organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-{(E)-[(4-Anilinophen­yl)imino]­meth­yl}-4-[(E)-(4-meth­­oxy­phen­yl)diazen­yl]phenol

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36 Al-Khod 123, Muscat, Sultanate of Oman, bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and cDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: ekaterina_goleva@list.ru

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 19 February 2017; accepted 11 April 2017; online 21 April 2017)

In the title Schiff base compound, C26H22N4O2, the hy­droxy group forms a intra­molecular hydrogen bond to the imine N atom and generates an S(6) ring motif. The conformation about the C=N and N=N bonds is E. The 4-meth­oxy­benzene ring and the p-phenyl­enedi­amine ring are inclined to the phenol ring by 11.61 (17) and 46.04 (17)°, respectively. The terminal N-phenyl ring is inclined to the p-phenyl­enedi­amine ring by 50.72 (17)°. In the crystal, adjacent mol­ecules are linked by C—H⋯O hydrogen bonds, involving the p-phenyl­enedi­amine ring and the phenol ring, forming chains along [001]. The chains are linked by a number of C—H⋯π inter­actions, forming slabs propagating parallel to (100).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Azo compounds have received much attention in fundamental and applied chemistry (Nishihara, 2004[Nishihara, H. (2004). Bull. Chem. Soc. Jpn, 77, 407-428.]; Ispir, 2009[İspir, E. (2009). Dyes Pigments, 82, 13-19.]). The well known applications of azo dyes in acid–base indicators and chemical sensors and as electron-transfer catalysts have attracted the inter­est of many investigators (Tunçel & Serin, 2006[Tunçel, M. & Serin, S. (2006). Transition Met. Chem. 31, 805-812.]). The versatile applications of azo compounds in various fields include dyeing textile fibres, colouring different materials, plastics, biological medical studies, lasers, liquid crystalline displays, electro-optical devices and ink-jet printers in high-technology areas (Gregory, 1991[Gregory, P. (1991). Colorants for High Technology, Colour Chemistry: The Design and Synthesis of Organic Dyes and Pigments, edited by A. T. Peters & H. S. Freeman. London, New York: Elsevier.]). The conversion from the trans to the cis form in azo compounds can lead to photochromism. Photochromic compounds are of great inter­est for the control and measurement of radiation intensity, optical computers and display systems (Dürr & Bouas-Laurent, 1990[Dürr, H. & Bouas-Laurent, H. (1990). In Photochromism: Molecules and Systems. Amsterdam: Elsevier.]), and for potential applications in mol­ecular electronic devices (Martin et al., 1995[Martin, P. J., Petty, M. C., Bryce, M. R. & Bloor, D. (1995). In An Introduction to Molecular Electronics, ch. 6. New York: Oxford University Press.]). Schiff bases often exhibit various biological activities including anti­bacterial, anti­cancer, anti-inflammatory and anti­toxic properties (Lozier et al., 1975[Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955-962.]). 2-Hy­droxy salicylaldimine compounds can undergo enol–imine/keto–amine tautomerization by H-atom transfer from the hydroxyl oxygen to the imine nitro­gen, probably via intra­molecular hydrogen bonding (Khedr et al., 2005[Khedr, A. M., Gaber, M., Issa, R. M. & Erten, H. (2005). Dyes Pigments, 67, 117-126.]). The present work is part of an ongoing structural study of Schiff bases and their utilization in the synthesis of new organic and polynuclear coordination compounds (Faizi & Hussain, 2014[Faizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197.]; Faizi et al., 2016[Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15-20.]). We report herein, on the synthesis and crystal structure of a new Schiff base compound.

There are very few examples of similar compounds in the literature although some metal complexes of similar ligands have been reported (Khandar & Rezvani, 1998[Khandar, A. A. & Rezvani, Z. (1998). Polyhedron, 18, 129-133.]; Cariati et al. 2004[Cariati, F., Caruso, U., Centore, R., De Maria, A., Fusco, M., Panunzi, B., Roviello, A. & Tuzi, A. (2004). Inorg. Chim. Acta, 357, 548-556.]). One very similar compound, used as a chemosensor for the detection of fluoride and cyanide ions, has been described (Udhayakumari et al. 2015[Udhayakumari, D., Velmathi, S., Venkatesan, P. & Wu, S.-P. (2015). J. Lumin. 161, 411-416.]), but no crystal structure has been reported. Similar azo Schiff base compounds have been synthesized and used for second-order non-linearity (Jalali-Heravi et al. 1999[Jalali-Heravi, M., Khandar, A. A. & Sheikshoaie, I. (1999). Spectrochim. Acta Part A, 55, 2537-2544.]), and for non-linear optical properties (Qian, et al. 2004[Qian, Y., Lin, B., Xiao, G., Li, H. & Yuan, C. (2004). Opt. Mater. 27, 125-130.]). Azo-azomethine compounds have been synthesized and used as fluorescent dyes and for the synthesis of CoII and CuII complexes (Kurtoglu et al. 2014[Kurtoglu, G., Avar, B., Zengin, H., Kose, M., Sayin, K. & Kurtoglu, M. (2014). J. Mol. Liq. 200, 105-114.]).

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The conformation about the azomethine N2=C13 bond [1.286 (4) Å] is E, and the C10—N2—C13—C14 torsion angle is 170.3 (3). The mol­ecule is non-planar, with ring B (C7–C12) being inclined to rings A (C1–C6), C (C14–C19) and D (C20–C25) by 50.72 (17), 46.04 (17) and 52.12 (17)°, respectively, while the dihedral angles A/C, A/D and C/D are 8.15 (17), 3.56 (17) and 11.61 (17)°, respectively. The N3—C16 and N4—C20 bond lengths of 1.426 (5) and 1.424 (5) Å, respectively, indicate single-bond character, whereas the N3=N4 bond length of 1.252 (4) Å confirms the double-bond character, with an E conformation about the N3=N4 bond.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 40% probability level. The intra­molecular O—H⋯N hydrogen bond (see Table 1[link]) is shown as a dashed line.

Depending on the tautomers, two types of intra­molecular hydrogen bonds are observed in Schiff bases: O—H⋯N in phenol–imine and N—H⋯O in keto–amine tautomers. The present analysis shows that the title compound exists in the phenol–imine form (Fig. 1[link]). It exhibits an intra­molecular O— H⋯N hydrogen bond, which generates an S(6) ring motif (Fig. 1[link] and Table 1[link]). This intra­molecular O—H⋯N hydrogen bond has been detected previously in salicyl­aldehyde derivatives (Faizi et al., 2017[Faizi, M. S. H., Haque, A. & Kalibabchuk, V. A. (2017). Acta Cryst. E73, 112-114.]). The C19—O1 [1.347 (4) Å] bond length is in agreement with the values reported for similar compounds, viz. (E)-2-{[(4-anilinophen­yl)- imino]­meth­yl}phenol (Faizi et al., 2015[Faizi, M. S. H., Iskenderov, T. S. & Sharkina, N. O. (2015). Acta Cryst. E71, 28-30.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of rings A (C1–C6), B (C7–C12), C (C14–C19) and D (C20–C25), respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯N2 0.84 1.81 2.559 (4) 147
C9—H9⋯O1i 0.95 2.45 3.307 (5) 150
C3—H3⋯Cg1ii 0.95 2.83 3.509 (4) 129
C6—H6⋯Cg1iii 0.95 2.87 3.556 (4) 130
C8—H8⋯Cg2iv 0.95 2.80 3.538 (4) 135
C11—H11⋯Cg2v 0.95 2.73 3.441 (4) 132
C15—H15⋯Cg3iii 0.95 2.89 3.584 (4) 131
C18—H18⋯Cg3ii 0.95 2.80 3.474 (4) 129
C22—H22⋯Cg4iii 0.95 2.79 3.536 (4) 136
C25—H25⋯Cg4ii 0.95 2.60 3.373 (4) 138
Symmetry codes: (i) x, y, z+1; (ii) [x, -y, z-{\script{1\over 2}}]; (iii) [x, -y+1, z+{\script{1\over 2}}]; (iv) [x, -y, z+{\script{1\over 2}}]; (v) [x, -y+1, z-{\script{1\over 2}}].

In the crystal, mol­ecules are connected by C—H⋯O hydrogen bonds, generating chains extending along the c-axis direction; Table 1[link] and Fig. 2[link]. The chains are linked via a number of C—H⋯π inter­actions, forming slabs lying parallel to the bc plane; see Table 1[link] and Fig. 3[link].

[Figure 2]
Figure 2
A view along the b axis of the C—H⋯O hydrogen-bonded chain in the crystal of the title compound. The hydrogen bonds are shown as dashed lines; see Table 1[link] for details).
[Figure 3]
Figure 3
A view along the c axis of the crystal packing of the title compound. The C—H⋯π inter­actions (see Table 1[link]) are indicated by the double-headed blue arrows.

Synthesis and crystallization

Synthesis of 5-(4-meth­oxy­phenyl­azo)salicyaldehyde (L): To a solution of p-meth­oxy­aniline in water (5 ml, 0.05 mol) 6 ml of 37% aq. HCl was slowly added at 0–5° C with stirring. 20 ml of 20% aq. NaNO2 solution was added to the mixture and the resulting solution was stirred for 1 h, which gave a bright-yellow solution. Salicyl­aldehyde (5 ml, 0.05 mol) was dissolved in a solution comprising 18 g Na2CO3 and 150 ml H2O and the resulting solution was added dropwise to the bright-yellow solution over a period of 1 h. After stirring for 4 h, the reaction mixture was neutralized with HCl, yielding a brown crude solid that was filtered and recrystallized from ethanol to afford a pure yellow product.

Synthesis of the title compound: 100 mg (1 mmol) of N-phenyl-p-phenyl­enedi­amine were dissolved in 10 ml of absolute ethanol. To this solution, 52 mg (1 mmol) of (L) in 5 ml of absolute ethanol was added dropwise under stirring. The mixture was stirred for 10 min, two drops of glacial acetic acid were then added and the mixture was refluxed for a further 2 h. The resulting light-brown precipitate was recovered by filtration, washed several times with small portions of EtOH and then with diethyl ether to give the title compound (yield 120 mg, 86%). Yellow needle-like crystals of the title compound were obtained within 3 d by slow evaporation of a solution in MeOH.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C26H22N4O2
Mr 422.47
Crystal system, space group Monoclinic, Cc
Temperature (K) 100
a, b, c (Å) 47.514 (8), 7.1015 (11), 6.1289 (10)
β (°) 96.037 (9)
V3) 2056.6 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.20 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.953, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 11961, 3631, 2747
Rint 0.062
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.092, 1.01
No. of reflections 3631
No. of parameters 292
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.21
Computer programs: SMART and SAINT (Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenberg & Putz, 2006[Brandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenberg & Putz, 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

2-{(E)-[(4-Anilinophenyl)imino]methyl}-4-[(E)-(4-methoxyphenyl)diazenyl]phenol top
Crystal data top
C26H22N4O2F(000) = 888
Mr = 422.47Dx = 1.361 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 47.514 (8) ÅCell parameters from 3571 reflections
b = 7.1015 (11) Åθ = 2.9–24.3°
c = 6.1289 (10) ŵ = 0.09 mm1
β = 96.037 (9)°T = 100 K
V = 2056.6 (6) Å3Needle, yellow
Z = 40.20 × 0.15 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3631 independent reflections
Radiation source: fine-focus sealed tube2747 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
/w–scansθmax = 25.1°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 5656
Tmin = 0.953, Tmax = 0.981k = 88
11961 measured reflectionsl = 77
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0395P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3631 reflectionsΔρmax = 0.20 e Å3
292 parametersΔρmin = 0.21 e Å3
2 restraintsExtinction correction: (SHELXL2016; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0034 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.28294 (6)0.2453 (3)0.6349 (4)0.0227 (7)
O10.50798 (5)0.1833 (4)0.0205 (4)0.0264 (7)
H1B0.5221530.2050110.1108890.040*
N20.53540 (7)0.2769 (4)0.3861 (5)0.0198 (8)
N30.40918 (6)0.2985 (4)0.4118 (5)0.0212 (8)
N40.38790 (6)0.2203 (4)0.3130 (5)0.0218 (8)
N10.63876 (6)0.2375 (4)0.9183 (6)0.0233 (8)
H1A0.6371120.2270851.0594770.028*
C230.30982 (8)0.2495 (5)0.5727 (6)0.0189 (9)
C100.56120 (8)0.2689 (5)0.5255 (6)0.0174 (9)
C140.48504 (8)0.2851 (5)0.3316 (7)0.0177 (9)
C240.31294 (8)0.1601 (5)0.3748 (6)0.0178 (9)
H240.2970720.1025940.2937630.021*
C10.66649 (8)0.2465 (5)0.8587 (7)0.0202 (10)
C160.43388 (8)0.2748 (5)0.3011 (7)0.0194 (9)
C220.33303 (7)0.3314 (5)0.6933 (6)0.0189 (9)
H220.3309480.3917840.8289410.023*
C80.58894 (8)0.1733 (5)0.8577 (7)0.0204 (9)
H80.5900940.1158400.9983080.025*
C180.45831 (8)0.1758 (5)0.0035 (7)0.0198 (10)
H180.4578450.1291590.1491290.024*
C250.33910 (8)0.1549 (5)0.2963 (6)0.0202 (10)
H250.3411870.0941790.1608160.024*
C120.61148 (8)0.3222 (5)0.5708 (6)0.0192 (9)
H120.6280090.3691910.5149430.023*
C110.58566 (7)0.3329 (5)0.4447 (6)0.0199 (9)
H110.5846550.3846890.3011090.024*
C190.48417 (7)0.2153 (5)0.1163 (6)0.0184 (10)
C20.67385 (8)0.1688 (5)0.6654 (6)0.0203 (9)
H20.6596600.1140730.5642250.024*
C70.61336 (8)0.2431 (5)0.7787 (6)0.0188 (9)
C90.56306 (8)0.1873 (5)0.7325 (7)0.0206 (9)
H90.5464850.1409930.7883150.025*
C210.35935 (8)0.3240 (5)0.6135 (7)0.0217 (10)
H210.3753530.3782760.6962280.026*
C200.36240 (8)0.2382 (5)0.4144 (6)0.0183 (10)
C30.70172 (8)0.1701 (5)0.6184 (7)0.0240 (10)
H30.7065270.1172760.4847920.029*
C130.51190 (8)0.3059 (5)0.4672 (7)0.0180 (9)
H130.5120700.3412990.6168180.022*
C60.68741 (8)0.3266 (5)1.0056 (6)0.0231 (10)
H60.6825840.3817721.1378280.028*
C150.45950 (7)0.3168 (5)0.4183 (6)0.0175 (9)
H150.4597380.3685890.5614280.021*
C170.43349 (9)0.2041 (5)0.0877 (7)0.0210 (10)
H170.4159300.1755200.0055030.025*
C260.27780 (9)0.3453 (5)0.8274 (7)0.0298 (10)
H26A0.2893930.2918210.9540700.045*
H26B0.2577430.3347880.8497660.045*
H26C0.2827250.4781670.8110950.045*
C50.71541 (8)0.3256 (5)0.9584 (7)0.0252 (10)
H50.7297050.3787411.0600640.030*
C40.72263 (8)0.2483 (5)0.7655 (7)0.0260 (10)
H40.7417710.2486960.7337330.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0167 (15)0.0279 (16)0.0236 (17)0.0008 (12)0.0037 (12)0.0043 (13)
O10.0178 (16)0.0369 (17)0.0247 (17)0.0002 (13)0.0039 (13)0.0030 (13)
N20.0162 (19)0.0168 (19)0.027 (2)0.0002 (14)0.0037 (16)0.0008 (14)
N30.0147 (19)0.0253 (19)0.024 (2)0.0007 (14)0.0020 (16)0.0010 (14)
N40.016 (2)0.0204 (18)0.029 (2)0.0003 (14)0.0028 (16)0.0015 (15)
N10.0173 (19)0.034 (2)0.018 (2)0.0021 (14)0.0000 (14)0.0018 (15)
C230.015 (2)0.017 (2)0.025 (3)0.0003 (16)0.0027 (18)0.0072 (18)
C100.017 (2)0.018 (2)0.018 (2)0.0013 (17)0.0019 (17)0.0023 (17)
C140.016 (2)0.015 (2)0.022 (3)0.0010 (16)0.0020 (17)0.0032 (17)
C240.017 (2)0.018 (2)0.018 (2)0.0024 (16)0.0021 (17)0.0002 (17)
C10.018 (2)0.015 (2)0.027 (3)0.0002 (17)0.0003 (19)0.0050 (18)
C160.018 (2)0.017 (2)0.023 (2)0.0019 (17)0.0027 (18)0.0045 (18)
C220.020 (2)0.021 (2)0.016 (2)0.0012 (17)0.0021 (18)0.0003 (17)
C80.023 (2)0.021 (2)0.017 (2)0.0011 (17)0.0020 (18)0.0018 (18)
C180.023 (2)0.019 (2)0.017 (2)0.0013 (17)0.0023 (19)0.0009 (17)
C250.024 (2)0.016 (2)0.021 (2)0.0025 (16)0.0027 (19)0.0005 (17)
C120.017 (2)0.018 (2)0.024 (3)0.0010 (16)0.0051 (17)0.0010 (18)
C110.022 (2)0.018 (2)0.021 (2)0.0016 (17)0.0042 (19)0.0009 (17)
C190.016 (2)0.021 (2)0.019 (2)0.0012 (17)0.0048 (18)0.0025 (17)
C20.021 (2)0.018 (2)0.021 (3)0.0006 (17)0.0023 (18)0.0014 (17)
C70.016 (2)0.018 (2)0.022 (2)0.0002 (17)0.0023 (18)0.0044 (17)
C90.016 (2)0.020 (2)0.027 (3)0.0002 (16)0.0077 (18)0.0040 (17)
C210.016 (2)0.017 (2)0.031 (3)0.0001 (16)0.0037 (18)0.0009 (19)
C200.014 (2)0.019 (2)0.023 (3)0.0013 (16)0.0024 (18)0.0000 (17)
C30.024 (2)0.022 (2)0.026 (3)0.0062 (17)0.0027 (19)0.0012 (18)
C130.021 (2)0.019 (2)0.014 (2)0.0004 (16)0.0018 (17)0.0015 (16)
C60.025 (3)0.021 (2)0.024 (3)0.0073 (17)0.0001 (19)0.0008 (17)
C150.020 (2)0.019 (2)0.013 (2)0.0000 (17)0.0008 (17)0.0013 (16)
C170.020 (2)0.021 (2)0.022 (3)0.0017 (17)0.0001 (18)0.0027 (18)
C260.020 (2)0.041 (3)0.029 (3)0.0015 (18)0.0068 (18)0.006 (2)
C50.019 (2)0.018 (2)0.037 (3)0.0011 (16)0.003 (2)0.001 (2)
C40.018 (2)0.022 (2)0.037 (3)0.0027 (17)0.000 (2)0.0044 (19)
Geometric parameters (Å, º) top
O2—C231.371 (4)C8—H80.9500
O2—C261.420 (5)C18—C171.372 (5)
O1—C191.347 (4)C18—C191.392 (5)
O1—H1B0.8400C18—H180.9500
N2—C131.286 (4)C25—C201.390 (5)
N2—C101.420 (4)C25—H250.9500
N3—N41.252 (4)C12—C111.382 (5)
N3—C161.426 (5)C12—C71.386 (6)
N4—C201.424 (5)C12—H120.9500
N1—C71.405 (5)C11—H110.9500
N1—C11.405 (5)C2—C31.385 (5)
N1—H1A0.8800C2—H20.9500
C23—C221.389 (5)C9—H90.9500
C23—C241.391 (5)C21—C201.385 (6)
C10—C111.387 (5)C21—H210.9500
C10—C91.389 (5)C3—C41.385 (6)
C14—C151.393 (5)C3—H30.9500
C14—C191.406 (6)C13—H130.9500
C14—C131.455 (5)C6—C51.391 (5)
C24—C251.380 (5)C6—H60.9500
C24—H240.9500C15—H150.9500
C1—C21.385 (5)C17—H170.9500
C1—C61.390 (5)C26—H26A0.9800
C16—C151.380 (5)C26—H26B0.9800
C16—C171.399 (6)C26—H26C0.9800
C22—C211.391 (4)C5—C41.379 (6)
C22—H220.9500C5—H50.9500
C8—C91.383 (5)C4—H40.9500
C8—C71.394 (5)
C23—O2—C26117.8 (3)O1—C19—C14121.7 (3)
C19—O1—H1B109.5C18—C19—C14120.2 (3)
C13—N2—C10120.3 (3)C1—C2—C3120.6 (4)
N4—N3—C16112.4 (3)C1—C2—H2119.7
N3—N4—C20115.5 (3)C3—C2—H2119.7
C7—N1—C1127.5 (4)C12—C7—C8119.2 (4)
C7—N1—H1A116.2C12—C7—N1122.7 (4)
C1—N1—H1A116.2C8—C7—N1118.1 (4)
O2—C23—C22124.9 (4)C8—C9—C10120.3 (4)
O2—C23—C24114.9 (3)C8—C9—H9119.9
C22—C23—C24120.3 (4)C10—C9—H9119.9
C11—C10—C9119.2 (4)C20—C21—C22120.5 (4)
C11—C10—N2118.4 (3)C20—C21—H21119.7
C9—C10—N2122.3 (3)C22—C21—H21119.7
C15—C14—C19118.3 (4)C21—C20—C25119.6 (4)
C15—C14—C13120.8 (4)C21—C20—N4126.6 (3)
C19—C14—C13120.6 (4)C25—C20—N4113.7 (3)
C25—C24—C23119.9 (3)C2—C3—C4120.2 (4)
C25—C24—H24120.1C2—C3—H3119.9
C23—C24—H24120.1C4—C3—H3119.9
C2—C1—C6119.3 (4)N2—C13—C14120.5 (4)
C2—C1—N1122.2 (4)N2—C13—H13119.7
C6—C1—N1118.5 (4)C14—C13—H13119.7
C15—C16—C17119.3 (4)C5—C6—C1119.9 (4)
C15—C16—N3116.9 (4)C5—C6—H6120.1
C17—C16—N3123.8 (3)C1—C6—H6120.1
C23—C22—C21119.4 (4)C16—C15—C14121.5 (4)
C23—C22—H22120.3C16—C15—H15119.3
C21—C22—H22120.3C14—C15—H15119.3
C9—C8—C7120.4 (4)C18—C17—C16120.4 (4)
C9—C8—H8119.8C18—C17—H17119.8
C7—C8—H8119.8C16—C17—H17119.8
C17—C18—C19120.3 (4)O2—C26—H26A109.5
C17—C18—H18119.9O2—C26—H26B109.5
C19—C18—H18119.9H26A—C26—H26B109.5
C24—C25—C20120.3 (4)O2—C26—H26C109.5
C24—C25—H25119.8H26A—C26—H26C109.5
C20—C25—H25119.8H26B—C26—H26C109.5
C11—C12—C7120.3 (4)C4—C5—C6120.6 (4)
C11—C12—H12119.9C4—C5—H5119.7
C7—C12—H12119.9C6—C5—H5119.7
C12—C11—C10120.6 (4)C5—C4—C3119.5 (4)
C12—C11—H11119.7C5—C4—H4120.3
C10—C11—H11119.7C3—C4—H4120.3
O1—C19—C18118.1 (4)
C16—N3—N4—C20180.0 (3)C1—N1—C7—C1223.0 (6)
C26—O2—C23—C225.6 (5)C1—N1—C7—C8159.8 (3)
C26—O2—C23—C24175.7 (3)C7—C8—C9—C100.8 (6)
C13—N2—C10—C11147.4 (3)C11—C10—C9—C81.1 (6)
C13—N2—C10—C937.3 (6)N2—C10—C9—C8176.4 (4)
O2—C23—C24—C25179.8 (3)C23—C22—C21—C200.8 (5)
C22—C23—C24—C250.9 (6)C22—C21—C20—C251.6 (6)
C7—N1—C1—C234.1 (6)C22—C21—C20—N4180.0 (3)
C7—N1—C1—C6149.8 (4)C24—C25—C20—C211.0 (5)
N4—N3—C16—C15165.6 (3)C24—C25—C20—N4179.7 (3)
N4—N3—C16—C1711.3 (5)N3—N4—C20—C213.5 (5)
O2—C23—C22—C21179.1 (3)N3—N4—C20—C25178.0 (3)
C24—C23—C22—C210.4 (5)C1—C2—C3—C40.5 (5)
C23—C24—C25—C200.2 (5)C10—N2—C13—C14170.3 (3)
C7—C12—C11—C101.5 (5)C15—C14—C13—N2179.8 (3)
C9—C10—C11—C122.3 (5)C19—C14—C13—N26.2 (6)
N2—C10—C11—C12177.7 (3)C2—C1—C6—C50.8 (5)
C17—C18—C19—O1179.3 (3)N1—C1—C6—C5175.4 (3)
C17—C18—C19—C140.2 (5)C17—C16—C15—C142.0 (6)
C15—C14—C19—O1179.2 (3)N3—C16—C15—C14175.1 (3)
C13—C14—C19—O16.7 (5)C19—C14—C15—C162.5 (5)
C15—C14—C19—C181.3 (5)C13—C14—C15—C16171.6 (3)
C13—C14—C19—C18172.8 (4)C19—C18—C17—C160.7 (5)
C6—C1—C2—C30.1 (5)C15—C16—C17—C180.4 (5)
N1—C1—C2—C3176.0 (3)N3—C16—C17—C18176.5 (3)
C11—C12—C7—C80.5 (5)C1—C6—C5—C40.9 (5)
C11—C12—C7—N1176.6 (3)C6—C5—C4—C30.4 (6)
C9—C8—C7—C121.7 (6)C2—C3—C4—C50.4 (6)
C9—C8—C7—N1175.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of rings A (C1–C6), B (C7–C12), C (C14–C19) and D (C20–C25), respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1B···N20.841.812.559 (4)147
C9—H9···O1i0.952.453.307 (5)150
C3—H3···Cg1ii0.952.833.509 (4)129
C6—H6···Cg1iii0.952.873.556 (4)130
C8—H8···Cg2iv0.952.803.538 (4)135
C11—H11···Cg2v0.952.733.441 (4)132
C15—H15···Cg3iii0.952.893.584 (4)131
C18—H18···Cg3ii0.952.803.474 (4)129
C22—H22···Cg4iii0.952.793.536 (4)136
C25—H25···Cg4ii0.952.603.373 (4)138
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1/2; (iii) x, y+1, z+1/2; (iv) x, y, z+1/2; (v) x, y+1, z1/2.
 

Acknowledgements

The authors are grateful to Drs Igor Fritsky and Graham Smith for valuable discussions.

Funding information

Funding for this research was provided by: Department of Chemistry, Taras Shevchenko National University of Kyiv.

References

First citationBrandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCariati, F., Caruso, U., Centore, R., De Maria, A., Fusco, M., Panunzi, B., Roviello, A. & Tuzi, A. (2004). Inorg. Chim. Acta, 357, 548–556.  CSD CrossRef CAS Google Scholar
First citationDürr, H. & Bouas-Laurent, H. (1990). In Photochromism: Molecules and Systems. Amsterdam: Elsevier.  Google Scholar
First citationFaizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15–20.  Web of Science CrossRef CAS Google Scholar
First citationFaizi, M. S. H., Haque, A. & Kalibabchuk, V. A. (2017). Acta Cryst. E73, 112–114.  CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197.  CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Iskenderov, T. S. & Sharkina, N. O. (2015). Acta Cryst. E71, 28–30.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGregory, P. (1991). Colorants for High Technology, Colour Chemistry: The Design and Synthesis of Organic Dyes and Pigments, edited by A. T. Peters & H. S. Freeman. London, New York: Elsevier.  Google Scholar
First citationİspir, E. (2009). Dyes Pigments, 82, 13–19.  Google Scholar
First citationJalali-Heravi, M., Khandar, A. A. & Sheikshoaie, I. (1999). Spectrochim. Acta Part A, 55, 2537–2544.  Google Scholar
First citationKhandar, A. A. & Rezvani, Z. (1998). Polyhedron, 18, 129–133.  CrossRef Google Scholar
First citationKhedr, A. M., Gaber, M., Issa, R. M. & Erten, H. (2005). Dyes Pigments, 67, 117–126.  CrossRef CAS Google Scholar
First citationKurtoglu, G., Avar, B., Zengin, H., Kose, M., Sayin, K. & Kurtoglu, M. (2014). J. Mol. Liq. 200, 105–114.  CrossRef CAS Google Scholar
First citationLozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMartin, P. J., Petty, M. C., Bryce, M. R. & Bloor, D. (1995). In An Introduction to Molecular Electronics, ch. 6. New York: Oxford University Press.  Google Scholar
First citationNishihara, H. (2004). Bull. Chem. Soc. Jpn, 77, 407–428.  CrossRef CAS Google Scholar
First citationQian, Y., Lin, B., Xiao, G., Li, H. & Yuan, C. (2004). Opt. Mater. 27, 125–130.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTunçel, M. & Serin, S. (2006). Transition Met. Chem. 31, 805–812.  Google Scholar
First citationUdhayakumari, D., Velmathi, S., Venkatesan, P. & Wu, S.-P. (2015). J. Lumin. 161, 411–416.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds