metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[di­aqua­(μ3-2,3-dioxoindoline-5-sulfonato)­sodium]

aDepartment of Science & Math, Massasoit Community College, 1 Massasoit Boulevard, Brockton, MA 02302, USA, and bDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 12 March 2017; accepted 20 March 2017; online 24 March 2017)

The title compound, [Na(C8H4NO5S)(H2O)2]n, is a one-dimensional coordination polymer extending along the c axis. It consist of isatin sulfonate mol­ecules linking pairs of sodium cations with Na—O bonds to both carbonyl and sulfonate oxygen atoms whereby two oxygen atoms of symmetry-related carbonyl groups bridge two sodium cations. The sodium cation possesses an octa­hedral coordination environment, including one sulfonate and three carbonyl oxygen atoms bound in the equatorial plane, and two water mol­ecules bound axially. The isatin moiety of the organic ligand is nearly planar, with a mean deviation from planarity of 0.038 Å. The chains of the coordination polymer are further linked into a three-dimensional network with eight distinct inter­actions, including one N—H⋯O and four O—H⋯O hydrogen bonds, two C—H⋯O inter­actions and one ππ inter­action.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As part of our standing project to study the crystal structures of N-H isatins, we report the crystal structure of the title compound. The asymmetric unit comprises a sodium cation, a 2,3-dioxoindoline-5-sulfonate anion and two coordinating water mol­ecules (Fig. 1[link]). The isatin moiety of the anion is nearly planar. The sodium cation possesses an octa­hedral configuration, and is coordinated by three carbonyl oxygen atoms, two water mol­ecules, and one sulfonate oxygen atom. Two symmetry-related O1 carbonyl oxygen atoms bridge two sodium cations, with the O2 carbonyl oxygen binding to only a single sodium cation. The O5 sulfonate oxygen atom and the two water oxygen atoms (O6, O7) complete the sodium coordination environment (Fig. 2[link]). Despite the coordination of the carbonyl oxygen atoms to the sodium cations, the C=O bonds and other metric parameters are consistent with those in neutral 5-substituted isatins (Gurung et al., 2016[Gurung, S., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160177.]). Pairs of sodium cations are linked by the isatin mol­ecules to form a one-dimensional coordination polymer along the c axis.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.
[Figure 2]
Figure 2
The coordination environment of the sodium cations in the structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen-bonding inter­actions are shown as dashed lines.

The sodium–isatin chains are inter­connected by a series of hydrogen bonds and ππ inter­actions to combine into a three-dimensional network. There is an N1—H1⋯O7v hydrogen bond between the isatin amide group and one of the water oxygen atoms. There are also two C—H⋯O inter­actions, C6—H6⋯O6vi, between the isatin moiety and a water mol­ecule, and C7—H7⋯O2vii, between the isatin moiety and the carbonyl oxygen atom of another isatin moiety (see Table 1[link] for symmetry codes). Both of the water mol­ecules are involved in two O—H⋯O inter­actions to sulfonate oxygen atoms of the same chain and neighboring chains (Fig. 2[link]). The chains are further linked between the aromatic six-membered rings in the isatin moieties, with parallel slipped ππ inter­actions [inter­centroid distance = 3.8314 (19) Å, inter­planar distance = 3.619 (2) Å and slippage = 1.259 (4) Å]. The mol­ecular packing of the title compound with hydrogen bonding is shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O3i 0.86 (1) 2.06 (1) 2.878 (2) 159 (3)
O6—H6B⋯O4ii 0.86 (1) 2.01 (2) 2.807 (2) 153 (3)
O7—H7A⋯O5iii 0.86 (1) 2.01 (1) 2.854 (2) 169 (2)
O7—H7B⋯O3iv 0.86 (1) 1.94 (1) 2.780 (2) 168 (3)
N1—H1⋯O7v 0.87 (1) 1.97 (1) 2.837 (2) 174 (2)
C6—H6⋯O6vi 0.95 2.63 3.520 (3) 156
C7—H7⋯O2vii 0.95 2.59 3.453 (3) 152
Symmetry codes: (i) x-1, y, z+1; (ii) x, y, z+1; (iii) -x+2, -y+1, -z+1; (iv) x, y-1, z+1; (v) -x+2, -y+1, -z+2; (vi) x+1, y, z-1; (vii) x+1, y, z.
[Figure 3]
Figure 3
The crystal packing of the title compound, in a view along the b axis, with hydrogen bonds shown as dashed lines.

The crystal structure of the related sodium 2-oxo-3-semicarbazono-2,3-di­hydro-1H-indole-5-sulfonate dihydrate, has been reported previously (Pelosi et al., 2006[Pelosi, G., Belicchi Ferrari, M., Rodríguez-Argüelles, M. C., Mosquera-Vázquez, S. & Sanmartín, J. (2006). Acta Cryst. C62, m241-m242.]).

Synthesis and crystallization

A commercial sample (Combi-Blocks) of sodium 2,3-dioxo­indole-5-sulfonate dihydrate was recrystallized by slow evaporation of an ethanol–water solution to yield orange blocks suitable for single-crystal X-ray diffraction analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Na(C8H4NO5S)(H2O)2]
Mr 285.20
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 7.4526 (17), 7.9888 (19), 10.692 (2)
α, β, γ (°) 85.916 (10), 80.181 (10), 65.237 (10)
V3) 569.6 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.35
Crystal size (mm) 0.18 × 0.15 × 0.14
 
Data collection
Diffractometer Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.231, 0.259
No. of measured, independent and observed [I > 2σ(I)] reflections 9782, 2142, 1775
Rint 0.043
(sin θ/λ)max−1) 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.083, 1.06
No. of reflections 2142
No. of parameters 178
No. of restraints 5
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.41
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Poly[diaqua(µ3-2,3-dioxoindoline-5-sulfonato)sodium] top
Crystal data top
[Na(C8H4NO5S)(H2O)2]Z = 2
Mr = 285.20F(000) = 292
Triclinic, P1Dx = 1.663 Mg m3
a = 7.4526 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.9888 (19) ÅCell parameters from 4084 reflections
c = 10.692 (2) Åθ = 3.2–25.7°
α = 85.916 (10)°µ = 0.35 mm1
β = 80.181 (10)°T = 200 K
γ = 65.237 (10)°BLOCK, orange
V = 569.6 (2) Å30.18 × 0.15 × 0.14 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
1775 reflections with I > 2σ(I)
φ and ω scansRint = 0.043
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 25.7°, θmin = 3.1°
Tmin = 0.231, Tmax = 0.259h = 99
9782 measured reflectionsk = 99
2142 independent reflectionsl = 1313
Refinement top
Refinement on F25 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.034P)2 + 0.4169P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2142 reflectionsΔρmax = 0.37 e Å3
178 parametersΔρmin = 0.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.62093 (12)0.56376 (12)1.11207 (8)0.0228 (2)
S10.77858 (8)0.88556 (7)0.21370 (5)0.01699 (15)
O10.6277 (2)0.5579 (2)0.89024 (14)0.0258 (4)
O20.4366 (2)0.5933 (2)0.66757 (14)0.0280 (4)
O30.9274 (2)0.9597 (2)0.17078 (14)0.0247 (4)
O40.5735 (2)1.0224 (2)0.21817 (14)0.0242 (4)
O50.8185 (2)0.7209 (2)0.14265 (13)0.0214 (3)
O60.3464 (3)0.8278 (3)1.1862 (2)0.0443 (5)
H6A0.231 (2)0.873 (4)1.162 (3)0.066*
H6B0.384 (5)0.916 (3)1.186 (3)0.066*
O70.9207 (2)0.3007 (2)1.09034 (14)0.0229 (4)
H7A0.990 (3)0.288 (4)1.0162 (11)0.034*
H7B0.911 (4)0.1986 (19)1.108 (2)0.034*
N10.8411 (3)0.6490 (3)0.74783 (17)0.0210 (4)
H10.918 (3)0.656 (3)0.7979 (17)0.025*
C10.6827 (3)0.6067 (3)0.78595 (19)0.0191 (5)
C20.5776 (3)0.6315 (3)0.6672 (2)0.0203 (5)
C30.6918 (3)0.7000 (3)0.56743 (19)0.0186 (5)
C40.6678 (3)0.7541 (3)0.44351 (19)0.0190 (4)
H40.56080.75140.40770.023*
C50.8064 (3)0.8129 (3)0.37292 (19)0.0177 (4)
C60.9651 (3)0.8131 (3)0.4255 (2)0.0234 (5)
H61.05930.85090.37470.028*
C70.9891 (3)0.7594 (3)0.5508 (2)0.0239 (5)
H71.09720.76010.58630.029*
C80.8495 (3)0.7053 (3)0.62055 (19)0.0188 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0220 (5)0.0256 (5)0.0235 (5)0.0123 (4)0.0040 (3)0.0007 (4)
S10.0172 (3)0.0175 (3)0.0177 (3)0.0089 (2)0.0020 (2)0.0010 (2)
O10.0319 (9)0.0317 (9)0.0193 (8)0.0188 (8)0.0061 (7)0.0062 (7)
O20.0298 (9)0.0396 (10)0.0264 (8)0.0258 (8)0.0063 (7)0.0036 (7)
O30.0255 (9)0.0275 (9)0.0275 (8)0.0182 (8)0.0033 (7)0.0057 (7)
O40.0201 (8)0.0217 (8)0.0281 (8)0.0056 (7)0.0046 (6)0.0003 (7)
O50.0243 (8)0.0212 (8)0.0197 (8)0.0110 (7)0.0006 (6)0.0038 (6)
O60.0222 (10)0.0353 (11)0.0768 (14)0.0125 (9)0.0070 (9)0.0070 (10)
O70.0275 (9)0.0235 (9)0.0204 (8)0.0140 (8)0.0016 (6)0.0003 (7)
N10.0203 (10)0.0278 (10)0.0191 (9)0.0126 (9)0.0077 (7)0.0027 (8)
C10.0211 (12)0.0171 (11)0.0198 (11)0.0078 (10)0.0045 (9)0.0009 (9)
C20.0214 (12)0.0201 (11)0.0205 (11)0.0097 (10)0.0035 (9)0.0002 (9)
C30.0180 (11)0.0197 (11)0.0202 (11)0.0097 (9)0.0028 (8)0.0001 (9)
C40.0178 (11)0.0218 (11)0.0208 (11)0.0108 (10)0.0045 (8)0.0012 (9)
C50.0189 (11)0.0166 (11)0.0180 (10)0.0083 (9)0.0009 (8)0.0016 (8)
C60.0216 (12)0.0277 (13)0.0252 (12)0.0155 (11)0.0017 (9)0.0014 (9)
C70.0190 (12)0.0328 (13)0.0252 (12)0.0151 (11)0.0057 (9)0.0006 (10)
C80.0173 (11)0.0188 (11)0.0196 (11)0.0060 (9)0.0046 (8)0.0008 (8)
Geometric parameters (Å, º) top
Na1—Na1i3.6590 (17)O6—H6B0.860 (5)
Na1—O12.3669 (17)O7—H7A0.857 (5)
Na1—O1i2.4309 (18)O7—H7B0.856 (5)
Na1—O2i2.6444 (18)N1—H10.867 (5)
Na1—O5ii2.3706 (17)N1—C11.351 (3)
Na1—O62.309 (2)N1—C81.402 (3)
Na1—O72.3283 (19)C1—Na1i3.113 (2)
Na1—C1i3.113 (2)C1—C21.561 (3)
S1—O31.4596 (15)C2—C31.470 (3)
S1—O41.4547 (16)C3—C41.382 (3)
S1—O51.4609 (15)C3—C81.406 (3)
S1—C51.777 (2)C4—H40.9500
O1—Na1i2.4309 (18)C4—C51.395 (3)
O1—C11.216 (2)C5—C61.395 (3)
O2—Na1i2.6444 (18)C6—H60.9500
O2—C21.210 (3)C6—C71.394 (3)
O5—Na1iii2.3707 (17)C7—H70.9500
O6—H6A0.858 (5)C7—C81.376 (3)
O1i—Na1—Na1i39.66 (4)S1—O5—Na1iii133.64 (9)
O1—Na1—Na1i40.95 (4)Na1—O6—H6A127 (2)
O1—Na1—O1i80.61 (6)Na1—O6—H6B109 (2)
O1—Na1—O2i145.72 (6)H6A—O6—H6B107 (3)
O1i—Na1—O2i69.98 (5)Na1—O7—H7A113.6 (18)
O1—Na1—O5ii106.21 (6)Na1—O7—H7B115.7 (18)
O1i—Na1—C1i21.08 (5)H7A—O7—H7B107 (3)
O1—Na1—C1i101.52 (6)C1—N1—H1124.4 (15)
O2i—Na1—Na1i107.88 (5)C1—N1—C8111.27 (17)
O2i—Na1—C1i49.33 (5)C8—N1—H1123.8 (16)
O5ii—Na1—Na1i146.48 (5)O1—C1—Na1i45.97 (11)
O5ii—Na1—O1i169.43 (6)O1—C1—N1128.8 (2)
O5ii—Na1—O2i105.59 (6)O1—C1—C2124.92 (19)
O5ii—Na1—C1i151.73 (6)N1—C1—Na1i168.95 (15)
O6—Na1—Na1i96.15 (6)N1—C1—C2106.28 (17)
O6—Na1—O1i83.70 (7)C2—C1—Na1i79.79 (11)
O6—Na1—O1106.17 (8)O2—C2—C1122.89 (19)
O6—Na1—O2i88.14 (7)O2—C2—C3132.4 (2)
O6—Na1—O5ii86.60 (7)C3—C2—C1104.67 (17)
O6—Na1—O7164.59 (8)C4—C3—C2132.34 (19)
O6—Na1—C1i80.47 (7)C4—C3—C8121.11 (19)
O7—Na1—Na1i97.83 (5)C8—C3—C2106.56 (18)
O7—Na1—O1i103.12 (6)C3—C4—H4121.2
O7—Na1—O188.71 (6)C3—C4—C5117.57 (19)
O7—Na1—O2i81.43 (6)C5—C4—H4121.2
O7—Na1—O5ii85.33 (6)C4—C5—S1118.75 (16)
O7—Na1—C1i100.84 (6)C6—C5—S1120.41 (16)
C1i—Na1—Na1i60.61 (5)C6—C5—C4120.84 (19)
O3—S1—O5111.89 (9)C5—C6—H6119.2
O3—S1—C5106.05 (9)C7—C6—C5121.68 (19)
O4—S1—O3113.46 (9)C7—C6—H6119.2
O4—S1—O5112.52 (9)C6—C7—H7121.4
O4—S1—C5106.06 (9)C8—C7—C6117.12 (19)
O5—S1—C5106.17 (9)C8—C7—H7121.4
Na1—O1—Na1i99.39 (6)N1—C8—C3111.14 (18)
C1—O1—Na1146.85 (15)C7—C8—N1127.21 (19)
C1—O1—Na1i112.95 (14)C7—C8—C3121.65 (19)
C2—O2—Na1i107.73 (14)
Na1—O1—C1—Na1i166.5 (3)N1—C1—C2—O2175.3 (2)
Na1—O1—C1—N126.5 (4)N1—C1—C2—C33.0 (2)
Na1i—O1—C1—N1166.99 (19)C1—N1—C8—C30.7 (3)
Na1i—O1—C1—C212.7 (3)C1—N1—C8—C7179.6 (2)
Na1—O1—C1—C2153.79 (19)C1—C2—C3—C4177.2 (2)
Na1i—O2—C2—C15.9 (2)C1—C2—C3—C82.5 (2)
Na1i—O2—C2—C3171.9 (2)C2—C3—C4—C5179.8 (2)
Na1i—C1—C2—O24.8 (2)C2—C3—C8—N11.3 (2)
Na1i—C1—C2—C3173.49 (15)C2—C3—C8—C7178.4 (2)
S1—C5—C6—C7179.05 (17)C3—C4—C5—S1179.40 (16)
O1—C1—C2—O24.4 (3)C3—C4—C5—C61.2 (3)
O1—C1—C2—C3177.3 (2)C4—C3—C8—N1178.46 (19)
O2—C2—C3—C44.7 (4)C4—C3—C8—C71.8 (3)
O2—C2—C3—C8175.5 (2)C4—C5—C6—C71.6 (3)
O3—S1—O5—Na1iii161.56 (11)C5—S1—O5—Na1iii83.17 (13)
O3—S1—C5—C4173.02 (16)C5—C6—C7—C80.2 (3)
O3—S1—C5—C67.6 (2)C6—C7—C8—N1178.9 (2)
O4—S1—O5—Na1iii32.43 (14)C6—C7—C8—C31.5 (3)
O4—S1—C5—C452.08 (19)C8—N1—C1—Na1i124.4 (7)
O4—S1—C5—C6128.54 (18)C8—N1—C1—O1178.0 (2)
O5—S1—C5—C467.82 (19)C8—N1—C1—C22.3 (2)
O5—S1—C5—C6111.56 (18)C8—C3—C4—C50.4 (3)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y, z+1; (iii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O3iv0.86 (1)2.06 (1)2.878 (2)159 (3)
O6—H6B···O4ii0.86 (1)2.01 (2)2.807 (2)153 (3)
O7—H7A···O5v0.86 (1)2.01 (1)2.854 (2)169 (2)
O7—H7B···O3vi0.86 (1)1.94 (1)2.780 (2)168 (3)
N1—H1···O7vii0.87 (1)1.97 (1)2.837 (2)174 (2)
C6—H6···O6viii0.952.633.520 (3)156
C7—H7···O2ix0.952.593.453 (3)152
Symmetry codes: (ii) x, y, z+1; (iv) x1, y, z+1; (v) x+2, y+1, z+1; (vi) x, y1, z+1; (vii) x+2, y+1, z+2; (viii) x+1, y, z1; (ix) x+1, y, z.
 

Funding information

Funding for this research was provided by: Massachusetts Clean Energy Center; National Science Foundation (award No. CHE-1429086).

References

First citationBruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals
First citationGurung, S., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160177.
First citationPelosi, G., Belicchi Ferrari, M., Rodríguez-Argüelles, M. C., Mosquera-Vázquez, S. & Sanmartín, J. (2006). Acta Cryst. C62, m241–m242.  CSD CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds