organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Benzyl­­idene-1′-methyl-4′-phenyl­di­spiro­[cyclo­pentane-1,3′-pyrrolidine-2′,1′′-acenaphthene]-2,2′′-dione

aDepartment of Chemistry, D. G. Vaishanava College, Arumbakkam, Chennai, Tamilnadu, India, bDepartment of Chemistry, IIT Madras, Chennai, Tamilnadu, India, and cDepartment of Chemistry, Auxilium College, Vellore, India
*Correspondence e-mail: augustineap@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 16 March 2017; accepted 18 April 2017; online 21 April 2017)

In the title compound, C33H27NO2, the pyrrolidine ring adopts an envelope conformation, with the N atom as the flap. The cyclo­penta­none ring adopts a twisted conformation about the Cs—CH2 bond (s = spiro link). The dihedral angle between these rings (all atoms) is 82.02 (15)°. The packing features weak C—H⋯O inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

This work is part of a synthetic project aimed at solvent-free Claisen–Schmidt reactions of cyclo­alkanones with various substituted benzaldehyde (aryl aldehydes) using solid NaOH and applying a grinding technique to synthesize qu­anti­tative yields of α,α′-bis-(substituted benzyl­idene)cyclo­alkanones (Augustine et al., 2009[Augustine, T., Kanakam, C. C., Vithiya, S. M. & Ramkumar, V. (2009). Tetrahedron Lett. 50, 5906-5909.]; Prasad et al. 2011[Prasad, T. A. A., Vithiya, B. S. M. & Ignacimuthu, S. (2011). Der Pharma Chem. 3, 293-299.]). The carbonyl group of a ketone has less additive power than that of an aldehyde: when an aldehyde condenses with ketones it serves as a substrate for an enolized ketone. When bis­benzyl­idene cyclo­alkanones were subjected to 1,3-dipolar addition with azomethine ylides generated through deca­rboxylative route by reacting a secondary amino acid with a diketone using a solvent-free microwave approach, the synthesis yielded new di­spiro­heterocycles, which are being further subjected to biological study. Here, we present the crystal structure of the title compound.

The mol­ecular structure consists of a pyrrolidine ring with a phenyl ring substituted in the 14 position, an acenaphthene ring in the 12 position and a benzelydine cyclo­penta­none ring in the 13 position (Fig. 1[link]). The pyrrolidine (N1/C12/C13/C14/C15) ring adopts an envelope conformation with the N atom deviating from the plane by 0.581 (2) Å. The cyclo­penta­none ring (C13/C16/C17/C18/C19) is twisted about the C13—C16 bond: the dihedral angle between these rings (all atoms) is 82.02 (15)°. An intra­molecular C—H⋯O inter­action closes an S(9) ring. The packing features weak C—H⋯O inter­actions (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32⋯O1 0.93 2.58 3.436 (4) 152
C5—H5⋯O2i 0.93 2.52 3.348 (8) 149
C17—H17A⋯O2ii 0.97 2.40 3.372 (3) 174
Symmetry codes: (i) [-x+2, -y+1, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with atoms represented as 50% probability ellipsoids.
[Figure 2]
Figure 2
The packing of the title compound.

Synthesis and crystallization

Acenaphthene­quinone (0.37 g, 2 mmol) was added to a mixture of sarcosine (0.23 g, 2 mmol), bis­benzyl­idene cyclo­penta­none (0.53 g, 2 mmol) in methanol (20 ml) and refluxed for four h at a temperature of 100°C in an oil bath. The reaction was monitored by TLC and once the reaction was complete, the reaction mixture was cooled gradually and filtered. The yellow-coloured solution was kept undisturbed for slow evaporation and the yellow solid obtained was washed with water and dried. It was recrystallized from acetone solution to give the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C33H27NO2
Mr 469.55
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 296
a, b, c (Å) 17.5297 (8), 12.1853 (6), 12.0781 (4)
V3) 2579.94 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.25 × 0.22 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.982, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 10708, 3713, 3171
Rint 0.019
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.084, 1.04
No. of reflections 3713
No. of parameters 327
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.11, −0.12
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

3-Benzylidene-1'-methyl-4'-phenyldispiro[cyclopentane-1,3'-pyrrolidine-2',1''-acenaphthene]-2,2''-dione top
Crystal data top
C33H27NO2Dx = 1.209 Mg m3
Mr = 469.55Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 4328 reflections
a = 17.5297 (8) Åθ = 2.3–24.2°
b = 12.1853 (6) ŵ = 0.08 mm1
c = 12.0781 (4) ÅT = 296 K
V = 2579.94 (19) Å3Block, brown
Z = 40.25 × 0.22 × 0.15 mm
F(000) = 992
Data collection top
Bruker APEXII CCD
diffractometer
3171 reflections with I > 2σ(I)
φ and ω scansRint = 0.019
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 25.0°, θmin = 2.0°
Tmin = 0.982, Tmax = 0.989h = 2015
10708 measured reflectionsk = 1413
3713 independent reflectionsl = 914
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0381P)2 + 0.3666P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.11 e Å3
3713 reflectionsΔρmin = 0.12 e Å3
327 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0048 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Nitrogen H atoms were located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms,with aromatic C—H =0.93 Å, aliphatic C—H = 0.98 Å and methyl C—H = 0.96 Å. The displacement parameters were set for phenyl and aliphatic H atoms at Uiso(H) = 1.2Ueq(C) and for methyl H atoms at 1.5Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.93571 (16)0.8127 (2)0.6740 (3)0.0534 (7)
C20.99936 (17)0.7622 (3)0.6124 (3)0.0644 (10)
C31.0435 (2)0.7980 (4)0.5260 (3)0.0979 (14)
H31.03450.86520.49200.117*
C41.1031 (3)0.7283 (7)0.4908 (5)0.141 (3)
H41.13460.75120.43340.169*
C51.1157 (3)0.6286 (7)0.5380 (6)0.144 (3)
H51.15420.58430.50930.173*
C61.0732 (2)0.5901 (5)0.6282 (4)0.0980 (16)
C71.0820 (3)0.4918 (5)0.6910 (6)0.127 (2)
H71.11920.44110.67130.153*
C81.0367 (3)0.4721 (4)0.7787 (6)0.123 (2)
H81.04480.40850.81960.147*
C90.9774 (2)0.5434 (3)0.8115 (4)0.0817 (11)
H90.94740.52740.87300.098*
C100.96486 (15)0.6368 (2)0.7509 (3)0.0565 (8)
C111.01347 (16)0.6597 (3)0.6619 (3)0.0663 (10)
C120.90674 (14)0.7280 (2)0.7623 (2)0.0438 (6)
C130.82020 (13)0.6964 (2)0.7387 (2)0.0364 (6)
C140.77458 (14)0.7685 (2)0.8232 (2)0.0418 (6)
H140.75370.71800.87860.050*
C150.83459 (16)0.8372 (2)0.8822 (3)0.0551 (8)
H15A0.84150.90740.84570.066*
H15B0.82060.84980.95890.066*
C160.79650 (16)0.7002 (2)0.6165 (2)0.0411 (6)
H16A0.74160.70820.60990.049*
H16B0.82080.76150.57930.049*
C170.82258 (16)0.5913 (2)0.5654 (2)0.0433 (6)
H17A0.78960.57020.50450.052*
H17B0.87460.59660.53860.052*
C180.81684 (13)0.5107 (2)0.6590 (2)0.0396 (6)
C190.81010 (14)0.5735 (2)0.7635 (2)0.0402 (6)
C200.81731 (15)0.4010 (2)0.6616 (3)0.0479 (7)
H200.81390.37110.73220.057*
C210.82230 (16)0.3197 (2)0.5728 (3)0.0508 (7)
C220.82514 (16)0.3441 (2)0.4606 (3)0.0554 (8)
H220.82680.41710.43830.066*
C230.82559 (18)0.2628 (3)0.3820 (3)0.0674 (9)
H230.82580.28120.30720.081*
C240.8257 (2)0.1547 (3)0.4131 (4)0.0839 (12)
H240.82610.09960.35980.101*
C250.8253 (3)0.1285 (3)0.5224 (4)0.0994 (15)
H250.82660.05520.54370.119*
C260.8230 (2)0.2089 (3)0.6015 (3)0.0809 (12)
H260.82180.18920.67580.097*
C270.70803 (15)0.8330 (2)0.7781 (2)0.0419 (6)
C280.63472 (17)0.8051 (3)0.8076 (3)0.0578 (8)
H280.62660.74740.85670.069*
C290.57249 (19)0.8620 (3)0.7648 (3)0.0754 (10)
H290.52320.84100.78410.091*
C300.5834 (2)0.9485 (3)0.6946 (3)0.0693 (10)
H300.54180.98670.66630.083*
C310.6562 (2)0.9785 (2)0.6660 (3)0.0652 (9)
H310.66411.03780.61880.078*
C320.71770 (17)0.9211 (2)0.7069 (3)0.0532 (8)
H320.76670.94190.68640.064*
C330.97241 (19)0.8233 (3)0.9159 (3)0.0843 (12)
H33A0.96650.83980.99320.126*
H33B0.98140.89000.87560.126*
H33C1.01490.77460.90620.126*
N10.90293 (13)0.7708 (2)0.8745 (2)0.0535 (6)
O10.91109 (12)0.90536 (17)0.6635 (2)0.0719 (7)
O20.79755 (12)0.53556 (15)0.85476 (16)0.0554 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0431 (16)0.0577 (18)0.0594 (19)0.0134 (14)0.0008 (15)0.0130 (16)
C20.0444 (18)0.091 (3)0.058 (2)0.0234 (17)0.0139 (16)0.0315 (18)
C30.074 (3)0.147 (4)0.072 (3)0.048 (3)0.027 (2)0.039 (3)
C40.085 (4)0.232 (7)0.106 (5)0.066 (5)0.055 (3)0.092 (5)
C50.058 (3)0.224 (7)0.151 (6)0.016 (4)0.025 (3)0.129 (6)
C60.0384 (19)0.135 (4)0.120 (4)0.006 (2)0.001 (2)0.081 (3)
C70.062 (3)0.119 (4)0.201 (7)0.045 (3)0.025 (4)0.076 (4)
C80.077 (3)0.097 (3)0.194 (6)0.048 (3)0.049 (4)0.033 (4)
C90.056 (2)0.076 (2)0.112 (3)0.0186 (17)0.028 (2)0.005 (2)
C100.0371 (16)0.0611 (19)0.071 (2)0.0054 (13)0.0108 (16)0.0189 (17)
C110.0342 (16)0.086 (2)0.079 (2)0.0023 (15)0.0017 (17)0.046 (2)
C120.0372 (16)0.0470 (15)0.0470 (16)0.0022 (11)0.0013 (12)0.0076 (13)
C130.0350 (14)0.0370 (13)0.0371 (14)0.0017 (11)0.0027 (11)0.0002 (11)
C140.0395 (15)0.0442 (15)0.0416 (15)0.0015 (12)0.0075 (13)0.0003 (12)
C150.0541 (18)0.0648 (19)0.0465 (17)0.0049 (15)0.0007 (14)0.0191 (15)
C160.0447 (15)0.0361 (14)0.0425 (15)0.0009 (12)0.0001 (12)0.0020 (11)
C170.0496 (16)0.0405 (14)0.0398 (15)0.0002 (12)0.0049 (12)0.0014 (12)
C180.0358 (13)0.0397 (14)0.0434 (15)0.0012 (11)0.0023 (12)0.0016 (13)
C190.0335 (14)0.0443 (15)0.0429 (17)0.0050 (11)0.0012 (12)0.0037 (14)
C200.0503 (16)0.0417 (15)0.0516 (17)0.0034 (12)0.0024 (14)0.0045 (15)
C210.0454 (17)0.0412 (15)0.066 (2)0.0016 (13)0.0075 (14)0.0016 (15)
C220.0570 (19)0.0480 (17)0.061 (2)0.0102 (14)0.0029 (16)0.0055 (16)
C230.064 (2)0.069 (2)0.069 (2)0.0068 (17)0.0054 (17)0.0149 (19)
C240.085 (3)0.062 (2)0.104 (3)0.0154 (18)0.032 (2)0.036 (2)
C250.152 (4)0.0392 (19)0.107 (4)0.009 (2)0.050 (3)0.012 (2)
C260.121 (3)0.0409 (19)0.081 (3)0.0010 (19)0.028 (2)0.0016 (18)
C270.0426 (16)0.0373 (14)0.0457 (16)0.0053 (11)0.0030 (12)0.0080 (12)
C280.0470 (18)0.0608 (19)0.066 (2)0.0016 (14)0.0020 (15)0.0001 (16)
C290.0418 (19)0.098 (3)0.087 (3)0.0081 (17)0.0003 (18)0.008 (2)
C300.067 (2)0.074 (2)0.067 (2)0.0315 (18)0.0118 (17)0.0145 (19)
C310.080 (2)0.0495 (18)0.066 (2)0.0205 (16)0.0039 (19)0.0029 (17)
C320.0540 (18)0.0440 (16)0.0617 (19)0.0068 (14)0.0035 (14)0.0021 (14)
C330.053 (2)0.120 (3)0.080 (3)0.001 (2)0.0162 (19)0.041 (2)
N10.0401 (13)0.0727 (16)0.0476 (14)0.0061 (12)0.0071 (11)0.0186 (12)
O10.0697 (15)0.0557 (13)0.0903 (17)0.0123 (11)0.0091 (13)0.0087 (13)
O20.0716 (13)0.0508 (12)0.0438 (12)0.0039 (10)0.0067 (10)0.0085 (9)
Geometric parameters (Å, º) top
C1—O11.216 (3)C17—C181.501 (4)
C1—C21.476 (4)C17—H17A0.9700
C1—C121.568 (4)C17—H17B0.9700
C2—C31.370 (5)C18—C201.338 (3)
C2—C111.406 (5)C18—C191.480 (4)
C3—C41.412 (8)C19—O21.216 (3)
C3—H30.9300C20—C211.462 (4)
C4—C51.360 (9)C20—H200.9300
C4—H40.9300C21—C221.388 (4)
C5—C61.401 (9)C21—C261.394 (4)
C5—H50.9300C22—C231.372 (4)
C6—C111.408 (5)C22—H220.9300
C6—C71.426 (8)C23—C241.371 (5)
C7—C81.345 (8)C23—H230.9300
C7—H70.9300C24—C251.357 (6)
C8—C91.412 (6)C24—H240.9300
C8—H80.9300C25—C261.369 (5)
C9—C101.370 (5)C25—H250.9300
C9—H90.9300C26—H260.9300
C10—C111.400 (5)C27—C281.376 (4)
C10—C121.514 (4)C27—C321.386 (4)
C12—N11.454 (3)C28—C291.392 (4)
C12—C131.591 (3)C28—H280.9300
C13—C161.534 (4)C29—C301.366 (5)
C13—C191.538 (4)C29—H290.9300
C13—C141.567 (4)C30—C311.372 (5)
C14—C271.508 (4)C30—H300.9300
C14—C151.522 (4)C31—C321.376 (4)
C14—H140.9800C31—H310.9300
C15—N11.449 (4)C32—H320.9300
C15—H15A0.9700C33—N11.464 (4)
C15—H15B0.9700C33—H33A0.9600
C16—C171.533 (4)C33—H33B0.9600
C16—H16A0.9700C33—H33C0.9600
C16—H16B0.9700
O1—C1—C2127.1 (3)H16A—C16—H16B108.7
O1—C1—C12124.6 (3)C18—C17—C16104.1 (2)
C2—C1—C12108.2 (3)C18—C17—H17A110.9
C3—C2—C11120.5 (4)C16—C17—H17A110.9
C3—C2—C1132.7 (4)C18—C17—H17B110.9
C11—C2—C1106.8 (3)C16—C17—H17B110.9
C2—C3—C4117.1 (5)H17A—C17—H17B109.0
C2—C3—H3121.4C20—C18—C19119.8 (3)
C4—C3—H3121.4C20—C18—C17132.1 (3)
C5—C4—C3122.1 (6)C19—C18—C17108.0 (2)
C5—C4—H4119.0O2—C19—C18126.2 (2)
C3—C4—H4119.0O2—C19—C13124.6 (2)
C4—C5—C6122.6 (5)C18—C19—C13109.2 (2)
C4—C5—H5118.7C18—C20—C21131.3 (3)
C6—C5—H5118.7C18—C20—H20114.3
C5—C6—C11114.8 (6)C21—C20—H20114.3
C5—C6—C7129.6 (5)C22—C21—C26116.7 (3)
C11—C6—C7115.6 (5)C22—C21—C20125.0 (3)
C8—C7—C6120.3 (4)C26—C21—C20118.3 (3)
C8—C7—H7119.8C23—C22—C21121.5 (3)
C6—C7—H7119.8C23—C22—H22119.3
C7—C8—C9123.1 (5)C21—C22—H22119.3
C7—C8—H8118.5C24—C23—C22120.2 (4)
C9—C8—H8118.5C24—C23—H23119.9
C10—C9—C8118.6 (5)C22—C23—H23119.9
C10—C9—H9120.7C25—C24—C23119.5 (3)
C8—C9—H9120.7C25—C24—H24120.2
C9—C10—C11118.6 (3)C23—C24—H24120.2
C9—C10—C12132.0 (3)C24—C25—C26120.7 (4)
C11—C10—C12109.4 (3)C24—C25—H25119.7
C10—C11—C2113.3 (3)C26—C25—H25119.7
C10—C11—C6123.7 (4)C25—C26—C21121.4 (4)
C2—C11—C6122.9 (4)C25—C26—H26119.3
N1—C12—C10112.2 (2)C21—C26—H26119.3
N1—C12—C1114.4 (2)C28—C27—C32117.8 (3)
C10—C12—C1101.7 (2)C28—C27—C14120.0 (2)
N1—C12—C13102.1 (2)C32—C27—C14122.2 (2)
C10—C12—C13116.6 (2)C27—C28—C29120.8 (3)
C1—C12—C13110.3 (2)C27—C28—H28119.6
C16—C13—C19100.7 (2)C29—C28—H28119.6
C16—C13—C14118.2 (2)C30—C29—C28120.3 (3)
C19—C13—C14111.1 (2)C30—C29—H29119.8
C16—C13—C12115.1 (2)C28—C29—H29119.8
C19—C13—C12108.09 (19)C29—C30—C31119.5 (3)
C14—C13—C12103.56 (19)C29—C30—H30120.2
C27—C14—C15114.7 (2)C31—C30—H30120.2
C27—C14—C13116.8 (2)C30—C31—C32120.1 (3)
C15—C14—C13105.1 (2)C30—C31—H31119.9
C27—C14—H14106.5C32—C31—H31119.9
C15—C14—H14106.5C31—C32—C27121.4 (3)
C13—C14—H14106.5C31—C32—H32119.3
N1—C15—C14103.5 (2)C27—C32—H32119.3
N1—C15—H15A111.1N1—C33—H33A109.5
C14—C15—H15A111.1N1—C33—H33B109.5
N1—C15—H15B111.1H33A—C33—H33B109.5
C14—C15—H15B111.1N1—C33—H33C109.5
H15A—C15—H15B109.0H33A—C33—H33C109.5
C17—C16—C13106.3 (2)H33B—C33—H33C109.5
C17—C16—H16A110.5C15—N1—C12107.4 (2)
C13—C16—H16A110.5C15—N1—C33114.9 (2)
C17—C16—H16B110.5C12—N1—C33115.9 (2)
C13—C16—H16B110.5
O1—C1—C2—C35.0 (6)C19—C13—C14—C15118.6 (2)
C12—C1—C2—C3178.1 (3)C12—C13—C14—C152.7 (3)
O1—C1—C2—C11172.8 (3)C27—C14—C15—N1156.4 (2)
C12—C1—C2—C114.1 (3)C13—C14—C15—N126.7 (3)
C11—C2—C3—C40.6 (5)C19—C13—C16—C1734.0 (3)
C1—C2—C3—C4176.9 (4)C14—C13—C16—C17155.1 (2)
C2—C3—C4—C51.5 (8)C12—C13—C16—C1782.0 (3)
C3—C4—C5—C63.1 (10)C13—C16—C17—C1831.4 (3)
C4—C5—C6—C113.6 (8)C16—C17—C18—C20165.0 (3)
C4—C5—C6—C7175.9 (6)C16—C17—C18—C1915.4 (3)
C5—C6—C7—C8177.1 (5)C20—C18—C19—O27.3 (4)
C11—C6—C7—C82.4 (7)C17—C18—C19—O2173.0 (3)
C6—C7—C8—C92.1 (8)C20—C18—C19—C13173.6 (2)
C7—C8—C9—C100.5 (7)C17—C18—C19—C136.1 (3)
C8—C9—C10—C112.6 (5)C16—C13—C19—O2154.5 (2)
C8—C9—C10—C12179.1 (3)C14—C13—C19—O228.4 (3)
C9—C10—C11—C2174.6 (3)C12—C13—C19—O284.5 (3)
C12—C10—C11—C24.1 (3)C16—C13—C19—C1824.6 (2)
C9—C10—C11—C62.3 (5)C14—C13—C19—C18150.6 (2)
C12—C10—C11—C6179.1 (3)C12—C13—C19—C1896.4 (2)
C3—C2—C11—C10178.3 (3)C19—C18—C20—C21179.2 (3)
C1—C2—C11—C100.2 (3)C17—C18—C20—C211.3 (5)
C3—C2—C11—C61.3 (5)C18—C20—C21—C222.4 (5)
C1—C2—C11—C6176.7 (3)C18—C20—C21—C26178.8 (3)
C5—C6—C11—C10179.3 (4)C26—C21—C22—C232.4 (4)
C7—C6—C11—C100.2 (5)C20—C21—C22—C23176.4 (3)
C5—C6—C11—C22.7 (5)C21—C22—C23—C242.1 (5)
C7—C6—C11—C2176.8 (3)C22—C23—C24—C250.1 (6)
C9—C10—C12—N149.6 (4)C23—C24—C25—C261.5 (7)
C11—C10—C12—N1128.8 (3)C24—C25—C26—C211.1 (7)
C9—C10—C12—C1172.3 (3)C22—C21—C26—C250.8 (5)
C11—C10—C12—C16.1 (3)C20—C21—C26—C25178.1 (4)
C9—C10—C12—C1367.7 (4)C15—C14—C27—C28125.1 (3)
C11—C10—C12—C13113.9 (3)C13—C14—C27—C28111.3 (3)
O1—C1—C12—N149.6 (4)C15—C14—C27—C3254.9 (4)
C2—C1—C12—N1127.4 (2)C13—C14—C27—C3268.8 (3)
O1—C1—C12—C10170.9 (3)C32—C27—C28—C291.6 (4)
C2—C1—C12—C106.1 (3)C14—C27—C28—C29178.5 (3)
O1—C1—C12—C1364.8 (4)C27—C28—C29—C301.5 (5)
C2—C1—C12—C13118.2 (2)C28—C29—C30—C310.4 (5)
N1—C12—C13—C16152.4 (2)C29—C30—C31—C320.7 (5)
C10—C12—C13—C1684.9 (3)C30—C31—C32—C270.6 (5)
C1—C12—C13—C1630.5 (3)C28—C27—C32—C310.6 (4)
N1—C12—C13—C1996.0 (2)C14—C27—C32—C31179.5 (3)
C10—C12—C13—C1926.7 (3)C14—C15—N1—C1243.6 (3)
C1—C12—C13—C19142.0 (2)C14—C15—N1—C33174.2 (3)
N1—C12—C13—C1421.9 (2)C10—C12—N1—C15166.6 (2)
C10—C12—C13—C14144.7 (2)C1—C12—N1—C1578.1 (3)
C1—C12—C13—C14100.0 (2)C13—C12—N1—C1541.0 (3)
C16—C13—C14—C272.6 (3)C10—C12—N1—C3363.3 (3)
C19—C13—C14—C27113.1 (2)C1—C12—N1—C3351.9 (3)
C12—C13—C14—C27131.1 (2)C13—C12—N1—C33171.0 (3)
C16—C13—C14—C15125.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32···O10.932.583.436 (4)152
C5—H5···O2i0.932.523.348 (8)149
C17—H17A···O2ii0.972.403.372 (3)174
Symmetry codes: (i) x+2, y+1, z1/2; (ii) x+3/2, y, z1/2.
 

Acknowledgements

The authors acknowledge Department of Chemistry, IIT Madras, for the X-ray data collection.

References

First citationAugustine, T., Kanakam, C. C., Vithiya, S. M. & Ramkumar, V. (2009). Tetrahedron Lett. 50, 5906–5909.  CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPrasad, T. A. A., Vithiya, B. S. M. & Ignacimuthu, S. (2011). Der Pharma Chem. 3, 293–299.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds