organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,4-Di-n-octyl-1,2,3,4-tetra­hydro­quinoxaline-2,3-dione

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Mohammed V University, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: elbourakadi25@gmail.com

Edited by P. C. Healy, Griffith University, Australia (Received 24 March 2017; accepted 5 April 2017; online 11 April 2017)

In the title compound, C24H38N2O2, the heterocyclic ring (r.m.s. = 0.015 Å) deviates from planarity to a greater extent than the benzene ring (r.m.s. deviation = 0.007 Å). In the crystal, the mol­ecules pack to form polar and non-polar regions. The major inter­molecular inter­action appears to be complementary π-stacking between oppositely oriented tetra­hydro­quinoxaline units.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Quinoxaline derivatives are known as antagonists for the excitatory system (Fray et al., 2001[Fray, M. J., Bull, D. J., Carr, C. L., Gautier, E. C. L., Mowbray, C. E. & Stobie, A. (2001). J. Med. Chem. 44, 1951-1962.]), anti­convulsants, (De Sarro et al., 2003[De Sarro, G., Ferreri, G., Gareri, P., Russo, E., De Sarro, A., Gitto, R. & Chimiri, A. (2003). Pharmacol. Biochem. Behav. 74, 595-602.]) and as anti­bacterial and anti­fungal agents (Tandon et al., 2006[Tandon, V. K., Yadav, D. B., Maurya, H. K., Chaturvedi, A. K. & Shukla, P. K. (2006). Bioorg. Med. Chem. 14, 6120-6126.]; Kotharkar & Shinde, 2006[Kotharkar, S. A. & Shinde, D. B. (2006). Bioorg. Med. Chem. Lett. 16, 6181-6184.]). As a continuation of our work in this area (Mustaphi et al., 2001[Mustaphi, N. E., Ferfra, S., Essassi, E. M. & Pierrot, M. (2001). Acta Cryst. E57, o176-o177.]; Ferfra et al., 2001[Ferfra, S., Ahabchane, N. H., Mustaphi, N. E., Essassi, E. M., Bellan, J. & Pierrot, M. (2001). Phosphorus Sulfur Silicon, 175, 169-181.]), we have synthesized the new title compound and determined its crystal structure.

In the title mol­ecule (Fig. 1[link]), the C1–C6 ring is planar to within 0.0109 (16) Å with an r.m.s. deviation of the fitted atoms of 0.007 Å. By contrast, the maximum deviations from the N1/C7/C8/N1/C1/C2 ring are 0.0251 (16) Å (C8) and −0.0228 (15) Å (N2) with an r.m.s. deviation of 0.015 Å. As depicted in Fig. 2[link], the mol­ecules pack to form polar and non-polar regions. The major inter­molecular inter­action appears to be complementary π-stacking between oppositely oriented tetra­hydro­quinoxaline units [Cg1⋯Cg2i = 3.767 (2) Å; Cg1 and Cg2 are the centroids of the N1/C7/C8/N1/C1/C2 and C1–C6 rings, respectively; symmetry code: (i) −x + [{3\over 2}], −y + [{1\over 2}], −z + 1], which make a dihedral angle of 2.0 (1)°.

[Figure 1]
Figure 1
The title mol­ecule with labeling scheme and 30% probability ellipsoids.
[Figure 2]
Figure 2
Packing viewed along the c-axis direction.

Synthesis and crystallization

A mixture of quinoxaline-2,3-dione (1 g, 6.17 mmol), K2CO3 (2.13 g, 15.42 mmol), octyl bromide(2.13 ml, 12.33 mmol) and tetra n-butyl­ammonium bromide as a catalyst in di­methyl­formamide (60 ml), was stirred at room temperature for 48 h. The solution was filtered by suction and the solvent was removed under reduced pressure. The residue was chromatographed on a silica-gel column using hexane and ethyl acetate (90/10) as eluents to afford the title compound as colorless crystals upon recrystallization from ethanol solution.

Refinement

Crystal data, data collection and structure and refinement data are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C24H38N2O2
Mr 386.56
Crystal system, space group Monoclinic, C2/c
Temperature (K) 298
a, b, c (Å) 26.407 (1), 14.3718 (5), 12.9624 (5)
β (°) 108.312 (2)
V3) 4670.3 (3)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.54
Crystal size (mm) 0.25 × 0.20 × 0.07
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS . Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.78, 0.96
No. of measured, independent and observed [I > 2σ(I)] reflections 17969, 4687, 2965
Rint 0.065
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.203, 1.02
No. of reflections 4687
No. of parameters 365
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.28
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS . Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1,4-Di-n-octyl-1,2,3,4-tetrahydroquinoxaline-2,3-dione top
Crystal data top
C24H38N2O2F(000) = 1696
Mr = 386.56Dx = 1.100 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
a = 26.407 (1) ÅCell parameters from 8815 reflections
b = 14.3718 (5) Åθ = 3.6–74.6°
c = 12.9624 (5) ŵ = 0.54 mm1
β = 108.312 (2)°T = 298 K
V = 4670.3 (3) Å3Thick plate, colourless
Z = 80.25 × 0.20 × 0.07 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
4687 independent reflections
Radiation source: INCOATEC IµS micro–focus source2965 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.065
Detector resolution: 10.4167 pixels mm-1θmax = 74.9°, θmin = 3.6°
ω scansh = 3033
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1717
Tmin = 0.78, Tmax = 0.96l = 1516
17969 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: mixed
wR(F2) = 0.203H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0811P)2 + 3.6894P]
where P = (Fo2 + 2Fc2)/3
4687 reflections(Δ/σ)max < 0.001
365 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Because of the significant librational motions of the last two carbon atoms of the octyl chains, it was not possible to locate the associated hydrogen atoms with confidence. These were included as riding contributions in idealized positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.74116 (9)0.54364 (12)0.59734 (18)0.0900 (7)
O20.77845 (9)0.45664 (13)0.79053 (15)0.0833 (6)
N10.70490 (8)0.40936 (13)0.51553 (16)0.0557 (5)
N20.73887 (8)0.32196 (12)0.71746 (14)0.0532 (5)
C10.71139 (9)0.26985 (14)0.62490 (18)0.0492 (5)
C20.70215 (10)0.17526 (17)0.6314 (2)0.0595 (6)
H20.7170 (10)0.1495 (16)0.697 (2)0.056 (7)*
C30.67539 (12)0.12529 (18)0.5395 (2)0.0708 (8)
H30.6691 (10)0.062 (2)0.545 (2)0.076 (8)*
C40.65768 (12)0.16928 (19)0.4408 (3)0.0728 (8)
H40.6376 (12)0.138 (2)0.380 (3)0.089 (10)*
C50.66673 (11)0.26283 (17)0.4326 (2)0.0621 (7)
H50.6520 (10)0.2918 (18)0.365 (2)0.067 (8)*
C60.69430 (9)0.31416 (15)0.52398 (18)0.0503 (5)
C70.73204 (10)0.46110 (16)0.6031 (2)0.0626 (7)
C80.75199 (10)0.41277 (16)0.7119 (2)0.0604 (6)
C90.69058 (11)0.4552 (2)0.4085 (2)0.0644 (7)
H9A0.7150 (11)0.507 (2)0.419 (2)0.079 (8)*
H9B0.6974 (10)0.4120 (19)0.356 (2)0.070 (8)*
C100.63381 (11)0.48941 (19)0.3665 (2)0.0619 (7)
H10A0.6284 (10)0.5282 (18)0.422 (2)0.064 (7)*
H10B0.6084 (10)0.4385 (19)0.360 (2)0.069 (7)*
C110.62461 (12)0.5370 (2)0.2581 (3)0.0745 (8)
H11A0.6500 (13)0.589 (2)0.269 (2)0.099 (10)*
H11B0.6350 (15)0.492 (3)0.203 (3)0.121 (12)*
C120.56892 (13)0.5723 (2)0.2037 (3)0.0769 (8)
H12A0.5564 (13)0.612 (2)0.255 (3)0.105 (11)*
H12B0.5409 (13)0.523 (2)0.194 (2)0.096 (10)*
C130.56333 (15)0.6179 (3)0.0948 (3)0.0942 (11)
H13A0.5897 (17)0.668 (3)0.112 (3)0.136 (16)*
H13B0.5719 (16)0.566 (3)0.044 (3)0.143 (16)*
C140.50903 (18)0.6512 (3)0.0323 (3)0.1102 (13)
H14B0.4791 (18)0.598 (3)0.030 (3)0.157 (17)*
H14A0.4975 (10)0.6937 (18)0.085 (2)0.063 (7)*
C150.50677 (19)0.6956 (4)0.0776 (4)0.1469 (19)
H15A0.53050.75060.06320.176*
H15B0.52110.65030.11900.176*
C160.4567 (2)0.7227 (5)0.1415 (4)0.177 (2)
H16A0.45900.74990.20920.266*
H16B0.43300.66840.15830.266*
H16C0.44240.76900.10250.266*
C170.75789 (12)0.2801 (2)0.8271 (2)0.0619 (7)
H17A0.7569 (10)0.327 (2)0.873 (2)0.071 (8)*
H17B0.7347 (11)0.2350 (19)0.827 (2)0.069 (8)*
C180.81408 (12)0.2432 (2)0.8558 (2)0.0640 (7)
H18A0.8340 (11)0.285 (2)0.827 (2)0.081 (9)*
H18B0.8127 (10)0.1829 (19)0.819 (2)0.064 (7)*
C190.84036 (14)0.2334 (2)0.9775 (2)0.0696 (7)
H19A0.8744 (11)0.195 (2)0.990 (2)0.077 (8)*
H19B0.8182 (12)0.201 (2)1.009 (2)0.086 (10)*
C200.85371 (18)0.3267 (2)1.0348 (3)0.0858 (9)
H20B0.8221 (13)0.361 (2)1.027 (2)0.089 (10)*
H20A0.8800 (15)0.362 (2)1.013 (3)0.113 (13)*
C210.88719 (16)0.3219 (3)1.1508 (3)0.0897 (10)
H21B0.8680 (13)0.276 (2)1.190 (3)0.099 (10)*
H21A0.9239 (16)0.288 (3)1.155 (3)0.134 (14)*
C220.8982 (2)0.4168 (3)1.2046 (4)0.1124 (14)
H22A0.9188 (14)0.453 (3)1.168 (3)0.102 (13)*
H22B0.8648 (17)0.445 (3)1.199 (3)0.136 (16)*
C230.9322 (2)0.4163 (4)1.3191 (4)0.1512 (19)
H23A0.96740.38961.32400.181*
H23B0.91570.37621.36180.181*
C240.9397 (3)0.5124 (5)1.3667 (5)0.233 (4)
H24A0.96240.50951.44260.349*
H24B0.95660.55201.32540.349*
H24C0.90490.53861.36310.349*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1099 (17)0.0429 (10)0.1054 (16)0.0037 (9)0.0169 (13)0.0042 (9)
O20.1063 (16)0.0604 (11)0.0740 (13)0.0030 (10)0.0151 (11)0.0195 (10)
N10.0601 (12)0.0460 (10)0.0617 (12)0.0050 (8)0.0200 (10)0.0052 (9)
N20.0612 (12)0.0481 (10)0.0517 (11)0.0075 (8)0.0199 (10)0.0027 (8)
C10.0497 (12)0.0458 (11)0.0546 (13)0.0056 (9)0.0198 (11)0.0015 (10)
C20.0661 (16)0.0495 (13)0.0618 (16)0.0061 (11)0.0185 (13)0.0081 (12)
C30.0801 (19)0.0443 (13)0.0819 (19)0.0054 (12)0.0168 (15)0.0018 (13)
C40.081 (2)0.0570 (15)0.0701 (18)0.0004 (13)0.0087 (16)0.0105 (14)
C50.0685 (16)0.0571 (14)0.0566 (15)0.0097 (12)0.0139 (13)0.0004 (12)
C60.0515 (13)0.0448 (11)0.0568 (14)0.0062 (9)0.0199 (11)0.0008 (10)
C70.0680 (16)0.0432 (12)0.0752 (17)0.0056 (11)0.0208 (14)0.0004 (12)
C80.0656 (16)0.0497 (13)0.0654 (16)0.0062 (11)0.0200 (13)0.0092 (12)
C90.0667 (17)0.0571 (14)0.0695 (17)0.0029 (12)0.0215 (14)0.0145 (13)
C100.0627 (16)0.0545 (14)0.0685 (17)0.0045 (12)0.0204 (14)0.0072 (12)
C110.0706 (19)0.0750 (18)0.0780 (19)0.0070 (15)0.0235 (16)0.0205 (15)
C120.0704 (19)0.0771 (19)0.080 (2)0.0067 (15)0.0189 (16)0.0140 (16)
C130.083 (2)0.109 (3)0.083 (2)0.014 (2)0.0160 (19)0.029 (2)
C140.098 (3)0.127 (3)0.098 (3)0.022 (3)0.021 (2)0.026 (2)
C150.113 (3)0.205 (5)0.107 (3)0.038 (3)0.011 (3)0.058 (3)
C160.163 (5)0.228 (7)0.139 (4)0.051 (5)0.044 (4)0.034 (4)
C170.0705 (18)0.0654 (16)0.0525 (15)0.0023 (13)0.0234 (13)0.0026 (13)
C180.0739 (18)0.0602 (15)0.0580 (16)0.0107 (13)0.0210 (14)0.0002 (13)
C190.080 (2)0.0648 (16)0.0616 (17)0.0072 (15)0.0191 (15)0.0048 (13)
C200.099 (3)0.076 (2)0.074 (2)0.0035 (19)0.0147 (19)0.0045 (16)
C210.093 (2)0.091 (2)0.076 (2)0.0020 (19)0.0146 (19)0.0038 (18)
C220.107 (3)0.109 (3)0.102 (3)0.002 (3)0.006 (3)0.032 (2)
C230.138 (4)0.164 (5)0.127 (4)0.012 (3)0.007 (3)0.034 (3)
C240.242 (8)0.192 (6)0.202 (6)0.013 (5)0.021 (6)0.111 (5)
Geometric parameters (Å, º) top
O1—C71.217 (3)C14—C151.545 (6)
O2—C81.215 (3)C14—H14B1.10 (5)
N1—C71.358 (3)C14—H14A1.03 (3)
N1—C61.408 (3)C15—C161.378 (6)
N1—C91.474 (3)C15—H15A0.9900
N2—C81.358 (3)C15—H15B0.9900
N2—C11.407 (3)C16—H16A0.9800
N2—C171.478 (3)C16—H16B0.9800
C1—C21.388 (3)C16—H16C0.9800
C1—C61.396 (3)C17—C181.508 (4)
C2—C31.380 (4)C17—H17A0.91 (3)
C2—H20.90 (2)C17—H17B0.89 (3)
C3—C41.371 (4)C18—C191.518 (4)
C3—H30.93 (3)C18—H18A0.95 (3)
C4—C51.376 (4)C18—H18B0.98 (3)
C4—H40.91 (3)C19—C201.519 (4)
C5—C61.391 (3)C19—H19A1.03 (3)
C5—H50.94 (3)C19—H19B0.94 (3)
C7—C81.511 (4)C20—C211.488 (5)
C9—C101.507 (4)C20—H20B0.95 (3)
C9—H9A0.97 (3)C20—H20A0.97 (4)
C9—H9B0.98 (3)C21—C221.518 (5)
C10—C111.512 (4)C21—H21B1.05 (3)
C10—H10A0.96 (3)C21—H21A1.07 (4)
C10—H10B0.98 (3)C22—C231.473 (6)
C11—C121.505 (4)C22—H22A0.98 (3)
C11—H11A0.98 (3)C22—H22B0.96 (4)
C11—H11B1.06 (4)C23—C241.500 (7)
C12—C131.520 (4)C23—H23A0.9900
C12—H12A1.01 (3)C23—H23B0.9900
C12—H12B1.01 (3)C24—H24A0.9800
C13—C141.487 (5)C24—H24B0.9800
C13—H13A0.98 (4)C24—H24C0.9800
C13—H13B1.06 (4)
C7—N1—C6122.2 (2)C13—C14—H14A105.3 (15)
C7—N1—C9117.0 (2)C15—C14—H14A115.7 (15)
C6—N1—C9120.6 (2)H14B—C14—H14A94 (3)
C8—N2—C1122.6 (2)C16—C15—C14115.0 (4)
C8—N2—C17115.3 (2)C16—C15—H15A108.5
C1—N2—C17122.1 (2)C14—C15—H15A108.5
C2—C1—C6119.5 (2)C16—C15—H15B108.5
C2—C1—N2121.5 (2)C14—C15—H15B108.5
C6—C1—N2119.0 (2)H15A—C15—H15B107.5
C3—C2—C1120.6 (3)C15—C16—H16A109.5
C3—C2—H2123.8 (15)C15—C16—H16B109.5
C1—C2—H2115.3 (15)H16A—C16—H16B109.5
C4—C3—C2119.8 (3)C15—C16—H16C109.5
C4—C3—H3120.0 (17)H16A—C16—H16C109.5
C2—C3—H3120.2 (17)H16B—C16—H16C109.5
C3—C4—C5120.4 (3)N2—C17—C18113.0 (2)
C3—C4—H4121.1 (19)N2—C17—H17A105.4 (17)
C5—C4—H4118.4 (19)C18—C17—H17A109.1 (17)
C4—C5—C6120.7 (3)N2—C17—H17B105.8 (17)
C4—C5—H5118.4 (16)C18—C17—H17B111.4 (18)
C6—C5—H5120.8 (16)H17A—C17—H17B112 (2)
C5—C6—C1119.0 (2)C17—C18—C19112.5 (2)
C5—C6—N1120.9 (2)C17—C18—H18A107.5 (17)
C1—C6—N1120.2 (2)C19—C18—H18A109.9 (17)
O1—C7—N1123.1 (2)C17—C18—H18B107.8 (15)
O1—C7—C8119.2 (2)C19—C18—H18B111.0 (14)
N1—C7—C8117.8 (2)H18A—C18—H18B108 (2)
O2—C8—N2122.9 (2)C18—C19—C20112.8 (2)
O2—C8—C7119.0 (2)C18—C19—H19A107.6 (15)
N2—C8—C7118.1 (2)C20—C19—H19A110.4 (16)
N1—C9—C10114.7 (2)C18—C19—H19B110.5 (18)
N1—C9—H9A104.7 (17)C20—C19—H19B108.4 (18)
C10—C9—H9A110.1 (16)H19A—C19—H19B107 (2)
N1—C9—H9B108.5 (15)C21—C20—C19115.2 (3)
C10—C9—H9B109.7 (15)C21—C20—H20B111.0 (19)
H9A—C9—H9B109 (2)C19—C20—H20B110.3 (19)
C9—C10—C11109.6 (2)C21—C20—H20A94 (2)
C9—C10—H10A106.5 (15)C19—C20—H20A113 (2)
C11—C10—H10A114.7 (15)H20B—C20—H20A112 (3)
C9—C10—H10B111.3 (15)C20—C21—C22112.9 (3)
C11—C10—H10B110.9 (15)C20—C21—H21B107.0 (18)
H10A—C10—H10B104 (2)C22—C21—H21B113.2 (18)
C12—C11—C10115.9 (3)C20—C21—H21A108 (2)
C12—C11—H11A109.4 (19)C22—C21—H21A110 (2)
C10—C11—H11A108.2 (19)H21B—C21—H21A105 (3)
C12—C11—H11B108 (2)C23—C22—C21115.2 (4)
C10—C11—H11B110 (2)C23—C22—H22A104 (2)
H11A—C11—H11B104 (3)C21—C22—H22A108 (2)
C11—C12—C13112.1 (3)C23—C22—H22B109 (3)
C11—C12—H12A111.0 (19)C21—C22—H22B108 (3)
C13—C12—H12A114.1 (19)H22A—C22—H22B112 (4)
C11—C12—H12B113.0 (18)C22—C23—C24111.7 (5)
C13—C12—H12B109.6 (18)C22—C23—H23A109.3
H12A—C12—H12B96 (3)C24—C23—H23A109.3
C14—C13—C12116.1 (3)C22—C23—H23B109.3
C14—C13—H13A112 (3)C24—C23—H23B109.3
C12—C13—H13A105 (2)H23A—C23—H23B107.9
C14—C13—H13B104 (2)C23—C24—H24A109.5
C12—C13—H13B107 (2)C23—C24—H24B109.5
H13A—C13—H13B113 (3)H24A—C24—H24B109.5
C13—C14—C15112.7 (4)C23—C24—H24C109.5
C13—C14—H14B111 (2)H24A—C24—H24C109.5
C15—C14—H14B117 (2)H24B—C24—H24C109.5
C8—N2—C1—C2174.8 (2)C17—N2—C8—O21.5 (4)
C17—N2—C1—C22.0 (3)C1—N2—C8—C75.3 (3)
C8—N2—C1—C63.6 (3)C17—N2—C8—C7177.7 (2)
C17—N2—C1—C6179.6 (2)O1—C7—C8—O22.8 (4)
C6—C1—C2—C31.3 (4)N1—C7—C8—O2176.7 (2)
N2—C1—C2—C3179.6 (2)O1—C7—C8—N2176.5 (2)
C1—C2—C3—C40.0 (4)N1—C7—C8—N24.0 (3)
C2—C3—C4—C50.4 (5)C7—N1—C9—C1099.8 (3)
C3—C4—C5—C60.5 (4)C6—N1—C9—C1085.0 (3)
C4—C5—C6—C11.8 (4)N1—C9—C10—C11178.6 (3)
C4—C5—C6—N1178.3 (2)C9—C10—C11—C12178.1 (3)
C2—C1—C6—C52.1 (3)C10—C11—C12—C13179.3 (3)
N2—C1—C6—C5179.5 (2)C11—C12—C13—C14177.3 (4)
C2—C1—C6—N1177.9 (2)C12—C13—C14—C15179.4 (4)
N2—C1—C6—N10.5 (3)C13—C14—C15—C16176.4 (5)
C7—N1—C6—C5179.5 (2)C8—N2—C17—C1885.7 (3)
C9—N1—C6—C54.6 (3)C1—N2—C17—C1891.4 (3)
C7—N1—C6—C10.6 (3)N2—C17—C18—C19159.0 (2)
C9—N1—C6—C1175.5 (2)C17—C18—C19—C2070.9 (4)
C6—N1—C7—O1179.4 (2)C18—C19—C20—C21170.6 (3)
C9—N1—C7—O15.5 (4)C19—C20—C21—C22178.7 (4)
C6—N1—C7—C81.2 (3)C20—C21—C22—C23178.7 (4)
C9—N1—C7—C8173.9 (2)C21—C22—C23—C24178.3 (5)
C1—N2—C8—O2175.5 (2)
 

Acknowledgements

The support of NSF-MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS . Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Sarro, G., Ferreri, G., Gareri, P., Russo, E., De Sarro, A., Gitto, R. & Chimiri, A. (2003). Pharmacol. Biochem. Behav. 74, 595–602.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFerfra, S., Ahabchane, N. H., Mustaphi, N. E., Essassi, E. M., Bellan, J. & Pierrot, M. (2001). Phosphorus Sulfur Silicon, 175, 169–181.  Web of Science CrossRef CAS Google Scholar
First citationFray, M. J., Bull, D. J., Carr, C. L., Gautier, E. C. L., Mowbray, C. E. & Stobie, A. (2001). J. Med. Chem. 44, 1951–1962.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKotharkar, S. A. & Shinde, D. B. (2006). Bioorg. Med. Chem. Lett. 16, 6181–6184.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMustaphi, N. E., Ferfra, S., Essassi, E. M. & Pierrot, M. (2001). Acta Cryst. E57, o176–o177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTandon, V. K., Yadav, D. B., Maurya, H. K., Chaturvedi, A. K. & Shukla, P. K. (2006). Bioorg. Med. Chem. 14, 6120–6126.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds