organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(3β,5α,25R)-12-(Hy­dr­oxy­imino)­spiro­stan-3-yl acetate

aLaboratorio de Investigación del Jardín Botánico, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif. 113 Complejo de Ciencias CU, San Manuel, 72570 Puebla, Pue., Mexico, and bInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 22 March 2017; accepted 29 March 2017; online 4 April 2017)

The title steroid, C29H45NO5, obtained by condensation of hecogenin acetate [systematic name: (3β,5α,25R)-12-oxo­spiro­stan-3-yl acetate] with NH2OH, has the oxime group substituting the C-12 site on the C ring of the steroid nucleus. The introduction of this functional group allows the formation of chain motifs, using the oxime OH group as a donor and the O atom of the E ring as an acceptor. The C(8) chains formed by this inter­molecular hydrogen bond are oriented parallel to the short cell axis a. The structural features of this compound are very close to those of C29H43NO5, the derivative with a C14=C15 double bond in the D ring, which crystallizes in the same space group and with similar unit-cell parameters.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The synthesis of steroidal oximes has been of significant relevance in recent years, reflected in some reports in the literature about the possible anti­cancer properties of this class of compounds (Bansal & Acharya, 2014[Bansal, R. & Acharya, P. C. (2014). Chem. Rev. 114, 6986-7005.]; Cui et al., 2009[Cui, J.-G., Fan, L., Huang, L.-L., Liu, H.-L. & Zhou, A.-M. (2009). Steroids, 74, 62-72.]). Research regarding the selective synthesis of oximes and polyoximes of naturally occurring steroids is thus active. For example, we reported the functionalization of 23-acetyl-sarsasapogenin acetate on the position C-23 in ring F, by condensation with hydroxyl amine, affording an oxime, which seems to be rearranged to its zwitterionic form while recrystallized in slightly acidic media (Hernández Linares et al., 2009[Hernández Linares, M.-G., Sandoval Ramírez, J., Meza Reyes, S., Montiel Smith, S. & Bernès, S. (2009). Acta Cryst. E65, o2954-o2955.]). More recently, we reported the synthesis and analysis of the anti­proliferative activity of oximes derived from diosgenin (Sánchez-Sánchez et al., 2016[Sánchez-Sánchez, L., Hernández-Linares, M. G., Escobar, M. L., López-Muñoz, H., Zenteno, E., Fernández-Herrera, M. A., Guerrero-Luna, G., Carrasco-Carballo, A. & Sandoval-Ramírez, J. (2016). Molecules, 21, 1533.]). We are now focused on the synthesis of oximes of other sapogenins, including hecogenin [IUPAC name: (25R)-3β-hy­droxy-5α-spiro­stan-12-one], a natural steroid found in many agaves. The present report is of the crystal structure of the product obtained through the condensation reaction between hecogenin acetate and NH2OH.

As expected, the condensation functionalizes the C-12 position of the C ring (Fig. 1[link]). The spiro­stan AF nucleus presents a conformation identical to that reported for the parent compounds, hecogenin hydrate (Soriano-García et al., 1984[Soriano-García, M., Toscano, R. A., López, I., Hernández, A. & Enríquez, P. (1984). Acta Cryst. C40, 2116-2118.]) and hecogenin acetate (Slavyanov et al., 1982[Slavyanov, E. V., Lobkovskaya, R. M., Biyushkin, V. N., Kintya, P. K. & Bobeiko, V. A. (1982). Chem. Nat. Compd. 18, 582-585.]; Rajnikant et al., 2005[Rajnikant, Dinesh, Mousmi, Aziz, N. & Varghese, B. (2005). Indian J. Phys. A, 79, 285-287.]), and close to that observed for the Δ14,15 compound, which has been deposited in the CSD with refcode LUBDIX (Wartchow & Brunck, 2015[Wartchow, R. & Brunck, A. (2015). Private communication (No. 1043206). CCDC, Cambridge, England.]; see Fig. 1[link], inset). For example, a fit between the title compound and LUBDIX gives an r.m.s. deviation of 0.21 Å. In the oximes, the C-12 centre retains the sp2 hybridization of hecogenin, and the C ring has a conformation close to the chair form: for the title compound, the puckering parameters for this ring are θ = 7.8 (2)° and φ = 315.1 (19)° (ideal value for a chair form: θ = 0°). The oxime group is configured trans, which is known to be favoured compared to the cis configuration.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, with displacement ellipsoids for non-H atoms at the 30% probability level. The inset is a fit computed over all non-H atoms, comparing the title compound (blue) and the Δ14,15 compound characterized by Wartchow & Brunck (2015[Wartchow, R. & Brunck, A. (2015). Private communication (No. 1043206). CCDC, Cambridge, England.]) (red).

The oxime functionality is a good donor group for hydrogen bonding, and as a result, C(8) chain motifs are formed in the crystal, based on inter­molecular O—H⋯O hydrogen bonds of medium strength (Table 1[link]). The chains are oriented in the [100] direction, and no inter­chain contacts are observed, consistent with a true one-dimensional supra­molecular structure (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O22i 0.91 (4) 1.89 (4) 2.781 (2) 166 (3)
Symmetry code: (i) x-1, y, z.
[Figure 2]
Figure 2
Part of the crystal structure, viewed down the b axis. Six mol­ecules in two chains are represented, and inter­molecular O1—H1⋯O22i hydrogen bonds (Table 1[link]) are shown as dashed bonds [symmetry code: (i) x − 1, y, z].

Synthesis and crystallization

In a round-bottom flask, NH2OH·HCl (0.209 g, 3.00 mmol) was added to a solution of hecogenin acetate (1.0 g, 2.12 mmol) and KOAc (0.294 g, 3.00 mmol) in EtOH (30 ml), and the mixture was allowed to stir at reflux. After a period of 1 h, organic extraction was performed (CH2Cl2, 3 × 10 ml), the organic phase was washed with distilled water (2 × 15 ml), dried over Na2SO4 and concentrated under reduced pressure. The title oxime was obtained as a colourless solid (0.982 g, 95%), and was recrystallized from CH2Cl2; m.p. = 318–320°C, [α]D = −2.6° (c = 0.01, CHCl3), IR/νmax = 3498, 1732, 1350, 1060 cm−1. 1H NMR (500 MHz, CDCl3), δ/p.p.m.: 4.65 (1H, m, H-3), 4.32 (1H, m, H-16), 3.49 (1H, dd, J26,25 = 4 Hz, Jgem = 11 Hz, H-26a), 3.37 (1H, d, Jgem = 11 Hz, H-26e), 2.64 (1H, dd, J23a,24 e = 4.2 Hz, J23a,24a = 12.0 Hz, H-23a), 2.54 (1H, dc, J17,20 = 10 Hz, H-17), 2.37 (1H, ddd, J24 e,23a = 4 Hz, Jgem = J24 e,25a = 13 Hz, H-24e), 2.20 (1H, dd, J24a,23a = Jgem = 10 Hz, H-24a), 1.04 (3H, d, J21,20 = 6.0 Hz, CH3-21), 0.91 (3H, s, CH3-19), 0.87 (3H, s, CH3-18), 0.84 (3H, d, J27,25 = 6.0 Hz, CH3-27). 13C-NMR (125 MHz, CDCl3), δ/p.p.m.: 12.0 (C-18), 12.9 (C-21), 16.0 (C-19), 17.0 (C-27), 28.3 (C-6), 29.7 (C-5), 30.9 (C– 7), 31.2 (C-1), 31.6 (C-2), 32.0 (C-4), 34.1 (C-8), 36.1 (C-15), 36.4 (C-10), 37.7 (C-24), 37.8 (C-11), 38.8 (C-9), 44.6 (C-25), 52.3 (C-20), 55.3 (C-13), 55.4 (C-14), 55.5 (C-17), 66.1 (C-26), 70.8 (C-3), 79.4 (C-16), 109.3 (C-22), 170.7 (CH3COO-3), 164.9 (C-12).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The absolute configuration was assigned following that of hecogenin, since diffraction data were collected at room temperature and using a silver target (λ = 0.56083 Å).

Table 2
Experimental details

Crystal data
Chemical formula C29H45NO5
Mr 487.66
Crystal system, space group Orthorhombic, P212121
Temperature (K) 295
a, b, c (Å) 8.3161 (2), 9.9302 (5), 33.0414 (11)
V3) 2728.58 (18)
Z 4
Radiation type Ag Kα, λ = 0.56083 Å
μ (mm−1) 0.05
Crystal size (mm) 0.30 × 0.25 × 0.12
 
Data collection
Diffractometer Stoe Stadivari
No. of measured, independent and observed [I > 2σ(I)] reflections 46178, 6173, 4035
Rint 0.057
(sin θ/λ)max−1) 0.656
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.107, 0.92
No. of reflections 6173
No. of parameters 324
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.15, −0.17
Computer programs: X-AREA (Stoe & Cie, 2015[Stoe & Cie (2015). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2015); cell refinement: X-AREA (Stoe & Cie, 2015); data reduction: X-AREA (Stoe & Cie, 2015); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

(3β,5α,25R)-12-(Hydroxyimino)spirostan-3-yl acetate top
Crystal data top
C29H45NO5Dx = 1.187 Mg m3
Mr = 487.66Melting point: 591 K
Orthorhombic, P212121Ag Kα radiation, λ = 0.56083 Å
a = 8.3161 (2) ÅCell parameters from 20674 reflections
b = 9.9302 (5) Åθ = 2.4–22.4°
c = 33.0414 (11) ŵ = 0.05 mm1
V = 2728.58 (18) Å3T = 295 K
Z = 4Prism, colourless
F(000) = 10640.30 × 0.25 × 0.12 mm
Data collection top
Stoe Stadivari
diffractometer
4035 reflections with I > 2σ(I)
Radiation source: Sealed X-ray tube, Axo Microfocus sourceRint = 0.057
Mirror monochromatorθmax = 21.6°, θmin = 2.4°
Detector resolution: 5.81 pixels mm-1h = 1010
ω scansk = 1212
46178 measured reflectionsl = 4342
6173 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: mixed
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0584P)2]
where P = (Fo2 + 2Fc2)/3
6173 reflections(Δ/σ)max < 0.001
324 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.17 e Å3
0 constraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4565 (2)0.3652 (2)0.17143 (7)0.0458 (5)
O10.29552 (19)0.3875 (2)0.18376 (7)0.0615 (6)
H10.229 (4)0.347 (4)0.1656 (12)0.092*
C10.3684 (3)0.3767 (3)0.32591 (9)0.0512 (7)
H1A0.3223870.4504010.3105030.061*
H1B0.3239260.2935240.3153710.061*
C20.3182 (3)0.3917 (3)0.37039 (10)0.0604 (8)
H2A0.3498560.4798830.3801590.072*
H2B0.2021130.3849210.3724650.072*
C30.3952 (3)0.2842 (3)0.39652 (9)0.0586 (7)
H3A0.3495490.1960190.3897480.070*
C40.5759 (3)0.2801 (3)0.39124 (9)0.0587 (7)
H4A0.6196380.2056760.4067310.070*
H4B0.6222730.3627930.4016700.070*
C50.6224 (3)0.2638 (3)0.34682 (9)0.0495 (6)
H5A0.5749690.1786730.3377020.059*
C60.8034 (3)0.2500 (3)0.34148 (9)0.0614 (8)
H6A0.8553110.3333620.3494740.074*
H6B0.8429950.1788240.3589390.074*
C70.8464 (3)0.2182 (3)0.29809 (9)0.0552 (7)
H7A0.8108300.1275060.2918670.066*
H7B0.9624760.2204250.2952280.066*
C80.7722 (3)0.3154 (2)0.26752 (8)0.0416 (6)
H8A0.8255830.4029490.2701900.050*
C90.5905 (2)0.3350 (2)0.27503 (8)0.0397 (6)
H9A0.5415060.2461860.2711050.048*
C100.5517 (3)0.3757 (2)0.31936 (8)0.0414 (6)
C110.5147 (3)0.4270 (3)0.24284 (9)0.0482 (6)
H11A0.3988210.4257720.2460590.058*
H11B0.5511370.5185660.2472960.058*
C120.5557 (2)0.3861 (2)0.20016 (8)0.0393 (5)
C130.7324 (2)0.3645 (2)0.19139 (8)0.0390 (6)
C140.7937 (2)0.2660 (2)0.22433 (8)0.0417 (6)
H14A0.7270030.1850120.2219310.050*
C150.9604 (3)0.2262 (3)0.20888 (9)0.0529 (7)
H15A1.0385380.2967610.2138620.063*
H15B0.9972280.1432810.2213260.063*
C160.9301 (2)0.2076 (3)0.16373 (8)0.0462 (6)
H16A0.9168980.1117180.1575280.055*
C170.7749 (2)0.2855 (3)0.15244 (8)0.0425 (6)
H17A0.6887880.2210470.1465060.051*
C180.8192 (3)0.4999 (3)0.19340 (9)0.0527 (7)
H18A0.9317050.4868280.1882660.079*
H18B0.8051280.5385330.2198050.079*
H18C0.7752010.5595930.1733910.079*
C190.6199 (4)0.5157 (3)0.32935 (10)0.0559 (7)
H19A0.7335970.5164610.3243140.084*
H19B0.6002080.5359850.3573230.084*
H19C0.5685390.5821120.3126530.084*
C200.8193 (3)0.3617 (3)0.11361 (9)0.0518 (7)
H20A0.8396800.4557220.1209750.062*
C210.6906 (3)0.3608 (5)0.08069 (11)0.0822 (11)
H21A0.7282060.4106530.0576660.123*
H21B0.5940820.4015790.0908940.123*
H21C0.6684780.2696250.0727890.123*
C220.9805 (3)0.2987 (3)0.10090 (8)0.0473 (6)
O221.05437 (17)0.26438 (19)0.13869 (6)0.0489 (5)
C231.0943 (3)0.3887 (3)0.07784 (10)0.0576 (7)
H23A1.1249730.4640310.0948440.069*
H23B1.0396560.4243590.0542180.069*
C241.2442 (3)0.3141 (3)0.06447 (10)0.0648 (9)
H24A1.3068590.3714190.0466860.078*
H24B1.3095260.2932630.0879680.078*
C251.2019 (3)0.1848 (3)0.04254 (10)0.0665 (8)
H25A1.1473160.2085600.0172430.080*
C261.0866 (3)0.1051 (3)0.06821 (11)0.0661 (8)
H26A1.0542210.0249750.0535080.079*
H26B1.1411890.0762990.0926680.079*
O260.9463 (2)0.1799 (2)0.07908 (6)0.0590 (5)
C271.3511 (4)0.1021 (4)0.03202 (13)0.0933 (12)
H27A1.4200970.1538320.0146910.140*
H27B1.3191520.0210650.0183630.140*
H27C1.4076430.0793910.0564130.140*
O270.3659 (3)0.3137 (2)0.43916 (7)0.0703 (6)
C280.2274 (5)0.2758 (4)0.45557 (12)0.0844 (11)
O280.1243 (4)0.2166 (4)0.43712 (11)0.1265 (12)
C290.2163 (6)0.3213 (5)0.49833 (12)0.1153 (16)
H29A0.3040510.2840950.5135450.173*
H29B0.1163520.2915090.5097540.173*
H29C0.2214600.4178720.4993120.173*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0350 (8)0.0568 (13)0.0456 (15)0.0015 (9)0.0037 (9)0.0028 (10)
O10.0355 (7)0.0914 (15)0.0576 (15)0.0036 (9)0.0045 (8)0.0161 (11)
C10.0498 (12)0.0575 (16)0.046 (2)0.0045 (12)0.0016 (12)0.0016 (13)
C20.0613 (14)0.0718 (19)0.048 (2)0.0082 (15)0.0084 (14)0.0013 (15)
C30.0713 (16)0.0646 (18)0.040 (2)0.0006 (14)0.0069 (14)0.0002 (14)
C40.0680 (15)0.0657 (18)0.042 (2)0.0115 (14)0.0011 (14)0.0083 (14)
C50.0581 (13)0.0486 (15)0.0418 (18)0.0087 (12)0.0010 (12)0.0034 (12)
C60.0619 (14)0.076 (2)0.046 (2)0.0208 (15)0.0041 (14)0.0093 (15)
C70.0536 (13)0.0654 (18)0.0468 (19)0.0197 (13)0.0000 (12)0.0070 (14)
C80.0413 (10)0.0438 (13)0.0396 (17)0.0041 (10)0.0042 (10)0.0028 (11)
C90.0423 (10)0.0379 (12)0.0388 (16)0.0002 (9)0.0019 (10)0.0004 (10)
C100.0466 (11)0.0412 (12)0.0365 (17)0.0012 (11)0.0025 (11)0.0005 (11)
C110.0464 (11)0.0585 (15)0.0397 (19)0.0111 (11)0.0071 (11)0.0047 (12)
C120.0383 (10)0.0407 (12)0.0388 (16)0.0012 (10)0.0051 (10)0.0004 (11)
C130.0366 (9)0.0415 (13)0.0389 (16)0.0024 (10)0.0050 (10)0.0008 (11)
C140.0387 (10)0.0419 (13)0.0445 (17)0.0024 (10)0.0002 (11)0.0009 (11)
C150.0429 (11)0.0685 (17)0.047 (2)0.0135 (12)0.0003 (12)0.0064 (13)
C160.0372 (10)0.0562 (15)0.0451 (18)0.0000 (11)0.0039 (11)0.0007 (12)
C170.0355 (10)0.0530 (14)0.0391 (17)0.0037 (10)0.0009 (10)0.0036 (12)
C180.0583 (14)0.0509 (15)0.049 (2)0.0131 (12)0.0062 (13)0.0027 (13)
C190.0732 (16)0.0485 (15)0.046 (2)0.0019 (13)0.0038 (15)0.0047 (13)
C200.0425 (11)0.0718 (18)0.0413 (19)0.0020 (12)0.0011 (11)0.0046 (14)
C210.0481 (13)0.152 (3)0.046 (2)0.0102 (18)0.0069 (14)0.015 (2)
C220.0408 (11)0.0627 (16)0.0383 (17)0.0033 (11)0.0045 (11)0.0036 (13)
O220.0362 (7)0.0722 (12)0.0383 (12)0.0022 (8)0.0024 (7)0.0006 (8)
C230.0510 (13)0.0698 (18)0.052 (2)0.0077 (13)0.0011 (13)0.0043 (15)
C240.0506 (13)0.092 (2)0.052 (2)0.0025 (14)0.0115 (13)0.0122 (17)
C250.0643 (15)0.094 (2)0.041 (2)0.0110 (16)0.0077 (15)0.0012 (17)
C260.0676 (16)0.074 (2)0.057 (2)0.0006 (15)0.0025 (15)0.0153 (16)
O260.0514 (9)0.0753 (13)0.0503 (14)0.0099 (9)0.0010 (9)0.0140 (10)
C270.088 (2)0.121 (3)0.072 (3)0.030 (2)0.024 (2)0.006 (2)
O270.0795 (13)0.0911 (16)0.0404 (14)0.0015 (12)0.0103 (11)0.0018 (11)
C280.091 (2)0.103 (3)0.059 (3)0.006 (2)0.025 (2)0.003 (2)
O280.115 (2)0.171 (3)0.094 (3)0.055 (2)0.0312 (19)0.017 (2)
C290.127 (3)0.167 (5)0.052 (3)0.004 (3)0.033 (3)0.010 (3)
Geometric parameters (Å, º) top
N1—C121.275 (3)C15—H15B0.9700
N1—O11.416 (2)C16—O221.439 (3)
O1—H10.91 (4)C16—C171.551 (3)
C1—C21.535 (4)C16—H16A0.9800
C1—C101.539 (3)C17—C201.534 (4)
C1—H1A0.9700C17—H17A0.9800
C1—H1B0.9700C18—H18A0.9600
C2—C31.515 (4)C18—H18B0.9600
C2—H2A0.9700C18—H18C0.9600
C2—H2B0.9700C19—H19A0.9600
C3—O271.459 (4)C19—H19B0.9600
C3—C41.513 (4)C19—H19C0.9600
C3—H3A0.9800C20—C211.526 (4)
C4—C51.526 (4)C20—C221.538 (3)
C4—H4A0.9700C20—H20A0.9800
C4—H4B0.9700C21—H21A0.9600
C5—C61.522 (3)C21—H21B0.9600
C5—C101.551 (4)C21—H21C0.9600
C5—H5A0.9800C22—O261.412 (3)
C6—C71.511 (4)C22—O221.433 (3)
C6—H6A0.9700C22—C231.508 (4)
C6—H6B0.9700C23—C241.516 (4)
C7—C81.528 (4)C23—H23A0.9700
C7—H7A0.9700C23—H23B0.9700
C7—H7B0.9700C24—C251.515 (4)
C8—C141.520 (4)C24—H24A0.9700
C8—C91.543 (3)C24—H24B0.9700
C8—H8A0.9800C25—C261.506 (4)
C9—C111.537 (4)C25—C271.528 (4)
C9—C101.554 (4)C25—H25A0.9800
C9—H9A0.9800C26—O261.429 (3)
C10—C191.537 (4)C26—H26A0.9700
C11—C121.507 (4)C26—H26B0.9700
C11—H11A0.9700C27—H27A0.9600
C11—H11B0.9700C27—H27B0.9600
C12—C131.512 (3)C27—H27C0.9600
C13—C181.528 (3)O27—C281.328 (4)
C13—C171.548 (4)C28—O281.205 (5)
C13—C141.550 (4)C28—C291.486 (5)
C14—C151.529 (3)C29—H29A0.9600
C14—H14A0.9800C29—H29B0.9600
C15—C161.524 (4)C29—H29C0.9600
C15—H15A0.9700
C12—N1—O1111.9 (2)C14—C15—H15B111.4
N1—O1—H1109 (2)H15A—C15—H15B109.2
C2—C1—C10113.9 (2)O22—C16—C15113.38 (19)
C2—C1—H1A108.8O22—C16—C17105.3 (2)
C10—C1—H1A108.8C15—C16—C17108.2 (2)
C2—C1—H1B108.8O22—C16—H16A109.9
C10—C1—H1B108.8C15—C16—H16A109.9
H1A—C1—H1B107.7C17—C16—H16A109.9
C3—C2—C1111.2 (2)C20—C17—C13120.0 (2)
C3—C2—H2A109.4C20—C17—C16104.29 (18)
C1—C2—H2A109.4C13—C17—C16104.05 (19)
C3—C2—H2B109.4C20—C17—H17A109.3
C1—C2—H2B109.4C13—C17—H17A109.3
H2A—C2—H2B108.0C16—C17—H17A109.3
O27—C3—C4106.4 (2)C13—C18—H18A109.5
O27—C3—C2109.7 (2)C13—C18—H18B109.5
C4—C3—C2111.9 (2)H18A—C18—H18B109.5
O27—C3—H3A109.6C13—C18—H18C109.5
C4—C3—H3A109.6H18A—C18—H18C109.5
C2—C3—H3A109.6H18B—C18—H18C109.5
C3—C4—C5111.4 (2)C10—C19—H19A109.5
C3—C4—H4A109.3C10—C19—H19B109.5
C5—C4—H4A109.3H19A—C19—H19B109.5
C3—C4—H4B109.3C10—C19—H19C109.5
C5—C4—H4B109.3H19A—C19—H19C109.5
H4A—C4—H4B108.0H19B—C19—H19C109.5
C6—C5—C4111.8 (2)C21—C20—C17115.1 (2)
C6—C5—C10111.8 (2)C21—C20—C22114.5 (2)
C4—C5—C10112.9 (2)C17—C20—C22103.8 (2)
C6—C5—H5A106.6C21—C20—H20A107.7
C4—C5—H5A106.6C17—C20—H20A107.7
C10—C5—H5A106.6C22—C20—H20A107.7
C7—C6—C5111.3 (2)C20—C21—H21A109.5
C7—C6—H6A109.4C20—C21—H21B109.5
C5—C6—H6A109.4H21A—C21—H21B109.5
C7—C6—H6B109.4C20—C21—H21C109.5
C5—C6—H6B109.4H21A—C21—H21C109.5
H6A—C6—H6B108.0H21B—C21—H21C109.5
C6—C7—C8113.6 (2)O26—C22—O22109.4 (2)
C6—C7—H7A108.9O26—C22—C23111.3 (2)
C8—C7—H7A108.9O22—C22—C23108.22 (19)
C6—C7—H7B108.9O26—C22—C20107.67 (19)
C8—C7—H7B108.9O22—C22—C20103.5 (2)
H7A—C7—H7B107.7C23—C22—C20116.4 (2)
C14—C8—C7111.6 (2)C22—O22—C16106.66 (16)
C14—C8—C9107.89 (19)C22—C23—C24112.0 (2)
C7—C8—C9111.6 (2)C22—C23—H23A109.2
C14—C8—H8A108.5C24—C23—H23A109.2
C7—C8—H8A108.5C22—C23—H23B109.2
C9—C8—H8A108.5C24—C23—H23B109.2
C11—C9—C8111.4 (2)H23A—C23—H23B107.9
C11—C9—C10114.36 (19)C25—C24—C23111.3 (2)
C8—C9—C10112.82 (19)C25—C24—H24A109.4
C11—C9—H9A105.8C23—C24—H24A109.4
C8—C9—H9A105.8C25—C24—H24B109.4
C10—C9—H9A105.8C23—C24—H24B109.4
C19—C10—C1109.2 (2)H24A—C24—H24B108.0
C19—C10—C5112.5 (2)C26—C25—C24108.9 (3)
C1—C10—C5107.3 (2)C26—C25—C27111.2 (3)
C19—C10—C9111.2 (2)C24—C25—C27112.1 (3)
C1—C10—C9109.9 (2)C26—C25—H25A108.2
C5—C10—C9106.61 (19)C24—C25—H25A108.2
C12—C11—C9113.3 (2)C27—C25—H25A108.2
C12—C11—H11A108.9O26—C26—C25112.8 (3)
C9—C11—H11A108.9O26—C26—H26A109.0
C12—C11—H11B108.9C25—C26—H26A109.0
C9—C11—H11B108.9O26—C26—H26B109.0
H11A—C11—H11B107.7C25—C26—H26B109.0
N1—C12—C11126.5 (2)H26A—C26—H26B107.8
N1—C12—C13117.6 (2)C22—O26—C26113.50 (19)
C11—C12—C13115.9 (2)C25—C27—H27A109.5
C12—C13—C18109.0 (2)C25—C27—H27B109.5
C12—C13—C17116.93 (19)H27A—C27—H27B109.5
C18—C13—C17112.0 (2)C25—C27—H27C109.5
C12—C13—C14105.97 (19)H27A—C27—H27C109.5
C18—C13—C14111.69 (19)H27B—C27—H27C109.5
C17—C13—C14100.90 (19)C28—O27—C3118.8 (3)
C8—C14—C15120.3 (2)O28—C28—O27123.3 (4)
C8—C14—C13114.6 (2)O28—C28—C29125.8 (4)
C15—C14—C13103.1 (2)O27—C28—C29110.8 (4)
C8—C14—H14A105.9C28—C29—H29A109.5
C15—C14—H14A105.9C28—C29—H29B109.5
C13—C14—H14A105.9H29A—C29—H29B109.5
C16—C15—C14102.04 (19)C28—C29—H29C109.5
C16—C15—H15A111.4H29A—C29—H29C109.5
C14—C15—H15A111.4H29B—C29—H29C109.5
C16—C15—H15B111.4
C10—C1—C2—C354.9 (3)C17—C13—C14—C8179.03 (18)
C1—C2—C3—O27171.1 (2)C12—C13—C14—C15168.8 (2)
C1—C2—C3—C453.2 (3)C18—C13—C14—C1572.6 (3)
O27—C3—C4—C5174.3 (2)C17—C13—C14—C1546.5 (2)
C2—C3—C4—C554.5 (3)C8—C14—C15—C16170.7 (2)
C3—C4—C5—C6176.1 (3)C13—C14—C15—C1641.6 (2)
C3—C4—C5—C1056.7 (3)C14—C15—C16—O22137.2 (2)
C4—C5—C6—C7173.6 (2)C14—C15—C16—C1720.8 (3)
C10—C5—C6—C758.6 (3)C12—C13—C17—C2097.2 (3)
C5—C6—C7—C852.1 (3)C18—C13—C17—C2029.5 (3)
C6—C7—C8—C14170.0 (2)C14—C13—C17—C20148.44 (19)
C6—C7—C8—C949.1 (3)C12—C13—C17—C16146.8 (2)
C14—C8—C9—C1154.0 (3)C18—C13—C17—C1686.5 (2)
C7—C8—C9—C11177.0 (2)C14—C13—C17—C1632.4 (2)
C14—C8—C9—C10175.84 (19)O22—C16—C17—C2012.7 (3)
C7—C8—C9—C1052.8 (3)C15—C16—C17—C20134.2 (2)
C2—C1—C10—C1967.8 (3)O22—C16—C17—C13113.9 (2)
C2—C1—C10—C554.4 (3)C15—C16—C17—C137.6 (3)
C2—C1—C10—C9170.0 (2)C13—C17—C20—C21106.5 (3)
C6—C5—C10—C1962.1 (3)C16—C17—C20—C21137.6 (3)
C4—C5—C10—C1965.1 (3)C13—C17—C20—C22127.6 (2)
C6—C5—C10—C1177.7 (2)C16—C17—C20—C2211.7 (3)
C4—C5—C10—C155.1 (3)C21—C20—C22—O2642.8 (3)
C6—C5—C10—C960.0 (3)C17—C20—C22—O2683.5 (3)
C4—C5—C10—C9172.8 (2)C21—C20—C22—O22158.6 (2)
C11—C9—C10—C1962.9 (3)C17—C20—C22—O2232.3 (2)
C8—C9—C10—C1965.7 (3)C21—C20—C22—C2382.9 (3)
C11—C9—C10—C158.1 (3)C17—C20—C22—C23150.8 (2)
C8—C9—C10—C1173.2 (2)O26—C22—O22—C1672.4 (2)
C11—C9—C10—C5174.1 (2)C23—C22—O22—C16166.2 (2)
C8—C9—C10—C557.2 (2)C20—C22—O22—C1642.2 (2)
C8—C9—C11—C1250.0 (3)C15—C16—O22—C22152.7 (2)
C10—C9—C11—C12179.39 (19)C17—C16—O22—C2234.5 (2)
O1—N1—C12—C111.1 (3)O26—C22—C23—C2452.4 (3)
O1—N1—C12—C13179.3 (2)O22—C22—C23—C2467.9 (3)
C9—C11—C12—N1127.4 (3)C20—C22—C23—C24176.2 (2)
C9—C11—C12—C1350.8 (3)C22—C23—C24—C2551.2 (3)
N1—C12—C13—C18113.2 (2)C23—C24—C25—C2651.5 (3)
C11—C12—C13—C1868.4 (3)C23—C24—C25—C27175.1 (3)
N1—C12—C13—C1715.0 (3)C24—C25—C26—O2655.2 (3)
C11—C12—C13—C17163.4 (2)C27—C25—C26—O26179.3 (3)
N1—C12—C13—C14126.4 (2)O22—C22—O26—C2663.4 (3)
C11—C12—C13—C1451.9 (3)C23—C22—O26—C2656.2 (3)
C7—C8—C14—C1552.0 (3)C20—C22—O26—C26175.2 (2)
C9—C8—C14—C15175.0 (2)C25—C26—O26—C2259.0 (3)
C7—C8—C14—C13175.77 (19)C4—C3—O27—C28155.5 (3)
C9—C8—C14—C1361.2 (2)C2—C3—O27—C2883.2 (3)
C12—C13—C14—C858.6 (2)C3—O27—C28—O280.8 (6)
C18—C13—C14—C859.9 (3)C3—O27—C28—C29176.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O22i0.91 (4)1.89 (4)2.781 (2)166 (3)
C15—H15A···O1ii0.972.523.320 (3)139
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

The reported structure is the first one collected using the new X-ray facility installed at IF-UAP, Puebla. The authors thank the funding agency (CONACyT), VIEP–BUAP for support, and the companies involved in the installation: Spectramex SA de CV (Mexico), and Stoe & Cie GmbH (Darmstadt, Germany), with special thanks to Dr rer. nat. Jens Meyer and Dipl.-Phys. Steffen Sandner. MGHL thanks BUAP for financial support (PRODEP-NPTC-DSA/103.5/16/10420).

Funding information

Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (award No. 268178, Infraestructura); Benemérita Universidad Autónoma de Puebla (award No. PRODEP-NPTC-DSA/103.5/16/10420).

References

First citationBansal, R. & Acharya, P. C. (2014). Chem. Rev. 114, 6986–7005.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCui, J.-G., Fan, L., Huang, L.-L., Liu, H.-L. & Zhou, A.-M. (2009). Steroids, 74, 62–72.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHernández Linares, M.-G., Sandoval Ramírez, J., Meza Reyes, S., Montiel Smith, S. & Bernès, S. (2009). Acta Cryst. E65, o2954–o2955.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRajnikant, Dinesh, Mousmi, Aziz, N. & Varghese, B. (2005). Indian J. Phys. A, 79, 285–287.  CAS Google Scholar
First citationSánchez-Sánchez, L., Hernández-Linares, M. G., Escobar, M. L., López-Muñoz, H., Zenteno, E., Fernández-Herrera, M. A., Guerrero-Luna, G., Carrasco-Carballo, A. & Sandoval-Ramírez, J. (2016). Molecules, 21, 1533.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSlavyanov, E. V., Lobkovskaya, R. M., Biyushkin, V. N., Kintya, P. K. & Bobeiko, V. A. (1982). Chem. Nat. Compd. 18, 582–585.  CrossRef Google Scholar
First citationSoriano-García, M., Toscano, R. A., López, I., Hernández, A. & Enríquez, P. (1984). Acta Cryst. C40, 2116–2118.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationStoe & Cie (2015). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWartchow, R. & Brunck, A. (2015). Private communication (No. 1043206). CCDC, Cambridge, England.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds