organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Iso­propyl-4,7-di­methyl-1-nitro­naphthalene

aLaboratoire de Chimie des Substances Naturelles, `Unité Associé au CNRST (URAC16)', Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, Université Cadi Ayyad, 40000 Marrakech, Morocco, bLaboratoire de Chimie du Solide Appliqué, Faculté des Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta BP 1014 Rabat, Morocco, and cLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: benharref@uca.ac.ma

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 7 April 2017; accepted 19 April 2017; online 28 April 2017)

All the non-H atoms of the title compound, C15H17NO2, except the CH3 groups of the isopropyl unit and the O atoms of the nitro group, lie on a crystallographic mirror plane. The dihedral angle between the naphthalene plane and the nitro group is constrained to be 90° by symmetry. In the crystal, mol­ecules are linked by ππ inter­actions [centroid–centroid separation = 3.6591 (4) Å] and stacked along the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The bicyclic sesquiterpenes α- and β-himachalene are the main constituents of the essential oil of the Atlas cedar (Cedrus atlantica) (Benharref et al., 2015[Benharref, A., Elkarroumi, J., El Ammari, L., Saadi, M. & Berraho, M. (2015). Acta Cryst. E71, o659-o660.]; Loubidi et al., 2014[Loubidi, M., Agustin, D., Benharref, A. & Poli, R. (2014). C. R. Chim. 17, 549-556.]). As part of our ongoing studies of such systems (Benharref et al., 2016[Benharref, A., Oukhrib, A., Ait Elhad, M., El Ammari, L., Saadi, M. & Berraho, M. (2016). IUCrData, 1, x160703.]), we now report the synthesis and crystal structure of the title compound.

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The naphthalene ring system is perfectly planar (all atoms lie on a crystallographic mirror plane). The O atom of the nitro group (N1/O1/O1a) and the isopropyl group (C13/C13a) lie perfectly normal to the mean plane of the naphthalene moieties with the same dihedral angle of 90°. In the crystal, mol­ecules are linked through ππ inter­actions between naphthalene ring systems stacked along b axis, as shown in Fig. 2[link], the inter­centroid distance being 3.6591 (4) Å.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. Atoms with suffix `a' are generated by the symmetry operation (x, [{3\over 2}] − y, z).
[Figure 2]
Figure 2
Crystal packing of the title compound, showing inter­molecular ππ inter­actions between naphthalene ring systems (dashed green line).

Synthesis and crystallization

In a reactor of 250 ml volume equipped with a magnetic stirrer and a dropping funnel, were introduced 60 ml of di­chloro­methane, 3 ml of nitric acid and 5 ml of concentrated sulfuric acid. After cooling, 6 g (30 mmol) of 2-isopropyl-4,7-di­methyl­naphthalene, which was synthesized from a mixture of α and β himachalene (Benharref et al. 2016[Benharref, A., Oukhrib, A., Ait Elhad, M., El Ammari, L., Saadi, M. & Berraho, M. (2016). IUCrData, 1, x160703.]), dissolved in 30 ml of di­chloro­methane was added dropwise through the dropping funnel. The reaction mixture was stirred for 4 h, then quenched with 50 ml of water ice and extracted with di­chloro­methane. The organic layers were combined, washed five times with 40 ml with water and dried over sodium sulfate and then concentrated under vacuum. Chromatography on a silica gel column of the residue with hexa­ne–ethyl acetate (98/2) as eluent of the residue gave the title compound (yield 5 g, 66%; 20 mmol). It was recrystallized from cyclo­hexane solution to obtain yellow blocks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C15H17NO2
Mr 243.29
Crystal system, space group Orthorhombic, Pnma
Temperature (K) 173
a, b, c (Å) 15.6744 (12), 6.9475 (5), 11.9880 (8)
V3) 1305.47 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.48 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.811, 1.0
No. of measured, independent and observed [I > 2σ(I)] reflections 7047, 1344, 1155
Rint 0.017
(sin θ/λ)max−1) 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.06
No. of reflections 1344
No. of parameters 107
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.32
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

2-Isopropyl-4,7-dimethyl-1-nitronaphthalene top
Crystal data top
C15H17NO2Dx = 1.238 Mg m3
Mr = 243.29Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 7047 reflections
a = 15.6744 (12) Åθ = 3.4–25.7°
b = 6.9475 (5) ŵ = 0.08 mm1
c = 11.9880 (8) ÅT = 173 K
V = 1305.47 (16) Å3Box, yellow
Z = 40.48 × 0.20 × 0.15 mm
F(000) = 520
Data collection top
Bruker X8 APEX
diffractometer
1155 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.017
φ and ω scansθmax = 25.7°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1819
Tmin = 0.811, Tmax = 1.0k = 88
7047 measured reflectionsl = 1412
1344 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0484P)2 + 0.5331P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.22 e Å3
1344 reflectionsΔρmin = 0.32 e Å3
107 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.010 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.45971 (10)0.75000.51511 (14)0.0202 (4)
C20.37870 (10)0.75000.56986 (14)0.0223 (4)
C30.37553 (10)0.75000.68398 (15)0.0240 (4)
H30.32130.75000.71940.029*
C40.44979 (11)0.75000.75165 (15)0.0235 (4)
C50.52612 (10)0.75000.69686 (14)0.0219 (4)
C60.53587 (10)0.75000.57949 (14)0.0203 (4)
C70.61626 (11)0.75000.52544 (15)0.0243 (4)
H70.66680.75000.56920.029*
C80.62275 (11)0.75000.41138 (15)0.0263 (4)
C90.54670 (12)0.75000.34848 (15)0.0274 (4)
H90.55020.75000.26940.033*
C100.46828 (11)0.75000.39775 (15)0.0243 (4)
H100.41860.75000.35240.029*
C110.29772 (11)0.75000.50229 (16)0.0304 (4)
H11A0.29140.87430.46450.046*0.5
H11B0.24880.72890.55180.046*0.5
H11C0.30020.64680.44660.046*0.5
C120.44162 (12)0.75000.87820 (14)0.0296 (4)
H120.50050.75000.91020.035*
C130.39654 (12)0.5696 (2)0.91927 (12)0.0503 (5)
H13A0.39240.57301.00080.076*
H13B0.42900.45570.89640.076*
H13C0.33910.56370.88710.076*
C150.70823 (12)0.75000.35406 (17)0.0360 (5)
H15A0.72470.61740.33650.054*0.5
H15B0.75100.80760.40340.054*0.5
H15C0.70460.82500.28500.054*0.5
N10.60582 (9)0.75000.76224 (12)0.0291 (4)
O10.63733 (8)0.90193 (18)0.78734 (12)0.0710 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0220 (9)0.0144 (7)0.0243 (8)0.0000.0010 (6)0.000
C20.0202 (8)0.0168 (8)0.0299 (9)0.0000.0016 (7)0.000
C30.0205 (8)0.0222 (8)0.0292 (9)0.0000.0038 (7)0.000
C40.0262 (9)0.0200 (8)0.0241 (8)0.0000.0003 (7)0.000
C50.0214 (8)0.0196 (8)0.0246 (9)0.0000.0041 (7)0.000
C60.0211 (8)0.0141 (8)0.0258 (9)0.0000.0005 (6)0.000
C70.0208 (8)0.0206 (8)0.0316 (9)0.0000.0009 (7)0.000
C80.0277 (9)0.0188 (8)0.0325 (9)0.0000.0064 (7)0.000
C90.0353 (10)0.0242 (9)0.0229 (8)0.0000.0041 (7)0.000
C100.0271 (9)0.0214 (8)0.0243 (9)0.0000.0031 (7)0.000
C110.0223 (9)0.0349 (10)0.0338 (10)0.0000.0036 (7)0.000
C120.0302 (9)0.0358 (10)0.0227 (9)0.0000.0021 (7)0.000
C130.0738 (11)0.0473 (9)0.0299 (7)0.0109 (8)0.0101 (7)0.0065 (7)
C150.0310 (10)0.0371 (11)0.0400 (11)0.0000.0110 (8)0.000
N10.0252 (8)0.0363 (9)0.0257 (8)0.0000.0033 (6)0.000
O10.0669 (9)0.0493 (7)0.0967 (10)0.0205 (6)0.0519 (7)0.0045 (7)
Geometric parameters (Å, º) top
C1—C101.413 (2)C9—H90.9500
C1—C61.422 (2)C10—H100.9500
C1—C21.429 (2)C11—H11A0.9800
C2—C31.369 (2)C11—H11B0.9800
C2—C111.506 (2)C11—H11C0.9800
C3—C41.419 (2)C12—C13i1.5208 (18)
C3—H30.9500C12—C131.5209 (18)
C4—C51.365 (2)C12—H121.0000
C4—C121.523 (2)C13—H13A0.9800
C5—C61.415 (2)C13—H13B0.9800
C5—N11.475 (2)C13—H13C0.9800
C6—C71.417 (2)C15—H15A0.9800
C7—C81.371 (3)C15—H15B0.9800
C7—H70.9500C15—H15C0.9800
C8—C91.410 (3)N1—O11.2035 (13)
C8—C151.506 (2)N1—O1i1.2036 (13)
C9—C101.364 (2)
C10—C1—C6117.43 (15)C1—C10—H10119.4
C10—C1—C2122.79 (15)C2—C11—H11A109.5
C6—C1—C2119.78 (15)C2—C11—H11B109.5
C3—C2—C1119.42 (15)H11A—C11—H11B109.5
C3—C2—C11120.47 (15)C2—C11—H11C109.5
C1—C2—C11120.12 (15)H11A—C11—H11C109.5
C2—C3—C4122.79 (15)H11B—C11—H11C109.5
C2—C3—H3118.6C13i—C12—C13111.02 (17)
C4—C3—H3118.6C13i—C12—C4111.20 (10)
C5—C4—C3116.35 (16)C13—C12—C4111.20 (10)
C5—C4—C12123.60 (16)C13i—C12—H12107.7
C3—C4—C12120.05 (15)C13—C12—H12107.7
C4—C5—C6124.97 (15)C4—C12—H12107.7
C4—C5—N1119.13 (15)C12—C13—H13A109.5
C6—C5—N1115.90 (14)C12—C13—H13B109.5
C5—C6—C7123.42 (15)H13A—C13—H13B109.5
C5—C6—C1116.68 (14)C12—C13—H13C109.5
C7—C6—C1119.90 (15)H13A—C13—H13C109.5
C8—C7—C6121.47 (16)H13B—C13—H13C109.5
C8—C7—H7119.3C8—C15—H15A109.5
C6—C7—H7119.3C8—C15—H15B109.5
C7—C8—C9118.06 (16)H15A—C15—H15B109.5
C7—C8—C15121.40 (17)C8—C15—H15C109.5
C9—C8—C15120.53 (16)H15A—C15—H15C109.5
C10—C9—C8122.02 (16)H15B—C15—H15C109.5
C10—C9—H9119.0O1—N1—O1i122.57 (16)
C8—C9—H9119.0O1—N1—C5118.71 (8)
C9—C10—C1121.12 (16)O1i—N1—C5118.71 (8)
C9—C10—H10119.4
Symmetry code: (i) x, y+3/2, z.
 

Acknowledgements

The authors thank the Laboratoire de Chimie de Coordination, UPR-CNRS 8241 Toulouse, for the X-ray measurements.

References

First citationBenharref, A., Elkarroumi, J., El Ammari, L., Saadi, M. & Berraho, M. (2015). Acta Cryst. E71, o659–o660.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBenharref, A., Oukhrib, A., Ait Elhad, M., El Ammari, L., Saadi, M. & Berraho, M. (2016). IUCrData, 1, x160703.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLoubidi, M., Agustin, D., Benharref, A. & Poli, R. (2014). C. R. Chim. 17, 549–556.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds