organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(2E)-N-Methyl-2-[1-(4-methyl­cyclo­hex-3-en-1-yl)ethyl­­idene]hydrazinecarbo­thio­amide

aLaboratory of Organic Synthesis and Physico-Molecular Chemistry, Department of Chemistry, Faculty, Sciences Semlalia, BP 2390, Marrakech 40001, Morocco, bInstitute of Molecular Chemistry of Reims, CNRS UMR 7312 Bat. Europol'Agro, Moulin of the Housse UFR Sciences, BP 1039-51687 Reims Cedex 2, France, and cLaboratory of Applied Spectro-Chemistry and Environment, University Sultan Moulay Slimane, Faculty of Science and Technology, PO Box 523, Beni-Mellal, Morocco
*Correspondence e-mail: elm_ketatni@hotmail.fr

Edited by J. Simpson, University of Otago, New Zealand (Received 28 March 2017; accepted 3 April 2017; online 11 April 2017)

There are two independent mol­ecules (A and B) in the asymmetric unit of the title compound, C11H19N3S. In mol­ecule B, two C atoms and the associated H atoms of the cyclo­hexene ring are disordered over two sets of sites with a site occupancy ratio of 0.649 (7):0.351 (7). The N—N—C—N fragments of the hydrazinecarbo­thio­amide segments of both mol­ecules are not planar, with a torsion angle of −5.8 (3)° for A and 11.6 (3)° for B. The stability of the conformations of both mol­ecules is aided by the formation of intra­molecular N—H⋯N hydrogen bonds. In the crystal, N—H⋯S hydrogen bonds link like mol­ecules into R22(8) A + B dimers. These dimers are inter­connected by additional N—H⋯S contacts, forming chains along the c-axis direction. The structure was refined as a two-component inversion twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Thio­semicarbazones are a class of mol­ecules that have been investigated over the last 50 years as anti­viral (Pirrung et al. 2005[Pirrung, M. C., Pansare, S. V., Das Sarma, K., Keith, K. A. & Kern, E. R. (2005). J. Med. Chem. 48, 3045-3050.]) and anti­tumor agents (Hu et al. 2006[Hu, W.-X., Zhou, W., Xia, C. N. & Wen, X. (2006). Bioorg. Med. Chem. Lett. 16, 2213-2218.]). In addition, they show anti­parasitic and anti­bacterial action against Trypanasoma cruzi (Du et al. 2002[Du, X., Guo, C., Hansell, E., Doyle, P. S., Caffrey, C. R., Holler, T. P., McKerrow, J. H. & Cohen, E. (2002). J. Med. Chem. 45, 2695-2707.]) and Toxoplasma gondii and against several other bacterial strains (de Aquino et al. 2008[Aquino, T. M. de, Liesen, A. P., da Silva, R. E., Lima, V. T., Carvalho, C. S., de Faria, A. R., de Araújo, J. M., de Lima, J. G., Alves, A. J., de Melo, E. J. & Góes, A. J. (2008). Bioorg. Med. Chem. 16, 446-456.]). To further our work on new thio­semicarbazone derivatives, we have prepared the title compound by the reaction of 4-acetyl-1-methyl­cyclo­hexene, a natural product extracted from the essential oil of Cedrus atlanica (Grimal, 1902[Grimal, E. (1902). C. R. Acad. Sci. 135, 582-583.]), with 4-methyl-3-thio­semicarbazide in ethanol.

The title compound, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit (Fig. 1[link]). The N3—N2—C2—N1 and N6—N5—C13 fragments are not planar with torsion angles −5.8 (3) and 11.6 (3), respectively in mol­ecules A and B. In each hydrazinecarbo­thio­amide unit (=N—NH—C(=S)—NH–), the N—H hydrogen atoms are anti, and the terminal N—H hydrogen atoms form intra­molecular N1—H1N⋯N3 and N4—H4N⋯N6 hydrogen bonds with S(5) ring motifs (Fig. 1[link] and Table 1[link]). The bond lengths and angles of the title compound are normal and agree with those values reported in other methyl-hydrazinecarbo­thio­amide structures (Gangadharan et al., 2015[Gangadharan, R., Haribabu, J., Karvembu, R. & Sethusankar, K. (2015). Acta Cryst. E71, 305-308.]; de Oliveira et al., 2017[Oliveira, A. B. de, Beck, J., Landvogt, C., Farias, R. L. de & Feitoza, B. R. S. (2017). Acta Cryst. E73, 291-295.]; Tayamon et al., 2012[Tayamon, S., Mazlan, N. A., Ravoof, T. B. S. A., Mohamed Tahir, M. I. & Crouse, K. A. (2012). Acta Cryst. E68, o3104-o3105.]). In both mol­ecules, the thio­semicarbazone groups adopts an extended conformation, as shown by the torsion angles S1—C2—N2—N3 [175.83 (14)°, mol­ecule A] and S2—C13—N5—N6 [−171.21 (15)°, mol­ecule B].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N3 0.87 (3) 2.28 (3) 2.645 (3) 105 (2)
N4—H4N⋯N6 0.87 (3) 2.24 (3) 2.637 (3) 107 (2)
N2—H2N⋯S2i 0.89 (3) 2.54 (3) 3.4284 (19) 172 (2)
N4—H4N⋯S1ii 0.87 (3) 2.60 (3) 3.337 (2) 143 (2)
N5—H5N⋯S1iii 0.86 (3) 2.72 (3) 3.547 (2) 161 (2)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
View of the pairs of mol­ecules A and B of the title compound, showing the atom labeling and displacement ellipsoids drawn at the 30% probability level. The short intra­molecular N—H⋯N contacts (see Table 1[link]) are shown as dashed lines. Atoms of the minor disorder component are linked by double-dashed lines.

In the crystal, the two independent mol­ecules are linked by a pair of (N2, N5)—H⋯S hydrogen bonds, Table 1[link], forming AB dimers with R22(8) ring motifs. These dimers are linked by N4—H⋯S hydrogen bonds, forming chains along the c-axis direction. Adjacent chains form sheets parallel to (001), Figs. 2[link] and 3[link].

[Figure 2]
Figure 2
A partial view along the a axis of the crystal packing of the title compound (molecule A purple and molecule B green), showing the N—H⋯S hydrogen bonds (dashed lines; see Table 1[link]), which result in the formation of R22(8) ring motifs. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3]
Figure 3
Crystal packing of the title compound (molecule A purple and molecule B green), viewed along the b axis, showing the hydrogen bonds as dashed lines (see Table 1[link]).

Synthesis and crystallization

To a solution of 4-methyl-3-thio­semicarbazide (1.43 g, 13.61 mmol) in ethanol (72 ml) was added 4-acetyl-1-methyl­cyclo­hexene (2 g, 14.29 mmol) and acetic acid (0.50 ml). The mixture was stirred at 85°C for 3 h. After cooling, the mixture was extracted with di­chloro­methane (3× 20 ml). The combined organic layers were washed with water, dried over anhydrous Na2SO4 and then evaporated under reduced pressure. The residue was chromatographed on a silica gel column using hexa­ne/ethyl acetate (92/8) as eluent, to give the title compound (2.286 g) in 88% yield. Colourless plate-like crystals were obtained from a petroleum ether solution, by slow evaporation of the solvent at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The structure was refined as a two-component inversion twin. The C15 and C16 atoms of the cyclo­hexene ring in mol­ecule B and their associated hydrogen atoms are disordered over two sets of sites with refined site occupancies of 0.649 (7) and 0.351 (7). This disorder inverts the configuration at C15 (R for C15 and S for C15A). The configuration at C4 in mol­ecule A is R.

Table 2
Experimental details

Crystal data
Chemical formula C11H19N3S
Mr 225.35
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 12.2974 (4), 13.7295 (4), 14.8952 (5)
V3) 2514.86 (14)
Z 8
Radiation type Cu Kα
μ (mm−1) 2.07
Crystal size (mm) 0.44 × 0.31 × 0.22
 
Data collection
Diffractometer Bruker D8 venture CMOS area-detector
Absorption correction Numerical (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.707, 0.858
No. of measured, independent and observed [I > 2σ(I)] reflections 48702, 5139, 5028
Rint 0.035
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.070, 1.04
No. of reflections 5139
No. of parameters 319
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.31
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.065 (15)
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg et al., 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker,2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg et al., 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(2E)-N-Methyl-2-[1-(4-methylcyclohex-3-en-1-yl)ethylidene]hydrazinecarbothioamide top
Crystal data top
C11H19N3SDx = 1.190 Mg m3
Mr = 225.35Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 5139 reflections
a = 12.2974 (4) Åθ = 4.4–74.6°
b = 13.7295 (4) ŵ = 2.07 mm1
c = 14.8952 (5) ÅT = 100 K
V = 2514.86 (14) Å3Plate, colourless
Z = 80.44 × 0.31 × 0.22 mm
F(000) = 976
Data collection top
Bruker D8 venture CMOS area-detector
diffractometer
5028 reflections with I > 2σ(I)
Radiation source: microsourceRint = 0.035
φ and ω scansθmax = 74.6°, θmin = 4.4°
Absorption correction: numerical
(SADABS; Bruker, 2012)
h = 1515
Tmin = 0.707, Tmax = 0.858k = 1717
48702 measured reflectionsl = 1818
5139 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0308P)2 + 0.9302P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.070(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.22 e Å3
5139 reflectionsΔρmin = 0.31 e Å3
319 parametersAbsolute structure: Refined as an inversion twin
0 restraintsAbsolute structure parameter: 0.065 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.36364 (4)0.94045 (4)0.01514 (3)0.02417 (12)
N10.49945 (15)0.82337 (14)0.10431 (12)0.0243 (4)
H1N0.530 (2)0.767 (2)0.1124 (19)0.033 (7)*
N20.39334 (15)0.75188 (13)0.00369 (12)0.0240 (4)
H2N0.347 (2)0.757 (2)0.0494 (19)0.033 (7)*
N30.44757 (15)0.66492 (12)0.01283 (12)0.0222 (3)
C10.53214 (19)0.90195 (17)0.16325 (16)0.0295 (5)
H1A0.55350.95730.12800.044*
H1B0.59230.88110.19960.044*
H1C0.47230.91960.20130.044*
C20.42426 (17)0.83324 (15)0.04084 (13)0.0204 (4)
C30.40645 (18)0.58777 (15)0.02091 (14)0.0247 (4)
C40.46798 (17)0.49360 (14)0.01048 (14)0.0223 (4)
H40.41650.44500.01230.027*
C50.5621 (2)0.49720 (16)0.05467 (16)0.0305 (5)
H5A0.61640.54300.03340.037*
H5B0.53670.51900.11300.037*
C60.6116 (3)0.3972 (2)0.0628 (2)0.0671 (12)
H6A0.68430.40500.08720.081*
H6B0.56970.36140.10700.081*
C70.62018 (19)0.33763 (16)0.01496 (19)0.0346 (5)
C80.5671 (3)0.3628 (2)0.0924 (2)0.0592 (9)
H80.56760.31980.14060.071*
C90.5082 (2)0.45746 (18)0.10149 (15)0.0343 (5)
H9A0.44680.44930.14160.041*
H9B0.55650.50560.12760.041*
C100.6836 (2)0.24421 (19)0.0102 (3)0.0538 (8)
H10A0.64230.19640.02230.081*
H10B0.75130.25560.02010.081*
H10C0.69750.22090.06980.081*
C110.3008 (2)0.58335 (17)0.07200 (18)0.0373 (6)
H11A0.24980.62800.04590.056*
H11B0.27200.51840.06910.056*
H11C0.31340.60080.13350.056*
S20.76273 (5)0.27916 (4)0.69275 (3)0.02686 (13)
N40.83663 (15)0.40843 (15)0.81084 (14)0.0285 (4)
H4N0.830 (2)0.465 (2)0.836 (2)0.036 (8)*
N50.70352 (17)0.46203 (13)0.71559 (12)0.0259 (4)
H5N0.671 (2)0.453 (2)0.665 (2)0.033 (7)*
N60.72110 (17)0.55541 (14)0.74845 (13)0.0316 (4)
C120.9124 (2)0.3382 (2)0.84744 (17)0.0358 (6)
H12A0.87460.27880.86100.054*
H12B0.94420.36380.90130.054*
H12C0.96860.32530.80430.054*
C130.77058 (18)0.38938 (15)0.74270 (13)0.0239 (4)
C140.6501 (3)0.62087 (16)0.72682 (18)0.0393 (7)
C180.70439 (19)0.91269 (15)0.82868 (14)0.0269 (5)
C170.7888 (2)0.8686 (2)0.7702 (2)0.0425 (6)
H17A0.866 (3)0.875 (2)0.798 (2)0.051*
H17B0.801 (3)0.899 (2)0.706 (2)0.051*
C190.6175 (2)0.86244 (16)0.85558 (16)0.0337 (6)
H190.56790.89340.89300.040*
C200.5949 (2)0.75825 (16)0.82896 (17)0.0335 (5)
H20A0.51800.75120.81590.040*
H20B0.61220.71580.87900.040*
C210.7221 (2)1.01765 (16)0.85489 (17)0.0374 (6)
H21A0.71091.05870.80350.056*
H21B0.79511.02580.87650.056*
H21C0.67171.03520.90130.056*
C220.5491 (3)0.6021 (2)0.6742 (2)0.0578 (9)
H22A0.51530.54340.69540.087*
H22B0.56710.59500.61180.087*
H22C0.49980.65570.68150.087*
C150.6606 (3)0.7265 (3)0.7470 (3)0.0198 (8)0.649 (7)
H150.63710.76420.69470.024*0.649 (7)
C160.7785 (3)0.7517 (2)0.7685 (2)0.0256 (10)0.649 (7)
H16A0.82650.72470.72320.031*0.649 (7)
H16B0.79880.72480.82640.031*0.649 (7)
C16A0.7427 (5)0.7894 (4)0.7130 (4)0.0218 (17)0.351 (7)
H'A0.79820.76060.67510.026*0.351 (7)
H'B0.68400.81350.67560.026*0.351 (7)
C15A0.7013 (6)0.7169 (5)0.7815 (5)0.0185 (15)0.351 (7)
H15A0.75750.69820.82490.022*0.351 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0334 (3)0.0203 (2)0.0188 (2)0.0051 (2)0.0011 (2)0.00187 (19)
N10.0287 (9)0.0191 (8)0.0252 (9)0.0017 (8)0.0034 (7)0.0026 (7)
N20.0341 (9)0.0185 (8)0.0194 (8)0.0007 (7)0.0047 (7)0.0009 (6)
N30.0318 (9)0.0177 (8)0.0170 (8)0.0001 (7)0.0006 (7)0.0012 (7)
C10.0286 (11)0.0268 (11)0.0330 (12)0.0035 (9)0.0089 (9)0.0089 (9)
C20.0247 (10)0.0200 (10)0.0165 (9)0.0022 (8)0.0036 (7)0.0001 (7)
C30.0363 (11)0.0202 (10)0.0176 (9)0.0056 (8)0.0016 (9)0.0028 (8)
C40.0313 (10)0.0178 (9)0.0179 (9)0.0047 (8)0.0019 (8)0.0000 (8)
C50.0447 (13)0.0201 (11)0.0266 (11)0.0050 (10)0.0094 (10)0.0067 (9)
C60.101 (3)0.0338 (15)0.067 (2)0.0305 (17)0.052 (2)0.0223 (15)
C70.0301 (11)0.0220 (10)0.0517 (14)0.0044 (9)0.0095 (11)0.0124 (10)
C80.082 (2)0.060 (2)0.0355 (15)0.0271 (18)0.0011 (15)0.0265 (14)
C90.0521 (15)0.0318 (12)0.0188 (10)0.0099 (11)0.0037 (10)0.0058 (9)
C100.0443 (15)0.0275 (12)0.090 (2)0.0040 (11)0.0063 (16)0.0202 (15)
C110.0498 (15)0.0215 (11)0.0405 (13)0.0062 (10)0.0178 (12)0.0050 (9)
S20.0371 (3)0.0182 (2)0.0252 (2)0.0030 (2)0.0074 (2)0.00647 (19)
N40.0272 (9)0.0307 (10)0.0276 (9)0.0047 (7)0.0000 (8)0.0112 (8)
N50.0408 (11)0.0149 (8)0.0220 (9)0.0015 (7)0.0006 (8)0.0059 (7)
N60.0428 (11)0.0209 (9)0.0312 (10)0.0111 (8)0.0174 (9)0.0126 (8)
C120.0275 (11)0.0466 (15)0.0332 (13)0.0005 (10)0.0069 (10)0.0100 (11)
C130.0294 (10)0.0224 (10)0.0199 (9)0.0048 (9)0.0045 (8)0.0032 (8)
C140.0651 (18)0.0145 (10)0.0384 (13)0.0008 (11)0.0292 (13)0.0041 (9)
C180.0380 (12)0.0208 (10)0.0218 (10)0.0014 (9)0.0067 (9)0.0012 (8)
C170.0307 (13)0.0388 (14)0.0581 (17)0.0103 (10)0.0025 (12)0.0212 (13)
C190.0527 (16)0.0177 (10)0.0308 (12)0.0059 (10)0.0164 (11)0.0023 (9)
C200.0442 (13)0.0188 (10)0.0376 (13)0.0006 (9)0.0204 (11)0.0027 (9)
C210.0553 (16)0.0204 (11)0.0365 (13)0.0005 (11)0.0114 (12)0.0020 (9)
C220.101 (3)0.0314 (14)0.0406 (16)0.0296 (16)0.0126 (16)0.0069 (12)
C150.0216 (19)0.0175 (17)0.0203 (19)0.0014 (14)0.0027 (15)0.0021 (14)
C160.0243 (18)0.0187 (16)0.034 (2)0.0019 (13)0.0032 (15)0.0033 (14)
C16A0.024 (3)0.019 (3)0.022 (3)0.003 (2)0.000 (2)0.000 (2)
C15A0.024 (4)0.011 (3)0.020 (3)0.002 (3)0.001 (3)0.006 (2)
Geometric parameters (Å, º) top
S1—C21.694 (2)N5—C131.356 (3)
N1—C21.329 (3)N5—N61.389 (2)
N1—C11.448 (3)N5—H5N0.86 (3)
N1—H1N0.87 (3)N6—C141.294 (4)
N2—C21.354 (3)C12—H12A0.9600
N2—N31.389 (2)C12—H12B0.9600
N2—H2N0.89 (3)C12—H12C0.9600
N3—C31.277 (3)C14—C151.487 (4)
C1—H1A0.9600C14—C221.492 (5)
C1—H1B0.9600C14—C15A1.673 (7)
C1—H1C0.9600C18—C191.333 (4)
C3—C41.506 (3)C18—C171.484 (4)
C3—C111.507 (3)C18—C211.509 (3)
C4—C51.511 (3)C17—C16A1.494 (6)
C4—C91.526 (3)C17—C161.610 (4)
C4—H40.9800C17—H17A1.04 (3)
C5—C61.507 (3)C17—H17B1.06 (3)
C5—H5A0.9700C19—C201.510 (3)
C5—H5B0.9700C19—H190.9300
C6—C71.422 (4)C20—C151.527 (4)
C6—H6A0.9700C20—C15A1.592 (7)
C6—H6B0.9700C20—H20A0.9700
C7—C81.370 (4)C20—H20B0.9700
C7—C101.503 (3)C21—H21A0.9600
C8—C91.493 (4)C21—H21B0.9600
C8—H80.9300C21—H21C0.9600
C9—H9A0.9700C22—H22A0.9600
C9—H9B0.9700C22—H22B0.9600
C10—H10A0.9600C22—H22C0.9600
C10—H10B0.9600C15—C161.524 (5)
C10—H10C0.9600C15—H150.9800
C11—H11A0.9600C16—H16A0.9700
C11—H11B0.9600C16—H16B0.9700
C11—H11C0.9600C16A—C15A1.513 (9)
S2—C131.689 (2)C16A—H'A0.9700
N4—C131.326 (3)C16A—H'B0.9700
N4—C121.447 (3)C15A—H15A0.9800
N4—H4N0.87 (3)
C2—N1—C1123.25 (19)H12A—C12—H12B109.5
C2—N1—H1N119.5 (19)N4—C12—H12C109.5
C1—N1—H1N117.3 (19)H12A—C12—H12C109.5
C2—N2—N3119.18 (18)H12B—C12—H12C109.5
C2—N2—H2N119.0 (18)N4—C13—N5117.09 (19)
N3—N2—H2N121.0 (18)N4—C13—S2123.30 (18)
C3—N3—N2116.94 (18)N5—C13—S2119.55 (16)
N1—C1—H1A109.5N6—C14—C15124.7 (3)
N1—C1—H1B109.5N6—C14—C22124.9 (2)
H1A—C1—H1B109.5C15—C14—C22110.3 (3)
N1—C1—H1C109.5N6—C14—C15A99.9 (4)
H1A—C1—H1C109.5C22—C14—C15A134.9 (4)
H1B—C1—H1C109.5C19—C18—C17121.7 (2)
N1—C2—N2117.37 (19)C19—C18—C21122.2 (2)
N1—C2—S1123.74 (16)C17—C18—C21116.1 (2)
N2—C2—S1118.87 (16)C18—C17—C16A111.5 (3)
N3—C3—C4118.21 (19)C18—C17—C16111.2 (2)
N3—C3—C11125.0 (2)C18—C17—H17A111.6 (18)
C4—C3—C11116.79 (18)C16A—C17—H17A129.7 (18)
C3—C4—C5115.02 (17)C16—C17—H17A99.6 (18)
C3—C4—C9110.51 (18)C18—C17—H17B118.1 (18)
C5—C4—C9109.44 (19)C16A—C17—H17B80.1 (18)
C3—C4—H4107.2C16—C17—H17B113.2 (18)
C5—C4—H4107.2H17A—C17—H17B101 (3)
C9—C4—H4107.2C18—C19—C20124.0 (2)
C6—C5—C4109.36 (19)C18—C19—H19118.0
C6—C5—H5A109.8C20—C19—H19118.0
C4—C5—H5A109.8C19—C20—C15112.5 (2)
C6—C5—H5B109.8C19—C20—C15A107.6 (3)
C4—C5—H5B109.8C19—C20—H20A109.1
H5A—C5—H5B108.3C15—C20—H20A109.1
C7—C6—C5119.2 (3)C19—C20—H20B109.1
C7—C6—H6A107.5C15—C20—H20B109.1
C5—C6—H6A107.5H20A—C20—H20B107.8
C7—C6—H6B107.5C18—C21—H21A109.5
C5—C6—H6B107.5C18—C21—H21B109.5
H6A—C6—H6B107.0H21A—C21—H21B109.5
C8—C7—C6120.4 (2)C18—C21—H21C109.5
C8—C7—C10120.2 (3)H21A—C21—H21C109.5
C6—C7—C10119.4 (3)H21B—C21—H21C109.5
C7—C8—C9121.8 (2)C14—C22—H22A109.5
C7—C8—H8119.1C14—C22—H22B109.5
C9—C8—H8119.1H22A—C22—H22B109.5
C8—C9—C4111.0 (2)C14—C22—H22C109.5
C8—C9—H9A109.4H22A—C22—H22C109.5
C4—C9—H9A109.4H22B—C22—H22C109.5
C8—C9—H9B109.4C14—C15—C16110.3 (3)
C4—C9—H9B109.4C14—C15—C20113.2 (3)
H9A—C9—H9B108.0C16—C15—C20105.7 (3)
C7—C10—H10A109.5C14—C15—H15109.2
C7—C10—H10B109.5C16—C15—H15109.2
H10A—C10—H10B109.5C20—C15—H15109.2
C7—C10—H10C109.5C15—C16—C17107.7 (3)
H10A—C10—H10C109.5C15—C16—H16A110.2
H10B—C10—H10C109.5C17—C16—H16A110.2
C3—C11—H11A109.5C15—C16—H16B110.2
C3—C11—H11B109.5C17—C16—H16B110.2
H11A—C11—H11B109.5H16A—C16—H16B108.5
C3—C11—H11C109.5C17—C16A—C15A102.8 (5)
H11A—C11—H11C109.5C17—C16A—H'A111.2
H11B—C11—H11C109.5C15A—C16A—H'A111.2
C13—N4—C12123.4 (2)C17—C16A—H'B111.2
C13—N4—H4N116.9 (19)C15A—C16A—H'B111.2
C12—N4—H4N120 (2)H'A—C16A—H'B109.1
C13—N5—N6118.65 (19)C16A—C15A—C20109.9 (5)
C13—N5—H5N115.8 (19)C16A—C15A—C14108.5 (5)
N6—N5—H5N121.0 (19)C20—C15A—C14100.8 (4)
C14—N6—N5116.6 (2)C16A—C15A—H15A112.3
N4—C12—H12A109.5C20—C15A—H15A112.3
N4—C12—H12B109.5C14—C15A—H15A112.3
C2—N2—N3—C3170.57 (19)N5—N6—C14—C15A178.7 (3)
C1—N1—C2—N2173.5 (2)C19—C18—C17—C16A27.5 (4)
C1—N1—C2—S14.8 (3)C21—C18—C17—C16A151.8 (3)
N3—N2—C2—N15.8 (3)C19—C18—C17—C1615.7 (4)
N3—N2—C2—S1175.83 (14)C21—C18—C17—C16164.9 (2)
N2—N3—C3—C4175.21 (17)C17—C18—C19—C201.1 (4)
N2—N3—C3—C113.9 (3)C21—C18—C19—C20178.3 (2)
N3—C3—C4—C511.3 (3)C18—C19—C20—C1517.6 (4)
C11—C3—C4—C5169.5 (2)C18—C19—C20—C15A10.6 (5)
N3—C3—C4—C9113.2 (2)N6—C14—C15—C1618.1 (4)
C11—C3—C4—C966.0 (3)C22—C14—C15—C16159.0 (3)
C3—C4—C5—C6176.5 (3)N6—C14—C15—C20100.1 (4)
C9—C4—C5—C658.4 (3)C22—C14—C15—C2082.8 (4)
C4—C5—C6—C738.2 (4)C19—C20—C15—C14172.7 (3)
C5—C6—C7—C811.7 (5)C19—C20—C15—C1651.9 (4)
C5—C6—C7—C10171.3 (3)C14—C15—C16—C17168.9 (3)
C6—C7—C8—C96.3 (5)C20—C15—C16—C1768.4 (4)
C10—C7—C8—C9176.6 (3)C18—C17—C16—C1551.0 (4)
C7—C8—C9—C427.9 (4)C18—C17—C16A—C15A60.7 (5)
C3—C4—C9—C8178.6 (2)C17—C16A—C15A—C2072.4 (6)
C5—C4—C9—C853.7 (3)C17—C16A—C15A—C14178.2 (4)
C13—N5—N6—C14174.5 (2)C19—C20—C15A—C16A47.0 (6)
C12—N4—C13—N5179.7 (2)C19—C20—C15A—C14161.3 (3)
C12—N4—C13—S22.7 (3)N6—C14—C15A—C16A111.6 (5)
N6—N5—C13—N411.6 (3)C22—C14—C15A—C16A74.1 (6)
N6—N5—C13—S2171.21 (15)N6—C14—C15A—C20133.0 (4)
N5—N6—C14—C15173.2 (2)C22—C14—C15A—C2041.4 (7)
N5—N6—C14—C223.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N30.87 (3)2.28 (3)2.645 (3)105 (2)
N4—H4N···N60.87 (3)2.24 (3)2.637 (3)107 (2)
N2—H2N···S2i0.89 (3)2.54 (3)3.4284 (19)172 (2)
N4—H4N···S1ii0.87 (3)2.60 (3)3.337 (2)143 (2)
N5—H5N···S1iii0.86 (3)2.72 (3)3.547 (2)161 (2)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1/2, y+3/2, z+1; (iii) x+1, y1/2, z+1/2.
 

References

First citationAquino, T. M. de, Liesen, A. P., da Silva, R. E., Lima, V. T., Carvalho, C. S., de Faria, A. R., de Araújo, J. M., de Lima, J. G., Alves, A. J., de Melo, E. J. & Góes, A. J. (2008). Bioorg. Med. Chem. 16, 446–456.  Web of Science CrossRef PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDu, X., Guo, C., Hansell, E., Doyle, P. S., Caffrey, C. R., Holler, T. P., McKerrow, J. H. & Cohen, E. (2002). J. Med. Chem. 45, 2695–2707.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGangadharan, R., Haribabu, J., Karvembu, R. & Sethusankar, K. (2015). Acta Cryst. E71, 305–308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGrimal, E. (1902). C. R. Acad. Sci. 135, 582–583.  CAS Google Scholar
First citationHu, W.-X., Zhou, W., Xia, C. N. & Wen, X. (2006). Bioorg. Med. Chem. Lett. 16, 2213–2218.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOliveira, A. B. de, Beck, J., Landvogt, C., Farias, R. L. de & Feitoza, B. R. S. (2017). Acta Cryst. E73, 291–295.  CSD CrossRef IUCr Journals Google Scholar
First citationPirrung, M. C., Pansare, S. V., Das Sarma, K., Keith, K. A. & Kern, E. R. (2005). J. Med. Chem. 48, 3045–3050.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTayamon, S., Mazlan, N. A., Ravoof, T. B. S. A., Mohamed Tahir, M. I. & Crouse, K. A. (2012). Acta Cryst. E68, o3104–o3105.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds