.001 (2)0.0012 (18)0.0017 (19)
C100.042 (2)0.046 (3)0.042 (2)0.0021 (19)0.0036 (17)0.0012 (19)
C110.046 (2)0.049 (3)0.049 (2)0.0093 (19)0.0027 (18)0.001 (2)
C120.054 (2)0.058 (3)0.043 (2)0.007 (2)0.0113 (18)0.007 (2)
C130.054 (2)0.059 (3)0.043 (2)0.000 (2)0.001 (2)0.004 (2)
C140.052 (2)0.068 (3)0.054 (3)0.017 (2)0.004 (2)0.008 (2)
C150.048 (2)0.063 (3)0.048 (3)0.011 (2)0.0079 (18)0.001 (2)
C160.112 (4)0.120 (5)0.065 (3)0.021 (4)0.013 (3)0.026 (3)
C170.049 (2)0.039 (3)0.064 (3)0.005 (2)0.002 (2)0.002 (2)
C180.060 (3)0.067 (4)0.067 (3)0.000 (2)0.001 (2)0.017 (3)
C190.071 (3)0.076 (4)0.082 (3)0.006 (3)0.007 (3)0.011 (3)
C200.067 (3)0.054 (3)0.090 (4)0.005 (3)0.025 (3)0.009 (3)
C210.046 (2)0.058 (4)0.107 (4)0.005 (2)0.006 (3)0.020 (3)
C220.066 (3)0.054 (3)0.068 (3)0.008 (2)0.004 (2)0.005 (2)
C230.084 (4)0.080 (5)0.207 (7)0.014 (4)0.026 (4)0.037 (5)
O10.0656 (17)0.061 (2)0.0511 (18)0.0081 (15)0.0062 (14)0.0058 (15)
O20.109 (2)0.113 (3)0.0491 (19)0.037 (2)0.0023 (17)0.0251 (19)
O30.136 (3)0.156 (4)0.079 (3)0.016 (3)0.015 (2)0.019 (3)
O40.083 (2)0.095 (3)0.0435 (18)0.0101 (18)0.0063 (14)0.0165 (16)
O50.085 (2)0.096 (3)0.131 (3)0.010 (2)0.028 (2)0.003 (2)
Geometric parameters (Å, º) top
C1—C21.383 (5)C13—C141.372 (5)
C1—O31.386 (5)C14—C151.384 (5)
C1—C91.407 (5)C14—H140.9300
C2—C31.369 (5)C15—H150.9300
C2—H20.9300C16—O41.400 (5)
C3—C41.391 (5)C16—H16A0.9600
C3—H30.9300C16—H16B0.9600
C4—C51.382 (5)C16—H16C0.9600
C4—H40.9300C17—C181.389 (5)
C5—C91.408 (5)C17—C221.392 (5)
C5—C61.460 (5)C18—C191.371 (6)
C6—C71.338 (5)C18—H180.9300
C6—C101.491 (5)C19—C201.359 (6)
C7—O11.390 (4)C19—H190.9300
C7—C171.482 (5)C20—C211.369 (6)
C8—O21.216 (4)C20—O51.398 (5)
C8—O11.374 (4)C21—C221.411 (6)
C8—C91.436 (6)C21—H210.9300
C10—C151.381 (5)C22—H220.9300
C10—C111.392 (5)C23—O51.370 (6)
C11—C121.377 (5)C23—H23A0.9600
C11—H110.9300C23—H23B0.9600
C12—C131.385 (5)C23—H23C0.9600
C12—H120.9300O3—H3A0.8200
C13—O41.371 (4)
C2—C1—O3119.9 (4)C13—C14—H14120.0
C2—C1—C9119.2 (4)C15—C14—H14120.0
O3—C1—C9120.8 (4)C10—C15—C14121.4 (4)
C3—C2—C1120.6 (4)C10—C15—H15119.3
C3—C2—H2119.7C14—C15—H15119.3
C1—C2—H2119.7O4—C16—H16A109.5
C2—C3—C4120.7 (4)O4—C16—H16B109.5
C2—C3—H3119.6H16A—C16—H16B109.5
C4—C3—H3119.6O4—C16—H16C109.5
C5—C4—C3120.4 (4)H16A—C16—H16C109.5
C5—C4—H4119.8H16B—C16—H16C109.5
C3—C4—H4119.8C18—C17—C22117.6 (4)
C4—C5—C9118.9 (3)C18—C17—C7122.4 (4)
C4—C5—C6121.6 (3)C22—C17—C7119.9 (4)
C9—C5—C6119.5 (3)C19—C18—C17121.5 (4)
C7—C6—C5119.1 (3)C19—C18—H18119.2
C7—C6—C10121.4 (3)C17—C18—H18119.2
C5—C6—C10119.5 (3)C20—C19—C18120.2 (5)
C6—C7—O1121.1 (3)C20—C19—H19119.9
C6—C7—C17130.0 (3)C18—C19—H19119.9
O1—C7—C17108.9 (3)C19—C20—C21121.2 (4)
O2—C8—O1114.8 (4)C19—C20—O5114.6 (5)
O2—C8—C9127.5 (4)C21—C20—O5124.2 (5)
O1—C8—C9117.7 (4)C20—C21—C22118.8 (4)
C1—C9—C5120.1 (4)C20—C21—H21120.6
C1—C9—C8120.5 (4)C22—C21—H21120.6
C5—C9—C8119.3 (3)C17—C22—C21120.7 (4)
C15—C10—C11117.8 (3)C17—C22—H22119.6
C15—C10—C6121.4 (3)C21—C22—H22119.6
C11—C10—C6120.8 (3)O5—C23—H23A109.5
C12—C11—C10121.1 (3)O5—C23—H23B109.5
C12—C11—H11119.5H23A—C23—H23B109.5
C10—C11—H11119.5O5—C23—H23C109.5
C11—C12—C13120.1 (3)H23A—C23—H23C109.5
C11—C12—H12119.9H23B—C23—H23C109.5
C13—C12—H12119.9C8—O1—C7123.1 (3)
O4—C13—C14124.8 (3)C1—O3—H3A109.5
O4—C13—C12115.6 (3)C13—O4—C16117.5 (3)
C14—C13—C12119.5 (3)C23—O5—C20118.6 (5)
C13—C14—C15120.0 (3)
O3—C1—C2—C3179.9 (4)C6—C10—C11—C12175.5 (4)
C9—C1—C2—C30.2 (6)C10—C11—C12—C131.6 (6)
C1—C2—C3—C40.9 (6)C11—C12—C13—O4179.4 (4)
C2—C3—C4—C50.4 (6)C11—C12—C13—C140.3 (6)
C3—C4—C5—C90.8 (6)O4—C13—C14—C15179.0 (4)
C3—C4—C5—C6176.4 (3)C12—C13—C14—C150.7 (6)
C4—C5—C6—C7176.4 (4)C11—C10—C15—C142.6 (6)
C9—C5—C6—C70.8 (5)C6—C10—C15—C14175.8 (4)
C4—C5—C6—C103.2 (5)C13—C14—C15—C100.8 (6)
C9—C5—C6—C10179.6 (3)C6—C7—C17—C1826.0 (6)
C5—C6—C7—O12.8 (5)O1—C7—C17—C18151.4 (4)
C10—C6—C7—O1177.6 (3)C6—C7—C17—C22156.4 (4)
C5—C6—C7—C17174.4 (3)O1—C7—C17—C2226.2 (5)
C10—C6—C7—C175.3 (6)C22—C17—C18—C190.6 (6)
C2—C1—C9—C51.0 (6)C7—C17—C18—C19178.3 (4)
O3—C1—C9—C5178.8 (4)C17—C18—C19—C200.4 (7)
C2—C1—C9—C8180.0 (4)C18—C19—C20—C210.2 (7)
O3—C1—C9—C80.3 (6)C18—C19—C20—O5179.5 (4)
C4—C5—C9—C11.4 (6)C19—C20—C21—C220.5 (7)
C6—C5—C9—C1175.8 (3)O5—C20—C21—C22179.7 (4)
C4—C5—C9—C8179.5 (4)C18—C17—C22—C210.3 (6)
C6—C5—C9—C83.2 (5)C7—C17—C22—C21178.0 (4)
O2—C8—C9—C15.2 (7)C20—C21—C22—C170.2 (6)
O1—C8—C9—C1173.9 (3)O2—C8—O1—C7177.5 (4)
O2—C8—C9—C5175.8 (4)C9—C8—O1—C73.4 (5)
O1—C8—C9—C55.2 (6)C6—C7—O1—C80.7 (5)
C7—C6—C10—C1568.8 (5)C17—C7—O1—C8177.0 (3)
C5—C6—C10—C15111.6 (4)C14—C13—O4—C164.8 (6)
C7—C6—C10—C11109.6 (4)C12—C13—O4—C16174.9 (4)
C5—C6—C10—C1170.0 (5)C19—C20—O5—C23164.1 (5)
C15—C10—C11—C123.0 (6)C21—C20—O5—C2315.2 (7)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of benzene rings C10–C15 and C17–C22, respectively.
D—H···AD—HH···AD···AD—H···A
O3—H3A···O5i0.822.563.236 (5)140
C18—H18···Cg30.932.773.494 (5)135
C3—H3···Cg3ii0.932.793.611 (5)148
C11—H11···Cg4iii0.932.733.593 (4)155
C23—H23C···Cg4iv0.963.003.872 (7)152
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3, y, z+1; (iii) x+1, y, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Department of Chemistry, IIT, Chennai, India, for the X-ray intensity data collection.

References

First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErcole, F., Davis, T. P. & Evans, R. A. (2009). Macromolecules, 42, 1500–1511.  Web of Science CrossRef CAS Google Scholar
First citationGeen, G. R., Evans, J. M. & Vong, A. K. (1996). Comprehensive Heterocyclic Chemistry, 1st ed., edited by A. R. Katrizky, Vol. 3, pp. 469–500. New York: Pergamon.  Google Scholar
First citationKhan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058–4064.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRaj, T., Bhatia, R. K., kapur, A., Sharma, M., Saxena, A. K. & Ishar, M. P. S. (2010). Eur. J. Med. Chem. 45, 790–794.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds