organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Oxo-2H-chromen-3-yl 4-fluoro­benzoate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université Félix Houphouët Boigny de Cocody 22 BP 582 Abidjan 22, Côte d'Ivoire, bLaboratoire de Chimie Moléculaire et Matériaux, Equipe de Chimie Organique et Phytochimie, Université Ouaga I Pr Joseph KI-ZERBO 03 BP 7021 Ouagadougou 03, Burkina Faso, and cLaboratoire de Photochimie et d'Analyse, Faculté des Sciences et Techniques, Université Cheick Anta DIOP, Dakar, Senegal
*Correspondence e-mail: eric.ziki@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 9 February 2017; accepted 11 April 2017; online 18 April 2017)

In the title compound, C16H9FO4, the dihedral angle between the planar coumarin ring system [maximum deviation = 0.027 (1) Å] and the benzene ring is 70.18 (6)°. In the crystal, ππ inter­actions [shortest centroid–centroid separation = 3.5338 (8) Å] link the mol­ecules into a three-dimensional framework.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Coumarin and its derivatives are widely recognized for their multiple biological activities, including anti­cancer (Lacy & O'Kennedy, 2004[Lacy, A. & O'Kennedy, R. (2004). Curr. Pharm. Des. 10, 3797-3811.]) and anti-inflammatory (Todeschini et al., 1998[Todeschini, A. R., de Miranda, A. L. P., da Silva, K. C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189-199.]) effects. As part of our studies in this area, we now describe the synthesis and crystal structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

The coumarin ring system is, as expected, almost planar [maximum deviation = 0.027 (1) Å for atom C1] and is oriented at an angle of 70.18 (6)° with respect to the benzene ring. The C3—C2 [1.3332 (18) Å] and C2—C1 [1.4553 (19) Å] bond lengths are slightly shorter and longer, respectively, than those expected for a Car—Car bond. This suggests that the electron density is preferentially located in the C2—C3 bond at the pyrone ring, as seen in other coumarin derivatives (Gomes et al., 2016[Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926-932.]; Ziki et al., 2017[Ziki, E., Sosso, S., Mansilla-Koblavi, F., Djandé, A. & Kakou-Yao, R. (2017). Acta Cryst. E73, 45-47.]).

In the crystal, weak aromatic ππ stacking inter­actions are present [Cg1⋯Cg2i = 3.5337 (8) Å and Cg2⋯Cg2i = 3.6529 (8) Å, where Cg1 and Cg2 are the centroids of the coumarin pyran and benzene rings, respectively; symmetry code: (i) 2 − x, 1 − y, 1 − z]. Together, these lead to a three-dimensional supra­molecular network.

Synthesis and crystallization

To a solution of 4-fluoro­benzoyl chloride (6.17 mmol, ≃1 g) in dry tetra­hydro­furan (31 ml), was introduced dried tri­ethyl­amine (3 molar equivalents, ≃2.6 ml). While stirring strongly, 6.17 mmol (1 g) of chroman-2,3-dione was added in small portions over 30 min. The reaction mixture was then refluxed for 4 h and poured into a separating funnel containing 40 ml of chloro­form. The solution was acidified with dilute hydro­chloric acid until the pH was 2–3. The organic layer was extracted, washed with water until neutral, dried over MgSO4 and the solvent removed. The resulting precipitate (crude product) was washed with petroleum ether and dissolved in a minimum amount of chloro­form by heating under agitation. To this hot mixture, hexane was added until the formation of a new precipitate started; this dissolved in the resulting mixture upon heating. Upon cooling, colourless crystals of the title compound precipitated in a yield of 80%, m.p. 452–454 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C16H9FO4
Mr 284.23
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 6.8116 (2), 7.2402 (2), 13.4826 (3)
α, β, γ (°) 96.943 (2), 90.862 (2), 106.139 (2)
V3) 633.21 (3)
Z 2
Radiation type Cu Kα
μ (mm−1) 1.00
Crystal size (mm) 0.36 × 0.26 × 0.16
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, AtlasS2
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent. (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.788, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12676, 2358, 2112
Rint 0.017
(sin θ/λ)max−1) 0.608
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.100, 1.09
No. of reflections 2358
No. of parameters 191
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.19
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent. (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

2-Oxo-2H-chromen-3-yl 4-fluorobenzoate top
Crystal data top
C16H9FO4Z = 2
Mr = 284.23F(000) = 292
Triclinic, P1Dx = 1.491 Mg m3
Hall symbol: -P 1Melting point: 452 K
a = 6.8116 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 7.2402 (2) ÅCell parameters from 7530 reflections
c = 13.4826 (3) Åθ = 6.6–69.4°
α = 96.943 (2)°µ = 1.00 mm1
β = 90.862 (2)°T = 293 K
γ = 106.139 (2)°Prism, colourless
V = 633.21 (3) Å30.36 × 0.26 × 0.16 mm
Data collection top
Agilent SuperNova, Dual, Cu at zero, AtlasS2
diffractometer
2358 independent reflections
Radiation source: fine-focus sealed tube2112 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 5.3048 pixels mm-1θmax = 69.5°, θmin = 6.4°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 88
Tmin = 0.788, Tmax = 1.000l = 1616
12676 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.1315P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2358 reflectionsΔρmax = 0.15 e Å3
191 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL2013 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0047 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28843 (13)0.32990 (14)0.54636 (7)0.0486 (3)
O30.13270 (16)0.55441 (14)0.77556 (7)0.0526 (3)
C30.06635 (19)0.37512 (18)0.63231 (9)0.0431 (3)
H30.18400.39380.66070.052*
C20.1136 (2)0.44106 (18)0.68358 (10)0.0439 (3)
C40.07706 (19)0.27525 (17)0.53310 (10)0.0414 (3)
C80.1081 (2)0.1647 (2)0.39686 (10)0.0526 (4)
H80.23130.15640.37060.063*
O20.47036 (15)0.47719 (17)0.68475 (8)0.0660 (3)
C90.1037 (2)0.25624 (18)0.49220 (9)0.0424 (3)
O40.19944 (16)0.32095 (15)0.85538 (8)0.0599 (3)
C50.2591 (2)0.1964 (2)0.47421 (11)0.0509 (3)
H50.38230.20800.49910.061*
C10.3038 (2)0.4204 (2)0.64253 (10)0.0470 (3)
C110.22979 (19)0.6336 (2)0.94604 (10)0.0471 (3)
C100.1894 (2)0.4839 (2)0.85772 (10)0.0473 (3)
F0.34415 (19)1.0344 (2)1.19588 (8)0.1091 (5)
C60.2564 (3)0.1018 (2)0.37969 (12)0.0602 (4)
H60.37810.04820.34130.072*
C160.2040 (2)0.8158 (2)0.94244 (11)0.0550 (4)
H160.16100.84700.88250.066*
C150.2415 (2)0.9517 (3)1.02675 (13)0.0663 (4)
H150.22341.07391.02470.080*
C70.0734 (3)0.0859 (2)0.34129 (11)0.0602 (4)
H70.07330.02130.27730.072*
C120.2947 (2)0.5883 (3)1.03582 (11)0.0577 (4)
H120.31110.46581.03900.069*
C130.3350 (2)0.7236 (3)1.12031 (11)0.0692 (5)
H130.38070.69491.18040.083*
C140.3060 (2)0.9012 (3)1.11331 (12)0.0703 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0441 (5)0.0577 (6)0.0475 (5)0.0211 (4)0.0023 (4)0.0047 (4)
O30.0689 (6)0.0553 (6)0.0386 (5)0.0281 (5)0.0071 (4)0.0014 (4)
C30.0447 (7)0.0472 (7)0.0427 (7)0.0198 (6)0.0045 (5)0.0100 (6)
C20.0523 (7)0.0439 (7)0.0386 (7)0.0190 (6)0.0022 (5)0.0053 (5)
C40.0465 (7)0.0389 (6)0.0412 (7)0.0148 (5)0.0020 (5)0.0092 (5)
C80.0717 (9)0.0509 (8)0.0431 (7)0.0297 (7)0.0051 (7)0.0073 (6)
O20.0463 (6)0.0844 (8)0.0644 (7)0.0155 (5)0.0097 (5)0.0067 (6)
C90.0493 (7)0.0395 (6)0.0420 (7)0.0174 (5)0.0010 (5)0.0084 (5)
O40.0687 (7)0.0593 (6)0.0574 (6)0.0261 (5)0.0023 (5)0.0121 (5)
C50.0484 (7)0.0501 (8)0.0546 (8)0.0136 (6)0.0070 (6)0.0104 (6)
C10.0470 (7)0.0487 (7)0.0471 (7)0.0155 (6)0.0033 (6)0.0085 (6)
C110.0377 (6)0.0651 (9)0.0397 (7)0.0162 (6)0.0005 (5)0.0075 (6)
C100.0421 (7)0.0588 (8)0.0438 (7)0.0175 (6)0.0001 (5)0.0101 (6)
F0.1002 (9)0.1531 (12)0.0620 (7)0.0413 (8)0.0124 (6)0.0444 (7)
C60.0707 (10)0.0504 (8)0.0558 (9)0.0126 (7)0.0200 (7)0.0063 (7)
C160.0528 (8)0.0656 (9)0.0471 (8)0.0201 (7)0.0054 (6)0.0017 (7)
C150.0600 (9)0.0731 (10)0.0630 (10)0.0225 (8)0.0029 (7)0.0103 (8)
C70.0944 (12)0.0479 (8)0.0418 (8)0.0275 (8)0.0080 (8)0.0027 (6)
C120.0478 (8)0.0856 (11)0.0455 (8)0.0253 (7)0.0033 (6)0.0156 (7)
C130.0516 (9)0.1223 (16)0.0361 (8)0.0295 (9)0.0000 (6)0.0087 (8)
C140.0496 (8)0.1086 (14)0.0460 (9)0.0234 (9)0.0019 (7)0.0175 (9)
Geometric parameters (Å, º) top
O1—C11.3688 (16)C5—H50.9300
O1—C91.3804 (15)C11—C161.385 (2)
O3—C101.3676 (16)C11—C121.389 (2)
O3—C21.3849 (15)C11—C101.4765 (19)
C3—C21.3332 (18)F—C141.3525 (18)
C3—C41.4322 (17)C6—C71.386 (2)
C3—H30.9300C6—H60.9300
C2—C11.4553 (19)C16—C151.381 (2)
C4—C91.3914 (18)C16—H160.9300
C4—C51.4005 (18)C15—C141.366 (3)
C8—C71.376 (2)C15—H150.9300
C8—C91.3779 (18)C7—H70.9300
C8—H80.9300C12—C131.380 (2)
O2—C11.2018 (16)C12—H120.9300
O4—C101.1974 (17)C13—C141.368 (3)
C5—C61.375 (2)C13—H130.9300
C1—O1—C9122.55 (10)C12—C11—C10118.42 (14)
C10—O3—C2118.12 (10)O4—C10—O3122.73 (13)
C2—C3—C4119.50 (12)O4—C10—C11126.62 (13)
C2—C3—H3120.2O3—C10—C11110.64 (12)
C4—C3—H3120.2C5—C6—C7120.37 (14)
C3—C2—O3120.88 (12)C5—C6—H6119.8
C3—C2—C1122.92 (12)C7—C6—H6119.8
O3—C2—C1115.77 (11)C15—C16—C11120.84 (15)
C9—C4—C5117.83 (12)C15—C16—H16119.6
C9—C4—C3118.33 (11)C11—C16—H16119.6
C5—C4—C3123.83 (12)C14—C15—C16117.96 (17)
C7—C8—C9118.66 (14)C14—C15—H15121.0
C7—C8—H8120.7C16—C15—H15121.0
C9—C8—H8120.7C8—C7—C6120.63 (14)
C8—C9—O1116.95 (12)C8—C7—H7119.7
C8—C9—C4122.25 (12)C6—C7—H7119.7
O1—C9—C4120.80 (11)C13—C12—C11120.52 (16)
C6—C5—C4120.23 (14)C13—C12—H12119.7
C6—C5—H5119.9C11—C12—H12119.7
C4—C5—H5119.9C14—C13—C12118.18 (15)
O2—C1—O1118.12 (13)C14—C13—H13120.9
O2—C1—C2126.03 (13)C12—C13—H13120.9
O1—C1—C2115.84 (11)F—C14—C15118.14 (19)
C16—C11—C12119.20 (14)F—C14—C13118.57 (16)
C16—C11—C10122.38 (12)C15—C14—C13123.29 (15)
C4—C3—C2—O3173.63 (11)O3—C2—C1—O1171.86 (10)
C4—C3—C2—C11.4 (2)C2—O3—C10—O49.0 (2)
C10—O3—C2—C3117.23 (14)C2—O3—C10—C11172.17 (11)
C10—O3—C2—C170.06 (16)C16—C11—C10—O4176.64 (14)
C2—C3—C4—C92.15 (18)C12—C11—C10—O43.0 (2)
C2—C3—C4—C5178.32 (12)C16—C11—C10—O32.11 (18)
C7—C8—C9—O1178.67 (11)C12—C11—C10—O3178.30 (12)
C7—C8—C9—C41.5 (2)C4—C5—C6—C70.9 (2)
C1—O1—C9—C8178.64 (11)C12—C11—C16—C150.2 (2)
C1—O1—C9—C41.50 (18)C10—C11—C16—C15179.41 (13)
C5—C4—C9—C80.44 (19)C11—C16—C15—C140.5 (2)
C3—C4—C9—C8179.12 (12)C9—C8—C7—C61.3 (2)
C5—C4—C9—O1179.71 (11)C5—C6—C7—C80.2 (2)
C3—C4—C9—O10.73 (18)C16—C11—C12—C130.6 (2)
C9—C4—C5—C60.8 (2)C10—C11—C12—C13179.79 (13)
C3—C4—C5—C6179.72 (12)C11—C12—C13—C141.1 (2)
C9—O1—C1—O2178.72 (12)C16—C15—C14—F179.56 (14)
C9—O1—C1—C22.18 (18)C16—C15—C14—C130.0 (3)
C3—C2—C1—O2179.71 (14)C12—C13—C14—F179.68 (14)
O3—C2—C1—O27.2 (2)C12—C13—C14—C150.8 (3)
C3—C2—C1—O10.69 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O30.932.372.7031 (17)101
 

Acknowledgements

The authors thank the Spectropole Service of the Faculty of Sciences (Aix-Marseille, France) for the use of the diffractometer and the NMR and MS spectrometers.

References

First citationAgilent. (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationGomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926–932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLacy, A. & O'Kennedy, R. (2004). Curr. Pharm. Des. 10, 3797–3811.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTodeschini, A. R., de Miranda, A. L. P., da Silva, K. C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189–199.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZiki, E., Sosso, S., Mansilla-Koblavi, F., Djandé, A. & Kakou-Yao, R. (2017). Acta Cryst. E73, 45–47.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds