organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-N-(1H-Pyrrol-2-yl­methyl­­idene)-2-{[(E)-(1H-pyrrol-2-yl­methyl­­idene)amino]­meth­yl}aniline

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bDepartment of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 17 March 2017; accepted 10 April 2017; online 28 April 2017)

The title salophene-type compound, C17H16N4, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. Both (pyrrol-2-yl)methanimine groups have an extended conformation, and an E conformation about the C=N bonds. The pyrrole rings are inclined to the amino­benzyl­amine ring by 43.7 (3) and 78.9 (2)° in mol­ecule A, and by 46.8 (3) and 79.3 (3)° in mol­ecule B, while the pyrrole rings are inclined to one another by 58.9 (3) and 59.9 (3)° in mol­ecules A and B, respectively. In the crystal, mol­ecules are linked by N—H⋯N hydrogen bonds, forming chains propagating along the a-axis direction. The chains are linked by C—H⋯π inter­actions, forming a three-dimensional supra­molecular structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound was synthesized using Schiff base reactions, which play an important role in coordination chemistry (Ben Guzzi & El Alagi, 2013[Ben Guzzi, S. A. & El Alagi, H. S. (2013). J. Chem. Pharm. Res. 5, 10-14.]). Schiff bases have been found to exhibit biological activities such as anti­microbial, anti­bacterial, anti­fungal, anti-inflammatory, anti-convulsant, anti­tumor and anti HIV activities (Liu et al. 2007[Liu, J., Zhang, B., Wu, B., Zhang, K. & Hu, S. (2007). Turk. J. Chem. 31, 623-629.]; Arulmurugan et al. 2010[Arulmurugan, S., Kavitha, H. P. & Venkatraman, B. R. (2010). Rasayan J. Chem. 3, 385-410.]). Salophene [N,N′-bis­(salicyl­idene)-1,2-phenyl­enedi­amine] ligands are symmetrical and derived from aromatic 1,2–di­amino benzene derivatives. They have received great attention due to their synthetic flexibility, rich coordination chemistry and applications in catalysis. Against this background we have synthesized an asymmetric salophene-type compound and report herein on its crystal structure.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. There are two crystallographically independent mol­ecules (A and B) in the asymmetric unit. The pyrrole rings (N1/C2–C5 and N21/C17–C20) are inclined to the amino­benzyl­amine ring (C8–C13) by 43.7 (3) and 78.9 (2)° in mol­ecule A, and by 46.8 (3) and 79.3 (3)° in mol­ecule B, while the pyrrole rings are inclined to one another by 58.9 (3) and 59.9 (3)° in mol­ecules A and B, respectively. The sum of the bond angles at atoms N1 and N21 of the pyrrole rings are 360.0 and 359.9° in mol­ecule A, and 360.1 and 360.0° in mol­ecule B, typical for sp2-hybridized states.

[Figure 1]
Figure 1
The mol­ecular structure of one of the two independent mol­ecules of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level.

In the crystal, mol­ecules are linked by N—H⋯N hydrogen bonds, forming chains propagating along the a-axis direction (Table 1[link] and Fig. 2[link]). The chains are linked by C—H⋯π inter­actions, forming a three-dimensional supra­molecular structure (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg5 are the centroids of rings N1A/C2A–C5A, N21A/C17A–C20A and N21B/C17B–C20B, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯N15Bi 0.86 2.17 2.990 (5) 160
N1B—H1B⋯N15A 0.86 2.20 3.028 (5) 162
N21A—H21A⋯N7B 0.86 2.23 2.984 (5) 146
N21B—H21B⋯N7Aii 0.86 2.15 2.909 (5) 148
C3A—H3ACg5iii 0.93 2.69 3.465 (6) 142
C10A—H10ACg2iv 0.93 2.82 3.654 (6) 151
C20A—H20ACg1v 0.93 2.97 3.643 (5) 131
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iv) x, y-1, z-1; (v) x+1, y, z+1.
[Figure 2]
Figure 2
The partial view of the crystal packing of title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines (see Table 1[link]).
[Figure 3]
Figure 3
The crystal packing of title compound viewed along the a axis. H atoms not involved in hydrogen bonding (dashed lines) and C—H⋯π inter­actions (blue arrows) have been omitted for clarity.

Synthesis and crystallization

To a stirred solution of 2-pyrrole­carboxaldehyde 0.950 g (10 mmol) in 20 ml of ethanol, in a round-bottom flask, was added 0.610 g (5 mmol) of 2-amino-benzyl­amine. The mixture was refluxed for 3 h to give a yellow solution. The final reaction mixture was filtered and the filtrate kept in a refrigerator for 12 h. The resulting yellow block-like crystals were filtered off, washed with cold ethanol and dried under vacuum.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H16N4
Mr 276.34
Crystal system, space group Monoclinic, P21
Temperature (K) 296
a, b, c (Å) 9.968 (4), 15.529 (6), 10.119 (4)
β (°) 102.558 (9)
V3) 1528.9 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.25 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker SMART APEXII area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.982, 0.985
No. of measured, independent and observed [I > 2σ(I)] reflections 18751, 5057, 3322
Rint 0.055
(sin θ/λ)max−1) 0.583
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.092, 0.99
No. of reflections 5057
No. of parameters 380
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.14
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

(I) top
Crystal data top
C17H16N4F(000) = 584
Mr = 276.34Dx = 1.201 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.968 (4) ÅCell parameters from 3322 reflections
b = 15.529 (6) Åθ = 2.4–24.5°
c = 10.119 (4) ŵ = 0.07 mm1
β = 102.558 (9)°T = 296 K
V = 1528.9 (11) Å3Block, yellow
Z = 40.25 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5057 independent reflections
Radiation source: fine-focus sealed tube3322 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω and φ scansθmax = 24.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.982, Tmax = 0.985k = 1818
18751 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0351P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
5057 reflectionsΔρmax = 0.15 e Å3
380 parametersΔρmin = 0.14 e Å3
1 restraintExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0068 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C2A0.0016 (5)0.8295 (3)0.5903 (5)0.0715 (15)
H2A0.07640.81560.62240.086*
C3A0.0174 (6)0.9004 (3)0.5175 (6)0.0770 (16)
H3A0.04710.94370.49100.092*
C4A0.1469 (5)0.8965 (3)0.4897 (5)0.0717 (14)
H4A0.18520.93690.44090.086*
C5A0.2088 (5)0.8228 (3)0.5469 (4)0.0525 (11)
C6A0.3409 (4)0.7887 (3)0.5445 (4)0.0529 (11)
H6A0.39990.82160.50530.064*
C8A0.5163 (4)0.6869 (2)0.5839 (4)0.0439 (10)
C9A0.5588 (4)0.6895 (3)0.4629 (5)0.0575 (12)
H9A0.50020.71070.38540.069*
C10A0.6891 (5)0.6603 (3)0.4569 (5)0.0650 (13)
H10A0.71830.66320.37580.078*
C11A0.7745 (5)0.6275 (3)0.5696 (6)0.0635 (13)
H11A0.86180.60810.56560.076*
C12A0.7303 (4)0.6232 (3)0.6895 (5)0.0553 (12)
H12A0.78840.60020.76580.066*
C13A0.6013 (4)0.6524 (2)0.6991 (4)0.0432 (10)
C14A0.5551 (4)0.6468 (3)0.8314 (4)0.0541 (12)
H14A0.47630.68410.82780.065*
H14B0.52720.58830.84520.065*
C16A0.7137 (4)0.6145 (3)1.0305 (4)0.0464 (10)
H16A0.67220.56051.02080.056*
C17A0.8277 (4)0.6277 (3)1.1407 (4)0.0441 (10)
C18A0.8902 (4)0.5727 (3)1.2417 (4)0.0572 (12)
H18A0.86270.51661.25380.069*
C19A1.0010 (5)0.6147 (3)1.3225 (5)0.0664 (13)
H19A1.06140.59221.39770.080*
C20A1.0042 (4)0.6951 (3)1.2705 (5)0.0647 (13)
H20A1.06790.73771.30450.078*
N1A0.1186 (3)0.7820 (2)0.6087 (4)0.0561 (10)
H1A0.13320.73420.65230.067*
N7A0.3822 (3)0.7153 (2)0.5935 (3)0.0464 (9)
N15A0.6657 (3)0.6724 (2)0.9444 (4)0.0477 (9)
N21A0.8989 (3)0.7029 (2)1.1607 (3)0.0522 (9)
H21A0.88010.74831.11160.063*
C2B0.5320 (5)0.8966 (3)0.8313 (5)0.0734 (15)
H2B0.44890.86970.83220.088*
C3B0.5475 (6)0.9768 (4)0.7837 (5)0.0830 (16)
H3B0.47721.01460.74610.100*
C4B0.6876 (6)0.9924 (3)0.8013 (5)0.0773 (15)
H4B0.72791.04250.77790.093*
C5B0.7559 (5)0.9202 (3)0.8597 (4)0.0556 (12)
C6B0.9002 (5)0.9050 (3)0.9028 (5)0.0567 (12)
H6B0.96050.94620.88290.068*
C8B1.0951 (4)0.8292 (3)1.0099 (4)0.0504 (11)
C9B1.1750 (5)0.8937 (3)1.0846 (5)0.0701 (14)
H9B1.13420.94501.10240.084*
C10B1.3143 (5)0.8815 (4)1.1321 (5)0.0786 (15)
H10B1.36710.92441.18280.094*
C11B1.3744 (5)0.8068 (4)1.1049 (5)0.0731 (15)
H11B1.46850.79901.13560.088*
C12B1.2953 (4)0.7420 (3)1.0313 (4)0.0626 (13)
H12B1.33720.69101.01380.075*
C13B1.1560 (4)0.7521 (3)0.9838 (4)0.0496 (11)
C14B1.0713 (4)0.6807 (3)0.9077 (5)0.0609 (13)
H14C1.05330.63790.97150.073*
H14D0.98370.70360.85970.073*
C16B1.1674 (4)0.5599 (3)0.8283 (4)0.0509 (11)
H16B1.14010.53230.89970.061*
C17B1.2371 (4)0.5098 (3)0.7451 (4)0.0438 (10)
C18B1.2663 (5)0.4240 (3)0.7486 (5)0.0645 (13)
H18B1.24410.38410.80890.077*
C19B1.3351 (5)0.4067 (3)0.6462 (6)0.0709 (15)
H19B1.36780.35330.62600.085*
C20B1.3460 (4)0.4812 (3)0.5813 (5)0.0625 (13)
H20B1.38780.48830.50830.075*
N1B0.6582 (4)0.8626 (2)0.8772 (4)0.0571 (10)
H1B0.67450.81210.91220.068*
N7B0.9502 (3)0.8376 (2)0.9672 (4)0.0515 (9)
N15B1.1404 (3)0.6396 (2)0.8111 (3)0.0501 (9)
N21B1.2854 (3)0.5437 (2)0.6407 (3)0.0467 (8)
H21B1.27860.59690.61630.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C2A0.057 (3)0.067 (4)0.085 (4)0.014 (3)0.002 (3)0.021 (3)
C3A0.083 (4)0.046 (3)0.086 (4)0.024 (3)0.015 (3)0.007 (3)
C4A0.083 (4)0.044 (3)0.078 (4)0.007 (3)0.005 (3)0.007 (3)
C5A0.064 (3)0.038 (3)0.051 (3)0.007 (2)0.001 (2)0.003 (2)
C6A0.061 (3)0.045 (3)0.051 (3)0.007 (2)0.009 (2)0.006 (2)
C8A0.047 (2)0.036 (2)0.049 (3)0.005 (2)0.012 (2)0.002 (2)
C9A0.070 (3)0.055 (3)0.050 (3)0.004 (2)0.018 (2)0.003 (2)
C10A0.078 (3)0.058 (3)0.071 (4)0.002 (3)0.043 (3)0.005 (3)
C11A0.062 (3)0.054 (3)0.082 (4)0.001 (2)0.033 (3)0.003 (3)
C12A0.048 (3)0.055 (3)0.062 (3)0.000 (2)0.009 (2)0.001 (2)
C13A0.045 (2)0.039 (2)0.047 (3)0.0040 (19)0.012 (2)0.001 (2)
C14A0.046 (2)0.067 (3)0.047 (3)0.003 (2)0.006 (2)0.004 (2)
C16A0.052 (2)0.047 (3)0.043 (3)0.000 (2)0.018 (2)0.001 (2)
C17A0.049 (2)0.047 (3)0.037 (3)0.008 (2)0.011 (2)0.002 (2)
C18A0.065 (3)0.060 (3)0.047 (3)0.010 (2)0.014 (2)0.011 (3)
C19A0.064 (3)0.083 (4)0.049 (3)0.016 (3)0.004 (2)0.008 (3)
C20A0.059 (3)0.083 (4)0.049 (3)0.000 (3)0.005 (3)0.009 (3)
N1A0.059 (2)0.049 (2)0.057 (3)0.011 (2)0.0046 (19)0.0025 (19)
N7A0.050 (2)0.045 (2)0.042 (2)0.0020 (16)0.0056 (16)0.0066 (17)
N15A0.0473 (19)0.050 (2)0.044 (2)0.0010 (17)0.0059 (17)0.0038 (19)
N21A0.058 (2)0.055 (2)0.041 (2)0.0046 (19)0.0060 (18)0.0022 (19)
C2B0.066 (3)0.083 (4)0.069 (4)0.017 (3)0.011 (3)0.008 (3)
C3B0.091 (4)0.081 (4)0.075 (4)0.030 (3)0.012 (3)0.017 (3)
C4B0.103 (4)0.058 (4)0.071 (4)0.008 (3)0.020 (3)0.009 (3)
C5B0.072 (3)0.049 (3)0.046 (3)0.003 (3)0.015 (2)0.003 (2)
C6B0.072 (3)0.052 (3)0.049 (3)0.008 (3)0.020 (2)0.004 (2)
C8B0.052 (3)0.052 (3)0.048 (3)0.010 (2)0.013 (2)0.002 (2)
C9B0.075 (3)0.055 (3)0.076 (4)0.017 (3)0.009 (3)0.007 (3)
C10B0.078 (4)0.083 (4)0.067 (4)0.026 (3)0.001 (3)0.001 (3)
C11B0.058 (3)0.096 (4)0.064 (4)0.016 (3)0.008 (3)0.003 (3)
C12B0.057 (3)0.074 (4)0.060 (3)0.004 (3)0.018 (2)0.004 (3)
C13B0.048 (3)0.056 (3)0.048 (3)0.008 (2)0.017 (2)0.004 (2)
C14B0.056 (3)0.064 (3)0.068 (3)0.007 (2)0.025 (2)0.015 (3)
C16B0.056 (3)0.051 (3)0.047 (3)0.012 (2)0.014 (2)0.000 (2)
C17B0.045 (2)0.044 (3)0.041 (3)0.004 (2)0.005 (2)0.003 (2)
C18B0.073 (3)0.044 (3)0.073 (4)0.000 (2)0.010 (3)0.011 (3)
C19B0.074 (3)0.042 (3)0.093 (4)0.016 (2)0.009 (3)0.011 (3)
C20B0.058 (3)0.060 (3)0.071 (3)0.009 (3)0.016 (2)0.013 (3)
N1B0.070 (2)0.048 (2)0.053 (3)0.006 (2)0.012 (2)0.0033 (19)
N7B0.059 (2)0.044 (2)0.051 (2)0.0041 (18)0.0122 (18)0.0031 (19)
N15B0.055 (2)0.048 (2)0.051 (2)0.0017 (18)0.0180 (17)0.0071 (19)
N21B0.0483 (19)0.040 (2)0.050 (2)0.0032 (17)0.0059 (17)0.0003 (18)
Geometric parameters (Å, º) top
C2A—C3A1.353 (6)C2B—N1B1.351 (5)
C2A—N1A1.358 (5)C2B—C3B1.357 (7)
C2A—H2A0.9300C2B—H2B0.9300
C3A—C4A1.380 (7)C3B—C4B1.389 (7)
C3A—H3A0.9300C3B—H3B0.9300
C4A—C5A1.368 (5)C4B—C5B1.376 (6)
C4A—H4A0.9300C4B—H4B0.9300
C5A—N1A1.358 (5)C5B—N1B1.362 (5)
C5A—C6A1.424 (6)C5B—C6B1.429 (6)
C6A—N7A1.276 (5)C6B—N7B1.276 (5)
C6A—H6A0.9300C6B—H6B0.9300
C8A—C9A1.380 (5)C8B—C13B1.393 (5)
C8A—C13A1.390 (5)C8B—C9B1.395 (5)
C8A—N7A1.431 (4)C8B—N7B1.421 (5)
C9A—C10A1.389 (6)C9B—C10B1.380 (6)
C9A—H9A0.9300C9B—H9B0.9300
C10A—C11A1.365 (6)C10B—C11B1.362 (7)
C10A—H10A0.9300C10B—H10B0.9300
C11A—C12A1.380 (6)C11B—C12B1.390 (6)
C11A—H11A0.9300C11B—H11B0.9300
C12A—C13A1.387 (5)C12B—C13B1.377 (5)
C12A—H12A0.9300C12B—H12B0.9300
C13A—C14A1.509 (5)C13B—C14B1.501 (5)
C14A—N15A1.461 (5)C14B—N15B1.459 (5)
C14A—H14A0.9700C14B—H14C0.9700
C14A—H14B0.9700C14B—H14D0.9700
C16A—N15A1.272 (4)C16B—N15B1.270 (5)
C16A—C17A1.423 (5)C16B—C17B1.433 (6)
C16A—H16A0.9300C16B—H16B0.9300
C17A—N21A1.359 (5)C17B—N21B1.359 (5)
C17A—C18A1.372 (5)C17B—C18B1.362 (5)
C18A—C19A1.386 (6)C18B—C19B1.387 (6)
C18A—H18A0.9300C18B—H18B0.9300
C19A—C20A1.357 (6)C19B—C20B1.346 (6)
C19A—H19A0.9300C19B—H19B0.9300
C20A—N21A1.358 (5)C20B—N21B1.352 (5)
C20A—H20A0.9300C20B—H20B0.9300
N1A—H1A0.8600N1B—H1B0.8600
N21A—H21A0.8600N21B—H21B0.8600
C3A—C2A—N1A108.5 (4)N1B—C2B—C3B108.2 (5)
C3A—C2A—H2A125.7N1B—C2B—H2B125.9
N1A—C2A—H2A125.7C3B—C2B—H2B125.9
C2A—C3A—C4A107.5 (4)C2B—C3B—C4B107.6 (5)
C2A—C3A—H3A126.2C2B—C3B—H3B126.2
C4A—C3A—H3A126.2C4B—C3B—H3B126.2
C5A—C4A—C3A107.8 (5)C5B—C4B—C3B107.7 (5)
C5A—C4A—H4A126.1C5B—C4B—H4B126.2
C3A—C4A—H4A126.1C3B—C4B—H4B126.2
N1A—C5A—C4A107.5 (4)N1B—C5B—C4B106.9 (4)
N1A—C5A—C6A122.8 (4)N1B—C5B—C6B123.5 (4)
C4A—C5A—C6A129.6 (5)C4B—C5B—C6B129.6 (5)
N7A—C6A—C5A123.2 (4)N7B—C6B—C5B123.2 (4)
N7A—C6A—H6A118.4N7B—C6B—H6B118.4
C5A—C6A—H6A118.4C5B—C6B—H6B118.4
C9A—C8A—C13A120.5 (4)C13B—C8B—C9B119.9 (4)
C9A—C8A—N7A121.5 (4)C13B—C8B—N7B118.5 (4)
C13A—C8A—N7A118.0 (4)C9B—C8B—N7B121.4 (4)
C8A—C9A—C10A119.9 (4)C10B—C9B—C8B120.2 (5)
C8A—C9A—H9A120.0C10B—C9B—H9B119.9
C10A—C9A—H9A120.0C8B—C9B—H9B119.9
C11A—C10A—C9A120.3 (4)C11B—C10B—C9B120.0 (5)
C11A—C10A—H10A119.9C11B—C10B—H10B120.0
C9A—C10A—H10A119.9C9B—C10B—H10B120.0
C10A—C11A—C12A119.5 (4)C10B—C11B—C12B120.1 (4)
C10A—C11A—H11A120.2C10B—C11B—H11B119.9
C12A—C11A—H11A120.2C12B—C11B—H11B119.9
C11A—C12A—C13A121.6 (4)C13B—C12B—C11B121.1 (4)
C11A—C12A—H12A119.2C13B—C12B—H12B119.5
C13A—C12A—H12A119.2C11B—C12B—H12B119.5
C12A—C13A—C8A118.2 (4)C12B—C13B—C8B118.7 (4)
C12A—C13A—C14A120.6 (4)C12B—C13B—C14B120.4 (4)
C8A—C13A—C14A121.2 (3)C8B—C13B—C14B120.9 (3)
N15A—C14A—C13A110.8 (3)N15B—C14B—C13B111.8 (3)
N15A—C14A—H14A109.5N15B—C14B—H14C109.3
C13A—C14A—H14A109.5C13B—C14B—H14C109.3
N15A—C14A—H14B109.5N15B—C14B—H14D109.3
C13A—C14A—H14B109.5C13B—C14B—H14D109.3
H14A—C14A—H14B108.1H14C—C14B—H14D107.9
N15A—C16A—C17A123.5 (4)N15B—C16B—C17B124.4 (4)
N15A—C16A—H16A118.2N15B—C16B—H16B117.8
C17A—C16A—H16A118.2C17B—C16B—H16B117.8
N21A—C17A—C18A106.6 (4)N21B—C17B—C18B106.8 (4)
N21A—C17A—C16A122.8 (4)N21B—C17B—C16B123.0 (4)
C18A—C17A—C16A130.5 (4)C18B—C17B—C16B130.2 (5)
C17A—C18A—C19A108.7 (4)C17B—C18B—C19B107.9 (4)
C17A—C18A—H18A125.6C17B—C18B—H18B126.0
C19A—C18A—H18A125.6C19B—C18B—H18B126.0
C20A—C19A—C18A106.7 (4)C20B—C19B—C18B107.7 (4)
C20A—C19A—H19A126.7C20B—C19B—H19B126.2
C18A—C19A—H19A126.7C18B—C19B—H19B126.2
C19A—C20A—N21A108.7 (4)C19B—C20B—N21B108.0 (4)
C19A—C20A—H20A125.7C19B—C20B—H20B126.0
N21A—C20A—H20A125.7N21B—C20B—H20B126.0
C2A—N1A—C5A108.6 (4)C2B—N1B—C5B109.7 (4)
C2A—N1A—H1A125.7C2B—N1B—H1B125.2
C5A—N1A—H1A125.7C5B—N1B—H1B125.2
C6A—N7A—C8A118.4 (3)C6B—N7B—C8B119.3 (4)
C16A—N15A—C14A116.8 (3)C16B—N15B—C14B116.8 (4)
C20A—N21A—C17A109.3 (4)C20B—N21B—C17B109.6 (4)
C20A—N21A—H21A125.3C20B—N21B—H21B125.2
C17A—N21A—H21A125.3C17B—N21B—H21B125.2
N1A—C2A—C3A—C4A0.2 (6)N1B—C2B—C3B—C4B0.1 (6)
C2A—C3A—C4A—C5A0.1 (6)C2B—C3B—C4B—C5B0.2 (6)
C3A—C4A—C5A—N1A0.0 (5)C3B—C4B—C5B—N1B0.2 (5)
C3A—C4A—C5A—C6A178.5 (4)C3B—C4B—C5B—C6B177.3 (5)
N1A—C5A—C6A—N7A4.0 (7)N1B—C5B—C6B—N7B3.4 (7)
C4A—C5A—C6A—N7A174.4 (4)C4B—C5B—C6B—N7B173.3 (5)
C13A—C8A—C9A—C10A2.3 (6)C13B—C8B—C9B—C10B0.4 (7)
N7A—C8A—C9A—C10A179.2 (3)N7B—C8B—C9B—C10B175.8 (4)
C8A—C9A—C10A—C11A1.3 (6)C8B—C9B—C10B—C11B0.7 (7)
C9A—C10A—C11A—C12A0.1 (7)C9B—C10B—C11B—C12B1.1 (8)
C10A—C11A—C12A—C13A0.7 (6)C10B—C11B—C12B—C13B0.5 (7)
C11A—C12A—C13A—C8A0.2 (6)C11B—C12B—C13B—C8B0.5 (6)
C11A—C12A—C13A—C14A179.8 (4)C11B—C12B—C13B—C14B178.3 (4)
C9A—C8A—C13A—C12A1.7 (6)C9B—C8B—C13B—C12B1.0 (6)
N7A—C8A—C13A—C12A178.7 (3)N7B—C8B—C13B—C12B176.6 (4)
C9A—C8A—C13A—C14A178.3 (4)C9B—C8B—C13B—C14B177.9 (4)
N7A—C8A—C13A—C14A1.3 (5)N7B—C8B—C13B—C14B2.3 (6)
C12A—C13A—C14A—N15A42.8 (5)C12B—C13B—C14B—N15B42.3 (6)
C8A—C13A—C14A—N15A137.2 (4)C8B—C13B—C14B—N15B138.9 (4)
N15A—C16A—C17A—N21A2.6 (6)N15B—C16B—C17B—N21B2.1 (6)
N15A—C16A—C17A—C18A179.3 (4)N15B—C16B—C17B—C18B176.5 (4)
N21A—C17A—C18A—C19A0.7 (5)N21B—C17B—C18B—C19B1.0 (5)
C16A—C17A—C18A—C19A177.6 (4)C16B—C17B—C18B—C19B179.8 (4)
C17A—C18A—C19A—C20A0.5 (5)C17B—C18B—C19B—C20B0.5 (5)
C18A—C19A—C20A—N21A0.1 (5)C18B—C19B—C20B—N21B0.2 (5)
C3A—C2A—N1A—C5A0.3 (5)C3B—C2B—N1B—C5B0.0 (6)
C4A—C5A—N1A—C2A0.2 (5)C4B—C5B—N1B—C2B0.2 (5)
C6A—C5A—N1A—C2A178.5 (4)C6B—C5B—N1B—C2B177.5 (4)
C5A—C6A—N7A—C8A179.1 (4)C5B—C6B—N7B—C8B178.0 (4)
C9A—C8A—N7A—C6A49.7 (5)C13B—C8B—N7B—C6B132.0 (4)
C13A—C8A—N7A—C6A133.3 (4)C9B—C8B—N7B—C6B52.5 (6)
C17A—C16A—N15A—C14A175.5 (3)C17B—C16B—N15B—C14B178.7 (3)
C13A—C14A—N15A—C16A114.5 (4)C13B—C14B—N15B—C16B119.1 (4)
C19A—C20A—N21A—C17A0.3 (5)C19B—C20B—N21B—C17B0.8 (5)
C18A—C17A—N21A—C20A0.6 (4)C18B—C17B—N21B—C20B1.1 (4)
C16A—C17A—N21A—C20A177.8 (3)C16B—C17B—N21B—C20B180.0 (4)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg5 are the centroids of rings N1A/C2A–C5A, N21A/C17A–C20A and N21B/C17B–C20B, respectively.
D—H···AD—HH···AD···AD—H···A
N1A—H1A···N15Bi0.862.172.990 (5)160
N1B—H1B···N15A0.862.203.028 (5)162
N21A—H21A···N7B0.862.232.984 (5)146
N21B—H21B···N7Aii0.862.152.909 (5)148
C3A—H3A···Cg5iii0.932.693.465 (6)142
C10A—H10A···Cg2iv0.932.823.654 (6)151
C20A—H20A···Cg1v0.932.973.643 (5)131
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1; (iv) x, y1, z1; (v) x+1, y, z+1.
 

Acknowledgements

The authors thank TBI consultancy, University of Madras, India, for the data collection

References

First citationArulmurugan, S., Kavitha, H. P. & Venkatraman, B. R. (2010). Rasayan J. Chem. 3, 385–410.  Google Scholar
First citationBen Guzzi, S. A. & El Alagi, H. S. (2013). J. Chem. Pharm. Res. 5, 10–14.  CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, J., Zhang, B., Wu, B., Zhang, K. & Hu, S. (2007). Turk. J. Chem. 31, 623–629.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds