organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Allyl-2-methyl­pyridinium chloride

aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria, bUniversity of Innsbruck, Institute of Mineralogy and Petrography, Innrain 52, 6020 Innsbruck, Austria, and cLenzing AG, Global R&D, Werkstrasse 2, 4860 Lenzing, Austria
*Correspondence e-mail: herwig.schottenberger@uibk.ac.at

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 7 April 2017; accepted 20 April 2017; online 28 April 2017)

The title mol­ecular salt, C9H12N+·Cl, was obtained by reaction of 2-meth­yl­pyridine and allyl chloride. A network of C—H⋯Cl hydrogen bonds is observed in the crystal structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Chloride-based ionic liquids (salts melting below 373 K) are suitable solvents for cellulose dissolution (Wang et al., 2012[Wang, H., Gurau, G. & Rogers, R. D. (2012). Chem. Soc. Rev. 41, 1519-1537.]; Liu et al., 2016[Liu, Y.-R., Thomsen, K., Nie, Y., Zhang, S.-J. & Meyer, A. S. (2016). Green Chem. 18, 6246-6254.]) and for fibre spinning. The numerous advantages of ionic liquids, such as non-volatility, thermal stability, chemical modifiability, and low melting points are countervailed by their disadvantages, such as aqua­tic toxicity, corrosivity, and a high energy input required for pulp preparation and removal of water (Bentivoglio et al., 2006[Bentivoglio, G., Röder, T., Fasching, M., Buchberger, M., Schottenberger, H. & Sixta, H. (2006). Lenz. Ber. 86, 154-161.]). In particular, it has been found that some ionic liquids promote degradation of cellulose. The mol­ecular mass distribution of the reconstituted cellulose samples was determined by gel permeation chromatography (Schelosky et al., 1999[Schelosky, N., Röder, T. & Baldinger, T. (1999). Papier 53, 728-738.]). Degradation was exceptionally strong (from 200 kDa down to 24 kDa) in the present ionic liquid. The solubility of cellulose in a series of pyridinium chlorides was studied by quantum-chemical calculations (Sashina et al., 2012[Sashina, E. S., Kashirskii, D. A. & Martynova, E. V. (2012). Russ. J. Gen. Chem. 82, 729-735.]).

The title compound has been described as a `sirupy liquid' (Ramsay, 1876[Ramsay, W. (1876). Philos. Mag. Ser. 5, 2, 269-281.]). It has now been crystallized but still qualifies as an ionic liquid (melting at 367 K). In the crystal structure, the allyl group is twisted out of the plane of the heterocyclic ring. Weak C—H⋯Cl hydrogen bonds (Fig. 1[link], Table 1[link]) create a three-dimensional network in which the chloride ions are sixfold coordinated toward the pyridinium cations (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl1 0.95 2.82 3.701 (2) 155
C7—H7A⋯Cl1i 0.98 2.78 3.695 (2) 157
C4—H4A⋯Cl1ii 0.99 2.76 3.698 (2) 159
C4—H4B⋯Cl1i 0.99 2.72 3.609 (2) 149
C6—H6⋯Cl1iii 0.95 2.64 3.545 (2) 161
C3—H3⋯Cl1ii 0.95 2.57 3.454 (2) 155
Symmetry codes: (i) x, y+1, z; (ii) -x+2, -y, -z+1; (iii) -x+2, -y, -z+2.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labels and 50% probability displacement ellipsoids for non-H atoms. The C—H⋯Cl hydrogen bonds are shown as dashed lines. Symmetry codes: (i) x, y + 1, z; (ii) −x + 2, −y, −z + 1; (iii) −x + 2, −y, −z + 2.
[Figure 2]
Figure 2
Sixfold-coordinated chloride ions in the unit cell of the title compound. Only hydrogen atoms involved in contacts are shown.

Related structures with similar hydrogen bond networks include N-allyl­pyrrolidinium chloride (Laus et al., 2008[Laus, G., Bentivoglio, G., Kahlenberg, V., Griesser, U. J., Schottenberger, H. & Nauer, G. (2008). CrystEngComm, 10, 748-752.]), N-allyl­pyridinium bromide (Seethalakshmi et al., 2013[Seethalakshmi, T., Venkatesan, P., Nallu, M., Lynch, D. E. & Thamotharan, S. (2013). Acta Cryst. E69, o884.]) and N-allyl­imidazolium iodides (Fei et al., 2006[Fei, Z., Kuang, D., Zhao, D., Klein, C., Ang, W. H., Zakeeruddin, S. M., Grätzel, M. & Dyson, P. J. (2006). Inorg. Chem. 45, 10407-10409.]).

Synthesis and crystallization

To 2-methyl­pyridine (18.9 g, 0.20 mol) was added an excess of allyl chloride (18.6 g, 0.24 mol). The reaction mixture was refluxed for 72 h. Excess allyl chloride was removed under reduced pressure. The crude product was washed with Et2O (50 ml) and dried on a high vacuum line giving 1-allyl-2-methyl­pyridinium chloride as a brown powder (17.4 g, 51%), m.p. 364–367 K. Colourless plates were recrystallized from a solvent mixture of acetone/CH2Cl2. 1H NMR (300 MHz, DMSO-d6): δ 2.93 (3H, s), 5.10 (1H, d, J = 17.2 Hz), 5.35 (1H, d, J = 10.6 Hz), 5.66 (2H, d, J = 5.6 Hz), 6.00 (1H, m), 7.92 (1H, t, J = 6.8 Hz), 8.00 (1H, d, J = 7.9 Hz), 8.41 (1H, t, J = 7.6 Hz), 9.70 (1H, d, J = 5.9) p.p.m. 13C NMR (75 MHz, DMSO-d6): δ 20.5, 60.0, 120.9, 126.2, 130.0, 130.1, 145.5, 146.9, 155.0 p.p.m. IR (neat): ν 3009, 2921, 2438, 1622, 1573, 1503, 1478, 1455, 1421, 1296, 1158, 1141, 1053, 1004, 930, 829, 794, 770, 710, 663 cm−1.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C9H12N+·Cl
Mr 169.65
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 6.9617 (17), 7.5941 (19), 9.464 (2)
α, β, γ (°) 86.06 (2), 82.118 (19), 67.102 (18)
V3) 456.48 (19)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.35
Crystal size (mm) 0.4 × 0.38 × 0.1
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.904, 0.985
No. of measured, independent and observed [I > 2σ(I)] reflections 3066, 1616, 1465
Rint 0.017
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.067, 1.05
No. of reflections 1616
No. of parameters 101
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.17
Computer programs: X-AREA and X-RED (Stoe & Cie, 1997[Stoe & Cie (1997). X-AREA and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]), SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 1997); cell refinement: X-AREA (Stoe & Cie, 1997); data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008).

1-Allyl-2-methylpyridinium chloride top
Crystal data top
C9H12N+·ClZ = 2
Mr = 169.65F(000) = 180
Triclinic, P1Dx = 1.234 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9617 (17) ÅCell parameters from 3556 reflections
b = 7.5941 (19) Åθ = 2.2–27.2°
c = 9.464 (2) ŵ = 0.35 mm1
α = 86.06 (2)°T = 173 K
β = 82.118 (19)°Fragment of a plate, colorless
γ = 67.102 (18)°0.4 × 0.38 × 0.1 mm
V = 456.48 (19) Å3
Data collection top
Stoe IPDS 2
diffractometer
1616 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1465 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 6.67 pixels mm-1θmax = 25.4°, θmin = 2.2°
rotation method scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 89
Tmin = 0.904, Tmax = 0.985l = 1111
3066 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0261P)2 + 0.1555P]
where P = (Fo2 + 2Fc2)/3
1616 reflections(Δ/σ)max < 0.001
101 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.17 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.89617 (6)0.22917 (5)0.72298 (4)0.02896 (12)
N11.00030 (18)0.21870 (17)0.71106 (12)0.0243 (3)
C10.6310 (2)0.2941 (2)0.67241 (16)0.0294 (3)
H10.65440.16210.68010.035*
C21.3379 (2)0.0309 (2)0.68650 (17)0.0314 (3)
H21.45250.11820.62770.038*
C31.1628 (2)0.0914 (2)0.62917 (16)0.0281 (3)
H31.15530.08680.53010.034*
C40.8179 (2)0.3488 (2)0.63906 (15)0.0272 (3)
H4A0.85910.34510.53460.033*
H4B0.77890.48140.670.033*
C51.0027 (2)0.2277 (2)0.85415 (15)0.0268 (3)
C61.1772 (2)0.1022 (2)0.91430 (16)0.0322 (3)
H61.18080.10421.01410.039*
C70.8237 (3)0.3733 (2)0.94055 (16)0.0350 (4)
H7A0.80660.50140.90310.052*
H7B0.85180.36221.04010.052*
H7C0.69480.3520.93520.052*
C81.3453 (2)0.0254 (2)0.83142 (17)0.0331 (3)
H81.46540.10890.87340.04*
C90.4376 (2)0.4194 (2)0.69139 (19)0.0394 (4)
H9A0.41020.55220.68420.047*
H9B0.32460.37760.71230.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02934 (19)0.02856 (19)0.02593 (19)0.00806 (14)0.00311 (14)0.00060 (13)
N10.0225 (6)0.0264 (6)0.0247 (6)0.0108 (5)0.0011 (5)0.0002 (5)
C10.0283 (7)0.0250 (7)0.0353 (8)0.0100 (6)0.0063 (6)0.0000 (6)
C20.0242 (7)0.0315 (8)0.0357 (8)0.0093 (6)0.0026 (6)0.0024 (6)
C30.0279 (7)0.0321 (8)0.0254 (7)0.0137 (6)0.0012 (6)0.0032 (6)
C40.0262 (7)0.0275 (7)0.0258 (7)0.0083 (6)0.0038 (6)0.0022 (6)
C50.0283 (7)0.0299 (7)0.0245 (7)0.0149 (6)0.0001 (6)0.0003 (6)
C60.0328 (8)0.0390 (8)0.0269 (8)0.0162 (7)0.0059 (6)0.0040 (6)
C70.0368 (8)0.0370 (9)0.0269 (8)0.0108 (7)0.0006 (7)0.0024 (6)
C80.0256 (7)0.0358 (8)0.0378 (9)0.0117 (6)0.0071 (7)0.0055 (7)
C90.0288 (8)0.0333 (8)0.0542 (11)0.0108 (7)0.0037 (7)0.0015 (7)
Geometric parameters (Å, º) top
N1—C31.351 (2)C4—H4B0.9900
N1—C51.364 (2)C5—C61.385 (2)
N1—C41.4882 (19)C5—C71.489 (2)
C1—C91.307 (2)C6—C81.376 (2)
C1—C41.502 (2)C6—H60.9500
C1—H10.9500C7—H7A0.9800
C2—C31.368 (2)C7—H7B0.9800
C2—C81.383 (2)C7—H7C0.9800
C2—H20.9500C8—H80.9500
C3—H30.9500C9—H9A0.9500
C4—H4A0.9900C9—H9B0.9500
C3—N1—C5121.20 (13)N1—C5—C6118.28 (14)
C3—N1—C4117.55 (13)N1—C5—C7119.86 (14)
C5—N1—C4121.25 (13)C6—C5—C7121.84 (14)
C9—C1—C4123.20 (15)C8—C6—C5120.98 (15)
C9—C1—H1118.4C8—C6—H6119.5
C4—C1—H1118.4C5—C6—H6119.5
C3—C2—C8118.97 (15)C5—C7—H7A109.5
C3—C2—H2120.5C5—C7—H7B109.5
C8—C2—H2120.5H7A—C7—H7B109.5
N1—C3—C2121.21 (15)C5—C7—H7C109.5
N1—C3—H3119.4H7A—C7—H7C109.5
C2—C3—H3119.4H7B—C7—H7C109.5
N1—C4—C1112.07 (12)C6—C8—C2119.33 (15)
N1—C4—H4A109.2C6—C8—H8120.3
C1—C4—H4A109.2C2—C8—H8120.3
N1—C4—H4B109.2C1—C9—H9A120.0
C1—C4—H4B109.2C1—C9—H9B120.0
H4A—C4—H4B107.9H9A—C9—H9B120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl10.952.823.701 (2)155
C7—H7A···Cl1i0.982.783.695 (2)157
C4—H4A···Cl1ii0.992.763.698 (2)159
C4—H4B···Cl1i0.992.723.609 (2)149
C6—H6···Cl1iii0.952.643.545 (2)161
C3—H3···Cl1ii0.952.573.454 (2)155
Symmetry codes: (i) x, y+1, z; (ii) x+2, y, z+1; (iii) x+2, y, z+2.
 

References

First citationBentivoglio, G., Röder, T., Fasching, M., Buchberger, M., Schottenberger, H. & Sixta, H. (2006). Lenz. Ber. 86, 154–161.  CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFei, Z., Kuang, D., Zhao, D., Klein, C., Ang, W. H., Zakeeruddin, S. M., Grätzel, M. & Dyson, P. J. (2006). Inorg. Chem. 45, 10407–10409.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLaus, G., Bentivoglio, G., Kahlenberg, V., Griesser, U. J., Schottenberger, H. & Nauer, G. (2008). CrystEngComm, 10, 748–752.  CrossRef CAS Google Scholar
First citationLiu, Y.-R., Thomsen, K., Nie, Y., Zhang, S.-J. & Meyer, A. S. (2016). Green Chem. 18, 6246–6254.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRamsay, W. (1876). Philos. Mag. Ser. 5, 2, 269–281.  Google Scholar
First citationSashina, E. S., Kashirskii, D. A. & Martynova, E. V. (2012). Russ. J. Gen. Chem. 82, 729–735.  CrossRef CAS Google Scholar
First citationSchelosky, N., Röder, T. & Baldinger, T. (1999). Papier 53, 728–738.  CAS Google Scholar
First citationSeethalakshmi, T., Venkatesan, P., Nallu, M., Lynch, D. E. & Thamotharan, S. (2013). Acta Cryst. E69, o884.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1997). X-AREA and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWang, H., Gurau, G. & Rogers, R. D. (2012). Chem. Soc. Rev. 41, 1519–1537.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds